JPS6243093B2 - - Google Patents

Info

Publication number
JPS6243093B2
JPS6243093B2 JP21463882A JP21463882A JPS6243093B2 JP S6243093 B2 JPS6243093 B2 JP S6243093B2 JP 21463882 A JP21463882 A JP 21463882A JP 21463882 A JP21463882 A JP 21463882A JP S6243093 B2 JPS6243093 B2 JP S6243093B2
Authority
JP
Japan
Prior art keywords
air
waste
height
fluidized bed
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21463882A
Other languages
Japanese (ja)
Other versions
JPS59107111A (en
Inventor
Saburo Mizuguchi
Hiroji Masuno
Kikuji Kawakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP21463882A priority Critical patent/JPS59107111A/en
Publication of JPS59107111A publication Critical patent/JPS59107111A/en
Publication of JPS6243093B2 publication Critical patent/JPS6243093B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、流動床式焼却炉を用いて、都市ごみ
や産業廃棄物などのごみを焼却する流動床式焼却
方法に関するものである。 近年都市ごみや産業廃棄物などのごみの焼却炉
として流動床式焼却炉が多く用いられるようにな
つているが、従来のものにおいては、砂などの流
動媒体を適正な流動状態に保持することが困難で
あり、そのために無駄な動力の損失を招くという
欠点を有していた。 発明者らは、この欠点を除くために研究を重ね
多くの実験を行ない、その折に得られた知見に基
づいて本発明がなされた。 流動床式焼却炉を用いて焼却を行なう場合に
は、流動化のために炉床から送られる空気(一次
空気)は燃焼用の酸素供給のためにも充てられる
が、不足する燃焼用空気量を補うためにフリーボ
ード部に燃焼用専用の二次空気が供給される。 本発明は、この一次空気量を、流動媒体を適正
な流動状態に保持するに必要な最低限の空気量に
とどめ、燃焼完結に必要な燃焼用空気不足分は二
次空気で最低限の量を補い、これにより空気供給
用の動力の無駄な損失を防ぐごみの流動床式焼却
方法を提供することを目的とするものである。 この目的を達成するための研究として、先ず、
一次空気量を最低限にする方法を見出すために、
発明者らは、流動床を形成する流動媒体の保有量
(即ち、炉床面積は一定なので必然的に静止高さ
となる)は、ごみの発熱量に関係して適正に選ば
れるべきことに着目し、或る発熱量のごみに対す
る最適の保有量(静止高さ)を得る実験を行なつ
た。 実験結果によれば、ごみの発熱量が、原じん芥
ベースの低位発熱量が700kcal/Kg以上であれば
補助燃焼の必要がなく、自然が可能であるが、こ
れ以上の発熱量を有するごみであつても、自然状
態を保持する条件として、ごみの発熱量が低い場
合は、発熱量が高い場合に比べて流動媒体静止高
さを高く保つ必要があることがわかつた。第1図
は実験結果の一例を示し、原じん芥ベース低位発
熱量に対して適正な流動媒体の静止高さの目安を
与えるグラフである。 一次空気量は、砂などの流動媒体の粒径及び粒
度分布、さらに、炉床から不燃残渣を取除くため
に設備された篩分器の目開き程度、炉内でのガス
流速などの条件により、それぞれのケースにおい
てほぼ一定の値となる。 上述の如く、ごみの発熱量の変化に対して適正
な静止層高さが決まるが、この静止層高さに対応
するよう送風機の回転数を調整して一次空気量を
一定に保つ。 即ち、送風機の風量と風圧、回転数は第2図に
示す如き関係にあり、例えばごみ発熱量の低下に
応じて静止高さが低下し、流動層内の圧損がH1
からH2に低下した場合、送風機回転数がn1からn2
に減ずれば、風量Qを所定の値Q1に一定に保つ
ことができる。このとき、回転数がn1からn2に減
じたことにより、動力はその三乗に比例して減少
するので大幅な動力低減をはかることができる。 このようにしてごみの発熱量の変化に対応して
最も少ない動力で一次空気量を確保することがで
きる。 次に二次空気量を最低にするためには、焼却炉
出口における燃焼排ガスの酸素濃度を検出し、酸
素濃度が定められた数値を保つよう燃焼用二次空
気の風量を制御する。 又、炉内圧に対しては、炉内圧を検出し、誘引
フアン入口ダンパー制御を行なうことにより炉内
圧力を一定に保つことができる。 本発明は、流動床式焼却炉を用いたごみの流動
床式焼却方法において、焼付対象物の発熱量に応
じて流動媒体の静止層高さを調節し、該静止層高
さに応じて流動化用ブロワの回転数を制御して流
動用一次空気の風量を所定の値に保ち、燃焼排ガ
ス中の酸素濃度を検知し、該酸素濃度が所定の値
となるよう燃焼用二次空気の風量を制御すること
を特徴とするごみの流動床式焼却方法である。 本発明の実施例を図面を用いて説明する。 第3図において、1は焼却炉であり下部のウイ
ンドボツクス2上の分散板3から流動化用の一次
空気を噴出して砂などの流動媒体を流動化して流
動層4を形成する。5は、流動化用の一次空気を
供給する送風機であり、一次空気は空気予熱器6
にて排ガス管7を通る排ガスにより予熱された後
送気管8を経てウインドボツクス2に供給され
る。9は燃焼用二次空気用の送風機で送気管10
を経てフリーボード11に供給される。焼却対象
物であるごみはごみ供給機12により流動層4内
に供給される。 13は排出管で、不燃残渣を流動媒体と共に排
出する。14は分離機構で、不燃残渣を分離して
排出し、流動媒体は再生機構15を経て貯槽16
に送られ、さらに揚送機構17を経て再び焼却炉
1内に送られる。排出管13から排出される流動
媒体量に対し、揚送機構17の揚送量を適宜変化
せしめることにより焼却炉1内の流動媒体保有量
を増減せしめることができる。炉床面積は一定で
あるので、保有量の調節は即ち、流動媒体の静止
層高さを調節することになる。 18は、送風機5の吐出風量を検出し、所定の
風量設定値を保つための風量指示制御器であり、
送風機5の駆動用電動機19の回転数を操作する
ようになつている。20は風量設定器であり、前
述の第1図に示す如くごみの原じん芥ベース低位
発熱量に応じて定められた流動媒体静止層高さに
基づき、第2図に示す如く所定風量Q1になるよ
う選ばれた回転数n2になるよう風量指示制御器1
8における風量設定値をカスケード制御るもので
ある。 21は酸素濃度指示制御器であり、排ガス中の
酸素濃度が所定の設定値を保つよう、送風機9を
駆動する電動機22の回転数を操作する。 運転に当たつては、焼却対象のごみの原じん芥
ベースの低位発熱量を測定域いは従来のデータに
より予知し、これに基づき最適の流動媒体の静止
層高さを求め、炉内流動媒体保有量を調節して静
止高さを最適の高さに合わせ、このときの通風抵
抗に見合つた静圧の変化に相当するよう送風機5
の回転数制御を行ない、一次空気量が所定の最低
限の値になるよう制御する。 一方、二次空気用の送風機9に対しては、排ガ
ス中の酸素濃度を酸素濃度指示制御器21により
により検出しかつ電動機22を操作し、排ガス中
の酸素濃度が所定の設定値となるようにする。 燃焼プロセスの例を第4図に示す。aは流動層
温度の時間的変化を示し、区間A,B,C,D…
に分けられる。それぞれの区間の諸元は次の表の
如くである。
