JPS6243078B2 - - Google Patents

Info

Publication number
JPS6243078B2
JPS6243078B2 JP56207017A JP20701781A JPS6243078B2 JP S6243078 B2 JPS6243078 B2 JP S6243078B2 JP 56207017 A JP56207017 A JP 56207017A JP 20701781 A JP20701781 A JP 20701781A JP S6243078 B2 JPS6243078 B2 JP S6243078B2
Authority
JP
Japan
Prior art keywords
pressure
receiver tank
separator
unloader
regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56207017A
Other languages
Japanese (ja)
Other versions
JPS58110878A (en
Inventor
Tooru Kanbayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP56207017A priority Critical patent/JPS58110878A/en
Publication of JPS58110878A publication Critical patent/JPS58110878A/en
Publication of JPS6243078B2 publication Critical patent/JPS6243078B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/022Stopping, starting, unloading or idling control by means of pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 本発明は圧縮機の容量調整方法及び装置に関す
る。すなわち、本発明はレシーバタンク内の圧力
を正確に検出し、該検出圧力により、圧縮機の適
確な容量調整を行なうことを目的とするものであ
る。その特徴とするところは、第1に、ニユーマ
チツクアンローダの作動圧をレシーバタンクのセ
パレータ通過前の圧縮圧により制御する方法にあ
り第2に、レギユレータにレシーバタンクのセパ
レータ通過前及び通過後の圧縮圧をそれぞれ別個
に導入し、且つ該レギユレータにニユーマチツク
アンローダを作動せしめるセパレータ通過後の圧
縮圧の通路を開閉作動する弁機構を設け、該弁機
構をセパレータ通過前のレシーバタンク内圧力に
より作動する進退機構に連動するよう配管接続し
た装置にある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for adjusting capacity of a compressor. That is, an object of the present invention is to accurately detect the pressure within the receiver tank and to accurately adjust the capacity of the compressor based on the detected pressure. Its features are: firstly, the operating pressure of the pneumatic unloader is controlled by the compression pressure before the receiver tank passes through the separator; and secondly, the regulator uses Compression pressure is introduced separately into the regulator, and a valve mechanism is provided to open and close the compression pressure passage after passing through the separator, which operates the pneumatic unloader. It is located in a device that is connected to the piping so that it is linked to the advancing and retracting mechanism that operates.