The present invention relates to a fluidized bed incineration method for incinerating garbage such as municipal waste and industrial waste using a fluidized bed incinerator. In recent years, fluidized bed incinerators have been increasingly used as incinerators for municipal waste, industrial waste, and other garbage, but in conventional incinerators, it is difficult to maintain the fluid medium such as sand in an appropriate fluid state. However, this method has the drawback of causing unnecessary loss of power. In order to eliminate this drawback, the inventors conducted repeated research and conducted many experiments, and based on the knowledge obtained at that time, the present invention was made. When incineration is carried out using a fluidized bed incinerator, the air sent from the hearth for fluidization (primary air) is also used to supply oxygen for combustion, but the amount of air for combustion is insufficient. To compensate for this, secondary air exclusively for combustion is supplied to the freeboard section. The present invention limits the amount of primary air to the minimum amount necessary to maintain the fluidized medium in a proper fluid state, and uses the minimum amount of secondary air to compensate for the lack of combustion air required to complete combustion. The object of the present invention is to provide a fluidized bed incineration method for waste, which supplements this and thereby prevents wasteful loss of power for supplying air. As a research to achieve this purpose, first of all,
In order to find a way to minimize the amount of primary air,
The inventors focused on the fact that the amount of fluidized media that forms the fluidized bed (that is, since the area of the hearth is constant, the height is necessarily static) should be appropriately selected in relation to the calorific value of the waste. We conducted an experiment to find the optimal holding amount (static height) for garbage with a certain calorific value. According to the experimental results, if the calorific value of the waste is 700kcal/Kg or more based on the raw waste, there is no need for auxiliary combustion and natural combustion is possible. However, as a condition for maintaining the natural state, it was found that when the calorific value of the waste is low, it is necessary to maintain the static height of the fluid medium higher than when the calorific value is high. FIG. 1 shows an example of experimental results, and is a graph that provides a guideline for the appropriate static height of the fluidizing medium with respect to the lower calorific value of raw waste base. The amount of primary air depends on conditions such as the particle size and particle size distribution of the fluidized medium such as sand, the opening of the sieve installed to remove non-flammable residue from the hearth, and the gas flow rate in the furnace. , is a nearly constant value in each case. As mentioned above, the appropriate height of the static layer is determined based on the change in the calorific value of the waste, and the rotational speed of the blower is adjusted to correspond to the height of the static layer to keep the amount of primary air constant. In other words, the air volume, wind pressure, and rotational speed of the blower have the relationship shown in Figure 2. For example, as the waste calorific value decreases, the static height decreases, and the pressure drop in the fluidized bed increases by H 1
If the blower speed decreases from n 1 to n 2
If the air flow rate Q is reduced to , the air volume Q can be kept constant at a predetermined value Q1 . At this time, since the number of rotations is reduced from n 1 to n 2 , the power decreases in proportion to the cube of the rotation speed, so it is possible to significantly reduce the power. In this way, the amount of primary air can be secured with the least amount of power in response to changes in the calorific value of the waste. Next, in order to minimize the amount of secondary air, the oxygen concentration of the combustion exhaust gas at the incinerator outlet is detected, and the amount of secondary air for combustion is controlled so that the oxygen concentration remains at a predetermined value. Moreover, the furnace internal pressure can be kept constant by detecting the furnace internal pressure and controlling the induction fan inlet damper. The present invention provides a fluidized bed incineration method for waste using a fluidized bed incinerator, in which the height of the static bed of the fluidized medium is adjusted according to the calorific value of the object to be incinerated, and the height of the static bed of the fluidized medium is adjusted according to the height of the static bed. The rotational speed of the combustion blower is controlled to maintain the flow rate of primary air at a predetermined value, the oxygen concentration in the combustion exhaust gas is detected, and the flow rate of secondary combustion air is adjusted so that the oxygen concentration becomes the predetermined value. This is a fluidized bed incineration method for waste, which is characterized by controlling the Embodiments of the present invention will be described using the drawings. In FIG. 3, reference numeral 1 denotes an incinerator, which blows out primary air for fluidization from a dispersion plate 3 on a lower wind box 2 to fluidize a fluidized medium such as sand to form a fluidized bed 4. 5 is a blower that supplies primary air for fluidization, and the primary air is supplied to an air preheater 6.
After being preheated by the exhaust gas passing through the exhaust gas pipe 7, it is supplied to the wind box 2 via the air supply pipe 8. 9 is a blower for secondary air for combustion; air pipe 10
It is supplied to the freeboard 11 through the. Garbage to be incinerated is fed into the fluidized bed 4 by a garbage feeder 12. Reference numeral 13 denotes a discharge pipe for discharging non-combustible residue together with the fluidized medium. 14 is a separation mechanism that separates and discharges non-combustible residue, and the fluidized medium passes through a regeneration mechanism 15 to a storage tank 16.
The waste is then sent to the incinerator 1 again via the lifting mechanism 17. By appropriately changing the amount of fluidized medium discharged from the discharge pipe 13 by the lifting mechanism 17, the amount of fluidized medium held in the incinerator 1 can be increased or decreased. Since the area of the hearth is constant, adjusting the holding amount thus amounts to adjusting the height of the static bed of the fluidized medium. 18 is an air volume indicating controller for detecting the discharge air volume of the blower 5 and maintaining a predetermined air volume setting value;
The number of revolutions of the driving electric motor 19 of the blower 5 is controlled. Reference numeral 20 denotes an air volume setting device, which adjusts the predetermined air volume Q 1 as shown in Fig. 2 based on the height of the fluidized medium stationary bed determined according to the lower calorific value of the raw dust base as shown in Fig. 1 above. Air volume indicator controller 1 so that the rotation speed n 2 is selected to be
This is to perform cascade control of the air volume setting value in step 8. Reference numeral 21 denotes an oxygen concentration indicating controller, which operates the rotation speed of the electric motor 22 that drives the blower 9 so that the oxygen concentration in the exhaust gas is maintained at a predetermined set value. During operation, the lower calorific value of the raw dust base of the waste to be incinerated is predicted using the measurement range or conventional data, and based on this, the optimal static bed height of the fluidized medium is determined, and the flow rate in the furnace is determined. The amount of media held is adjusted to match the static height to the optimal height, and the blower 5 is adjusted to correspond to the change in static pressure commensurate with the ventilation resistance at this time.
The rotation speed is controlled so that the amount of primary air becomes a predetermined minimum value. On the other hand, for the secondary air blower 9, the oxygen concentration in the exhaust gas is detected by the oxygen concentration indicator controller 21 and the electric motor 22 is operated so that the oxygen concentration in the exhaust gas reaches a predetermined set value. Make it. An example of the combustion process is shown in Figure 4. a indicates the temporal change in fluidized bed temperature, and sections A, B, C, D...
It can be divided into The specifications of each section are as shown in the table below.