従来の圧縮機の容量調整は、第1図に示すよう
に、圧縮機の吸入口に連設したニユーマチツクア
ンローダ10と、該アンローダ10に接続された
レギユレータ20とを有し、該レギユレータ20
にレシーバタンク30を配管接続し、レギユレー
タ20の室21はレシーバタンク30に内蔵した
セパレータ31の吐出管に接続し、該室21には
常にレシーバタンク30の吐出圧力が作用してい
る。又、レギユレータ20の室22は、アンロー
ダ10の隔室11に接続してあり、該隔室11に
はオリフイス12が穿設され、装置全体が円滑に
作動するよう隔室11中にレシーバタンク30か
らレギユレータ20を介して供給された圧縮空気
を該オリフイス12を通して圧縮機の吸入口1へ
と吐き出す。又レギユレータ20の室21のスプ
リング23を有するダイヤフラム24はニードル
バルブ25の開度を調整し、室21から室22に
通過するアンローダ10の作動圧たる圧縮空気の
量を調整する。しかるに、圧縮機にて圧縮された
吐出空気量よりもレシーバタンク30からの使用
空気量が少なくて、吐出圧力すなわち室21の圧
力が一定値を越えると、ダイヤフラム24に作用
する圧縮空気の圧力がスプリング23の張力に打
ち勝つてダイヤフラム24を左に押し上げ、ニー
ドルバルブ25をシートから離し、室21から室
22に圧縮空気が流れ、該圧縮空気が室22から
パイプ13を経てアンローダの隔室11に入る。
使用空気量がさらに減少し、ニードルバルブの開
度が増加すると、室22から隔室11に入る作動
圧たる圧縮空気の量が増加し隔室11の圧力上昇
によりダイヤフラム14はアンローダ10のバル
ブ15を押し、圧縮機の吸入空気を絞る。使用空
気量がさらに減少すると、レシーバタンク30内
の圧力は増加するためアンローダバルブ15は完
全にシート16に押し付けられ圧縮機は全く空気
を吸入せず無負荷状態になる。
As shown in FIG. 1, conventional compressor capacity adjustment includes a pneumatic unloader 10 connected to the suction port of the compressor, and a regulator 20 connected to the unloader 10.
A receiver tank 30 is connected to the receiver tank 30 by piping, and a chamber 21 of the regulator 20 is connected to a discharge pipe of a separator 31 built into the receiver tank 30, and the discharge pressure of the receiver tank 30 is always applied to the chamber 21. Further, the chamber 22 of the regulator 20 is connected to the compartment 11 of the unloader 10, an orifice 12 is bored in the compartment 11, and a receiver tank 30 is installed in the compartment 11 so that the entire device operates smoothly. The compressed air supplied from the compressor via the regulator 20 is discharged through the orifice 12 to the suction port 1 of the compressor. Further, a diaphragm 24 having a spring 23 in the chamber 21 of the regulator 20 adjusts the opening degree of the needle valve 25, and adjusts the amount of compressed air that is the operating pressure of the unloader 10 and passes from the chamber 21 to the chamber 22. However, if the amount of air used from the receiver tank 30 is smaller than the amount of discharge air compressed by the compressor and the discharge pressure, that is, the pressure in the chamber 21, exceeds a certain value, the pressure of the compressed air acting on the diaphragm 24 will decrease. Overcoming the tension of the spring 23, the diaphragm 24 is pushed up to the left, the needle valve 25 is released from the seat, and compressed air flows from the chamber 21 to the chamber 22, and from the chamber 22 passes through the pipe 13 to the compartment 11 of the unloader. enter.
When the amount of air used further decreases and the degree of opening of the needle valve increases, the amount of compressed air at operating pressure entering the compartment 11 from the chamber 22 increases, and the pressure rise in the compartment 11 causes the diaphragm 14 to close to the valve 15 of the unloader 10. Press to throttle the intake air of the compressor. When the amount of air used further decreases, the pressure inside the receiver tank 30 increases, so that the unloader valve 15 is completely pressed against the seat 16, and the compressor does not take in any air and becomes in a no-load state.

使用空気量が増加すると、以上とは逆にアンロ
ーダバルブ15の開度が増加し、吸入空気の量が
増加する。尚、特に図示しないが、エンジン駆動
の圧縮機では、エンジン回転数をアンローダバル
ブの開度に応じて増減すべく、作動圧をガバナレ
バーのアクチユエーターにも供給する。なおアン
ローダの隔室11はセパレータの吐出管に減圧弁
を介して接続され、常にアンローダバルブ15を
開くように荷重を作用せしめてある。
When the amount of air used increases, the opening degree of the unloader valve 15 increases, contrary to the above, and the amount of intake air increases. Although not particularly shown, in an engine-driven compressor, operating pressure is also supplied to the actuator of the governor lever in order to increase or decrease the engine speed in accordance with the opening degree of the unloader valve. The compartment 11 of the unloader is connected to the discharge pipe of the separator via a pressure reducing valve, and a load is always applied to the unloader valve 15 to keep it open.

かように従来の容量制御は、レギユレータ20
にレシーバタンク30のセパレータ31の吐出管
からセパレータ31を通過した吐出圧を導入し、
該吐出圧をもつて、レシーバタンク30の圧力を
検出し、同時に該検出圧たる圧縮空気をアンロー
ダ10のオリフイス12を有する隔室11に導入
してアンローダバルブ15の作動圧としている。
従つて、レシーバタンク30のセパレータ31に
油分が付着し、目詰りが生じると、セパレータ通
過の圧力損失によりレシーバタンク内の圧力は、
セパレータ31の通過前が通過後よりも高くな
り、レシーバタンク内の圧力が容量調整を必要と
する圧力に達しているにもかかわらずアンローダ
が作動しなくなる。即ち、セパレータの通過後の
圧力を検出圧とする従来の制御手段では、実際の
レシーバタンク内の圧力にアンローダが適確に追
従できず、同時にエンジン又はモーターの回転も
適確に調整できず、モーターの過負荷、レシーバ
タンクの破損、圧縮比増大に伴なう圧縮機の過熱
による潤滑油の劣化、圧縮機の吐出圧力の増大に
伴なう潤滑油の循環油量の増加によるオーバロー
ドやオイルロツク等の欠陥が生じた。
In this way, conventional capacity control uses the regulator 20.
Introducing the discharge pressure that has passed through the separator 31 from the discharge pipe of the separator 31 of the receiver tank 30,
The pressure in the receiver tank 30 is detected using the discharge pressure, and at the same time, compressed air corresponding to the detected pressure is introduced into the compartment 11 having the orifice 12 of the unloader 10 to serve as the operating pressure of the unloader valve 15.
Therefore, if oil adheres to the separator 31 of the receiver tank 30 and it becomes clogged, the pressure inside the receiver tank will decrease due to the pressure loss passing through the separator.
The pressure before passing through the separator 31 is higher than after passing through, and the unloader does not operate even though the pressure in the receiver tank has reached a pressure that requires capacity adjustment. That is, with conventional control means that uses the pressure after passing through the separator as the detection pressure, the unloader cannot accurately follow the actual pressure inside the receiver tank, and at the same time, the rotation of the engine or motor cannot be adjusted appropriately. Overload of the motor, damage to the receiver tank, deterioration of lubricating oil due to overheating of the compressor as the compression ratio increases, and overload due to an increase in the amount of circulating lubricating oil due to the increase in compressor discharge pressure. Defects such as oil locks occurred.