【表】 即ち、区間Aにおいては発熱量950kcal/Kgの
ごみを流動媒体層高950mmで焼却しており650℃に
おいて自然状態が保持できた。 区間Bにおいて、ごみ質を変化させ発熱量
1500kcal/Kgのごみを焼却した。焼却量、層高、
一次空気量は区間Aと同一とする。また、発熱量
が増大し燃焼用空気が不足するので排ガス中の酸
素濃度が設定値以下となり、送風機9が起動し酸
素濃度が一定となるよう二次空気を補給した。媒
体温度は徐々に上昇し700℃となつた。 媒体温度は650℃に保てば自然状態を保持でき
るので、第1図に従つて流動媒体の静止高さを
700mmに下げ、他の条件は区間Bと同一とした。
その結果区間Cでは媒体温度は徐々に低下し650
℃でほぼ一定となり自然状態を保持することがで
きた。 さらに区間Dでごみ質を変化させ、950kcal/
Kgのごみを供給したところ、媒体温度は徐々に低
下し、自然状態を保持することができず、助燃油
を燃焼せしめることが必要となつた。 本発明により、一次空気、二次空気とも、ごみ
質の条件に応じた最低限の風量が得られ、動力の
節減がはかれるごみの流動床式焼却方法を提供す
ることができ、実用上極めて大なる効果を有する
ものである。
[Table] That is, in section A, waste with a calorific value of 950 kcal/Kg was incinerated with a fluidized medium bed height of 950 mm, and a natural state could be maintained at 650°C. In section B, the quality of waste is changed to increase the calorific value.
1500kcal/Kg of garbage was incinerated. Amount of incineration, layer height,
The primary air amount is the same as in section A. Furthermore, since the amount of heat generated increases and combustion air becomes insufficient, the oxygen concentration in the exhaust gas falls below the set value, and the blower 9 is started to supply secondary air so that the oxygen concentration becomes constant. The medium temperature gradually rose to 700°C. Since the medium temperature can be maintained in its natural state by keeping it at 650℃, the static height of the fluidized medium can be adjusted according to Figure 1.
The distance was lowered to 700 mm, and the other conditions were the same as Section B.
As a result, in section C, the medium temperature gradually decreases to 650
It became almost constant at ℃ and was able to maintain its natural state. Furthermore, in section D, the quality of the waste was changed to 950kcal/
When Kg of waste was supplied, the medium temperature gradually decreased and the natural state could not be maintained, making it necessary to burn the auxiliary fuel oil. According to the present invention, it is possible to provide a fluidized bed incineration method for waste, which can obtain the minimum air volume of both primary air and secondary air according to the conditions of the waste quality, and saves power. This has the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はごみの発熱量と流動媒体の静止層高さ
との関係を示すグラフ、第2図は流動層形成に要
する静圧と風量との開係を示すグラフ、第3図は
本発明の実施例のフロー図、第4図は本発明の実
施例のプロセスにおける流動層温度変化及び排ガ
スO2濃度変化を示すグラフである。 1……焼却炉、2……ウインドボツクス、3…
…分散板、4……流動層、5……送風機、6……
空気予熱器、7……排ガス管、8……送気管、9
……送風機、10……送気管、11……フリーボ
ード、12……ごみ供給機、13……排出管、1
4……分離機構、15……再生機構、16……貯
槽、17……揚送機構、18……風量指示制御
器、19……電動機、20……風量設定器、21
……酸素濃度指示制御器、22……電動機。
Figure 1 is a graph showing the relationship between the calorific value of waste and the static layer height of the fluidized medium, Figure 2 is a graph showing the relationship between the static pressure and air volume required to form a fluidized bed, and Figure 3 is a graph showing the relationship between the static pressure and air volume required for fluidized bed formation. FIG. 4, which is a flowchart of the embodiment, is a graph showing changes in fluidized bed temperature and exhaust gas O 2 concentration changes in the process of the embodiment of the present invention. 1... Incinerator, 2... Wind box, 3...
... Dispersion plate, 4 ... Fluidized bed, 5 ... Air blower, 6 ...
Air preheater, 7... Exhaust gas pipe, 8... Air supply pipe, 9
... Air blower, 10 ... Air pipe, 11 ... Free board, 12 ... Garbage feeder, 13 ... Discharge pipe, 1
4... Separation mechanism, 15... Regeneration mechanism, 16... Storage tank, 17... Lifting mechanism, 18... Air volume indicator controller, 19... Electric motor, 20... Air volume setting device, 21
...Oxygen concentration indicator controller, 22...Electric motor.

Claims (1)

【特許請求の範囲】[Claims] 1 流動床式焼却炉を用いたごみの流動床式焼却
方法において、焼却対象物の発熱量に応じて流動
媒体の静止層高さを調節し、該静止層高さに応じ
て流動化用ブロワの回転数を制御して流動用一次
空気の風量を所定の値に保ち、燃焼排ガス中の酸
素濃度を検知し、該酸素濃度が所定の値となるよ
う燃焼用二次空気の風量を制御することを特徴と
するごみの流動床式焼却方法。
1. In a fluidized bed incineration method for waste using a fluidized bed incinerator, the height of the static bed of the fluidized medium is adjusted according to the calorific value of the material to be incinerated, and the height of the fluidized bed is adjusted according to the height of the static bed. control the rotational speed of the engine to maintain the flow rate of the primary air at a predetermined value, detect the oxygen concentration in the combustion exhaust gas, and control the flow rate of the secondary combustion air so that the oxygen concentration becomes the predetermined value. A fluidized bed incineration method for waste, which is characterized by:
JP21463882A 1982-12-09 1982-12-09 Fluidized-bed type incinerating method of refuse Granted JPS59107111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21463882A JPS59107111A (en) 1982-12-09 1982-12-09 Fluidized-bed type incinerating method of refuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21463882A JPS59107111A (en) 1982-12-09 1982-12-09 Fluidized-bed type incinerating method of refuse