かような欠陥の根本的要因は、レギユレータの
検出圧をレシーバタンクのセパレータ通過後の圧
縮空気とすることにある。従つて、前記検出圧を
セパレータ通過前の圧縮空気とすればよいが、セ
パレータ通過前の圧縮空気には多量の油分が混入
しているため、レギユレータのみならずアンロー
ダに油分が付着し、油の粘性により、両者の機能
を著しく阻害してしまうため従来の容量調整では
検出圧をセパレータ通過前からとり出すことがで
きなかつた。
The fundamental cause of such defects is that the pressure detected by the regulator is the compressed air that has passed through the separator of the receiver tank. Therefore, the detected pressure may be the compressed air before passing through the separator, but since a large amount of oil is mixed in the compressed air before passing through the separator, oil adheres not only to the regulator but also to the unloader. Because the viscosity significantly impedes the functions of both, conventional capacitance adjustment has not been able to extract the detected pressure before it passes through the separator.

本発明は、叙上の従来の容量調整手段が有した
根本的な欠陥を解消すべく開発されたもので、以
下、その詳細を図示の実施例にもとづき説明す
る。
The present invention was developed to solve the fundamental defects of the conventional capacity adjustment means described above, and details thereof will be explained below based on the illustrated embodiments.

第2図及び第3図において、40はニユーマチ
ツクアンローダ、50はレギユレータ、70はレ
シーバタンクである。
In FIGS. 2 and 3, 40 is a pneumatic unloader, 50 is a regulator, and 70 is a receiver tank.

レギユレータ50は、レシーバタンク70の油
面より高位置に設けられレシーバタンク70内の
セパレータ71通過前に接続したパイプ72と連
結される検出室51を有し該室51に、検出圧た
る圧縮空気を導入する。また該室51内を摺動す
るピストン52がスプリング53の一端に係止さ
れ、該スプリング53の他端は、ボルト54の先
端に係止し、該ボルト54をねじ込むことにより
スプリング53によるピストン52に対する押圧
力を調節可能に設けられている。また、前記ピス
トン52の先端はニードルバルブ56を有し検出
室51の側壁55を介して、後述連通孔60を開
閉自在に設けられている。即ち、連通孔60の一
側開口部61は、パイプ73を介して、レシーバ
タンク70のセパレータ71通過後の作動圧たる
圧縮空気を導入するよう、レシーバタンク70の
セパレータ71の吐出管に連結されている。一
方、連通孔60の他側開口部62はニユーマチツ
クアンローダ40のオリフイス41を有する隔室
42にパイプ43を介して連結され、セパレータ
71通過後の圧縮空気をレギユレータ50を介し
アンローダ40に導入する。また、連通孔60の
前記開口部62内周はピストン52の先端に設け
たニードルバルブ56が挿脱自在に臨まされ、該
開口部62を開閉自在に構成されている。
The regulator 50 has a detection chamber 51 that is provided at a position higher than the oil level of the receiver tank 70 and is connected to a pipe 72 that is connected to the receiver tank 70 before passing through a separator 71. will be introduced. Further, a piston 52 sliding in the chamber 51 is locked to one end of a spring 53, and the other end of the spring 53 is locked to the tip of a bolt 54, and by screwing the bolt 54, the piston 52 It is provided so that the pressing force against it can be adjusted. Further, the tip of the piston 52 has a needle valve 56 and is provided to freely open and close a communication hole 60, which will be described later, via the side wall 55 of the detection chamber 51. That is, one side opening 61 of the communication hole 60 is connected to the discharge pipe of the separator 71 of the receiver tank 70 through the pipe 73 so as to introduce compressed air, which is the working pressure after passing through the separator 71 of the receiver tank 70. ing. On the other hand, the other side opening 62 of the communication hole 60 is connected to a compartment 42 having an orifice 41 of the pneumatic unloader 40 via a pipe 43, and compressed air after passing through the separator 71 is introduced into the unloader 40 via the regulator 50. do. Further, a needle valve 56 provided at the tip of the piston 52 faces the inner periphery of the opening 62 of the communication hole 60 so as to be freely inserted and removed, and the opening 62 is configured to be openable and closable.