Publications (2)

Publication Number Publication Date
JPS59107111A JPS59107111A (en) 1984-06-21
JPS6243093B2 true JPS6243093B2 (en) 1987-09-11

Family

ID=16659057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21463882A Granted JPS59107111A (en) 1982-12-09 1982-12-09 Fluidized-bed type incinerating method of refuse

Country Status (1)

Country Link
JP (1) JPS59107111A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642726A (en) * 1987-05-01 1994-02-18 Ebara Corp Combustion amount detecting device and combustion control device for fluidized bed type furnace
EP0358760B1 (en) * 1987-05-01 1994-11-23 Ebara Corporation Combustion control method for fluidized bed incinerator
ATE76957T1 (en) * 1987-10-24 1992-06-15 Mindermann Kurt Henry METHOD OF CONTROLLING THE COMBUSTION OF FUEL WITH LARGELY FLUSHING CALCULATORY VALUE.
JP2664909B2 (en) * 1987-10-28 1997-10-22 バブコツク日立株式会社 Operating method of refuse incineration equipment
DE10012895A1 (en) * 2000-03-16 2001-09-20 Krc Umwelttechnik Gmbh Combustion process for all fuels by means of grate firing involves supplying different amounts of oxygen to individual primary air zones
EP1381061B1 (en) 2001-03-30 2011-08-24 Nippon Chemi-Con Corporation Inductance element and case
JP4736554B2 (en) * 2005-06-14 2011-07-27 住友電気工業株式会社 Reactor device
JP2009296015A (en) * 2009-09-18 2009-12-17 Sumitomo Electric Ind Ltd In-vehicle power conversion device
ES2540702B1 (en) * 2012-09-11 2016-05-12 Fundacion Cidaut SOLID FUEL BOILER

Also Published As

Publication number Publication date
JPS59107111A (en) 1984-06-21

Similar Documents

Publication Publication Date Title
RU2154235C1 (en) Method of gasification of combustible material (versions) and device for realization of this method
US4398477A (en) Method for generation of hot gas by incineration of combustible material and apparatus for generation of hot gas by incineration of combustible material
US3605655A (en) Method and apparatus for incinerating combustible wastes
US5762008A (en) Burning fuels, particularly for incinerating garbage
JPS5971917A (en) Thermal oxidizer and its operating method
JPS6243093B2 (en)
JPS6260611B2 (en)
JP3586164B2 (en) Operating method of circulating fluidized incinerator
EP0028458B1 (en) Fluidised-bed boilers
JP3004629B1 (en) Start control method and stop control method for partial combustion furnace, and start / stop control device
JP2003262317A (en) Control device for quantity of combustion air supply to combustible gas combustion chamber
JPS6357686B2 (en)
JPH01121617A (en) Incinerator for industrial wastes
JPS59104012A (en) Refuse fluidized-bed system incinerating method
JPH0122539B2 (en)
JPH0816526B2 (en) Method and apparatus for controlling circulating particle amount in fluidized bed incinerator
JPH04273911A (en) Combustion control method of refuse incinerator
JP2681748B2 (en) Stable combustion method and apparatus in fluidized bed furnace
JPH0914628A (en) Combustion control method for fluidized bed incinerator
JP2000297917A (en) Municipal refuse incinerating device and its operation method
GB2034445A (en) Fluidised bed combustion apparatus
JPS60238608A (en) Temperature control method for incinerator
JP2002098309A (en) Circulating fluidized bed combustion apparatus and its combustion method
JPS59122811A (en) Automatic control method for industrial waste material melting furnace
JPS6242207B2 (en)