アンローダ40は第1図に示すものと若干構造
を異にするがニユーマチツクアンローダと呼ばれ
る吸気閉塞式アンローダとしては同一のものであ
る。即ち、ピストン44は、作動杆45に連結さ
れ、パイプ43を介して隔室42に導入されたレ
シーバタンク70のセパレータ71通過後の圧縮
空気により、隔室42内を摺動し、アンローダバ
ルブ46を開閉する。尚41はオリフイスで、隔
室42内に導入されたアンローダ40の作動圧た
る圧縮空気を図示せざる圧縮機の吸入口へ吐き出
す。このオリフイス41により装置全体が円滑に
作動すると共に、レギユレータ50と相俟つてア
ンローダバルブ46の作動圧力を任意に調整する
ことが可能である。又47はスプリングで、同じ
くアンローダバルブの作動を調整する。
Although the unloader 40 has a slightly different structure from the one shown in FIG. 1, it is the same as an intake block type unloader called a pneumatic unloader. That is, the piston 44 is connected to the operating rod 45 and slides within the compartment 42 by the compressed air that has passed through the separator 71 of the receiver tank 70 and is introduced into the compartment 42 via the pipe 43, and the unloader valve 46 Open and close. An orifice 41 discharges compressed air, which is the operating pressure of the unloader 40 introduced into the compartment 42, to an inlet of a compressor (not shown). This orifice 41 allows the entire device to operate smoothly, and together with the regulator 50, it is possible to arbitrarily adjust the operating pressure of the unloader valve 46. Further, 47 is a spring, which also adjusts the operation of the unloader valve.

尚、第3図に示すようにパイプ74を設け、該
パイプ74を介してレギユレータ50の検出室5
1と、レシーバタンク70内のセパレータ71通
過前とを連結し、レギユレータ50をレシーバタ
ンク70の油面より高位置に設けてレギユレータ
50の検出室51に導入された検出圧たる圧縮空
気から分離された油をレシーバタンク70にもど
すように構成する。
Incidentally, as shown in FIG. 3, a pipe 74 is provided, and the detection chamber 5 of the regulator 50 is connected through the pipe 74.
1 and before passing through the separator 71 in the receiver tank 70, and the regulator 50 is provided at a position higher than the oil level of the receiver tank 70, so that the compressed air is separated from the detected pressure introduced into the detection chamber 51 of the regulator 50. The structure is such that the oil is returned to the receiver tank 70.

付言するに、レギユレータ50の検出室51に
検出圧を導入するパイプ72を検出室51の下部
に接続した場合はこのパイプ74は不要となる。
検出室51に溜つた油はパイプ72を介してレシ
ーバタンクに回収されるからである。また前述実
施例においては、レギユレータ50及びアンロー
ダ40にピストン52構造のものを用いてある
が、これに限定されるものでなく、ダイアフラム
構造のものでもよい。
Additionally, if the pipe 72 for introducing detection pressure into the detection chamber 51 of the regulator 50 is connected to the lower part of the detection chamber 51, this pipe 74 becomes unnecessary.
This is because the oil accumulated in the detection chamber 51 is collected into the receiver tank via the pipe 72. Further, in the above embodiment, the regulator 50 and the unloader 40 have a piston 52 structure, but are not limited to this, and may have a diaphragm structure.

尚、第3図において、75は圧縮機の吐出口に
連通するパイプで、76は、回収された潤滑油
を、77は安全弁を示す。また第2図において5
7はOリングである。
In addition, in FIG. 3, 75 is a pipe communicating with the discharge port of the compressor, 76 indicates the recovered lubricating oil, and 77 indicates a safety valve. Also, in Figure 2, 5
7 is an O-ring.

本発明は叙上の構成から成り、以下その作用に
ついて説明する。
The present invention consists of the above configuration, and its operation will be explained below.

図中白抜きの矢印は圧縮機への吸入空気(流
体)の流れを示し、実線の矢印は検出圧たるレシ
ーバタンク70のセパレータ71通過前の圧縮空
気の流れを示し、一点鎖線矢印は、作動圧たるセ
パレータ通過後の圧縮空気の流れを示す。
In the figure, the white arrows indicate the flow of intake air (fluid) to the compressor, the solid line arrows indicate the flow of compressed air before passing through the separator 71 of the receiver tank 70, which is the detected pressure, and the dashed-dotted line arrows indicate the flow of air (fluid) into the compressor. The flow of compressed air after passing through a pressure separator is shown.

今、圧縮機より吐出されパイプ75を介してレ
シーバタンク70に圧縮空気が送給されており、
安全弁77を介して図示せざるエアコツクより所
望量の圧縮空気が使用可能となつている。
Compressed air is now being discharged from the compressor and being fed to the receiver tank 70 via the pipe 75.
A desired amount of compressed air can be used from an air tank (not shown) via a safety valve 77.

レシーバタンク70内の圧力は、パイプ72を
介して、レギユレータ50の室51に導入され、
該室51には、常にレシーバタンク70内の吐出
圧力が作用し、ピストン52により、前記吐出圧
力を検出する。一方、レギユレータ50の連通孔
60にはセパレータ71通過後の圧力がパイプ7
3を介して開口部61より導入されている。今、
レシーバタンク70内の圧縮空気の使用量が減少
すると、レシーバタンク70内の圧力が上昇し、
例えば7Kg/cm2を超えると、レギユレータ50の
ピストン52はスプリング53の押圧に抗して第
3図右方に移動する。従つて、側壁55を介して
連通孔60の開口部62に挿嵌され、該部62を
閉塞していたニードルバルブ56も移動し、該部
を開放する。一方、前記連通孔60にはセパレー
タ71を通過後の圧縮空気が開口部61より導入
されており、前記連通孔60の開口部62の開放
により、作動圧たる圧縮空気(一点鎖線矢印)が
アンローダ40の隔室42へ導入される。前記ニ
ードルバルブ56の開度が増加すると、連通孔6
0を通過する作動圧たる圧縮空気の量も増加しア
ンローダ40のピストン44はスプリング47の
押圧力に抗して移動し、アンローダバルブ46を
押して吸入空気(白抜き矢印)の量を絞る。使用
空気量がさらに減少すると、検出圧たるセパレー
タ通過前の圧縮空気の圧力が上昇し、ニードルバ
ルブ56はさらに開いて、最終的にはアンローダ
バルブ46を閉じ圧縮機は全く吸気せず無負荷と
なり、エンジン駆動圧縮機にあつては、同時にア
クチユエーターがガバナレバーを移動しエンジン
が最低回転数に迄減少する。
The pressure within the receiver tank 70 is introduced into the chamber 51 of the regulator 50 via the pipe 72,
The discharge pressure within the receiver tank 70 always acts on the chamber 51, and the piston 52 detects the discharge pressure. On the other hand, the pressure after passing through the separator 71 is transferred to the communication hole 60 of the regulator 50 from the pipe 7.
3 through the opening 61. now,
When the amount of compressed air used in the receiver tank 70 decreases, the pressure in the receiver tank 70 increases,
For example, when the pressure exceeds 7 kg/cm 2 , the piston 52 of the regulator 50 moves to the right in FIG. 3 against the pressure of the spring 53. Accordingly, the needle valve 56, which is inserted into the opening 62 of the communication hole 60 through the side wall 55 and has been closing the opening 62, also moves to open the opening. On the other hand, the compressed air after passing through the separator 71 is introduced into the communication hole 60 from the opening 61, and by opening the opening 62 of the communication hole 60, the compressed air (dotted chain arrow) serving as the operating pressure is introduced into the unloader. 40 compartments 42. When the opening degree of the needle valve 56 increases, the communication hole 6
The amount of compressed air that is the operating pressure passing through 0 also increases, and the piston 44 of the unloader 40 moves against the pressing force of the spring 47, pushing the unloader valve 46 and reducing the amount of intake air (white arrow). When the amount of air used decreases further, the pressure of the compressed air before passing through the separator, which is the detection pressure, increases, and the needle valve 56 opens further, and finally the unloader valve 46 is closed and the compressor does not take in any air and becomes unloaded. In the case of an engine-driven compressor, the actuator simultaneously moves the governor lever and the engine speed is reduced to its minimum speed.

尚、叙上の実施例では、ニユーマチツクアンロ
ーダ40はピストン構造であるが、これをダイヤ
フラム構造のものとすることは、レギユレータと
共に任意である。又、アンローダ40のピストン
44はスプリング47を介装してあるが、該スプ
リング47に代わり、パイプ73により減圧弁を
介して隔室48に圧縮空気を導入し、アンローダ
バルブ46の動きを制限するようにしてもよい。
In the above embodiment, the pneumatic unloader 40 has a piston structure, but it may optionally have a diaphragm structure together with the regulator. Further, the piston 44 of the unloader 40 is equipped with a spring 47, but instead of the spring 47, compressed air is introduced into the compartment 48 through a pressure reducing valve through a pipe 73, thereby restricting the movement of the unloader valve 46. You can do it like this.

本発明は叙上の構成及び作用を有し、レギユレ
ータにレシーバタンクのセパレータ通過前及び通
過後の圧力をそれぞれ導入し、前記セパレータ通
過後の圧力をニユーマチツクアンローダに導入し
て該アンローダの作動圧となすと共に、該作動圧
の導入量を前記セパレータ通過前の検出圧により
制御する方法であるから、レギユレータやニユー
マチツクアンローダの機能を害することなく、セ
パレータが目詰りした場合にも、適確なレシーバ
タンク内の圧力検出を可能とし、この検出圧力に
もとづき任意の圧力値での正確なニユーマチツク
アンローダの作動を得ることが出来るのでモータ
の過負荷運転、レシーバタンク内の異常な圧力上
昇によるタンクの破損、圧縮比の増大に伴なう圧
縮機過熱による潤滑油の劣化や、吐出圧力の増大
に伴なう潤滑油の循環油量増加によるオーバーロ
ード、オイルロツク等の欠陥の発生を防止でき
る。又、レギユレータ内に、一の連通孔と、該連
通孔を開閉自在な弁機構を設け、該連通孔の一方
をレシーバタンクのセパレータ通過後に、他方を
ニユーマチツクアンローダの隔室へそれぞれ配管
接続し、さらに前記連通孔と隔室を介して設けら
れた検出室にピストン等の進退機構を設け、該検
出室をレシーバタンクのセパレータ通過前に配管
接続すると共に前記進退機構と前記弁機構を連結
したから、セパレータ通過前の圧力を検出し、こ
の検出圧によりセパレータ通過後の圧力を、ニユ
ーマチツク、アンローダを作動する作動圧とする
ことが可能となつた。
The present invention has the above-described structure and operation, and the pressure of the receiver tank before and after passing through the separator is introduced into the regulator, and the pressure after passing through the separator is introduced into the pneumatic unloader to operate the unloader. Since this method controls the amount of operating pressure introduced by the detected pressure before passing through the separator, it can be applied even when the separator is clogged without impairing the functions of the regulator or pneumatic unloader. It is possible to accurately detect the pressure inside the receiver tank, and based on this detected pressure, the pneumatic unloader can be operated accurately at any pressure value, preventing motor overload operation and abnormal pressure inside the receiver tank. Defects such as tank damage due to lift, deterioration of lubricating oil due to compressor overheating due to increased compression ratio, overload due to increased amount of circulating lubricating oil due to increased discharge pressure, and defects such as oil lock. It can be prevented. In addition, a communication hole and a valve mechanism that can freely open and close the communication hole are provided in the regulator, and after passing through the separator of the receiver tank, one of the communication holes is connected to the compartment of the pneumatic unloader by piping. Further, an advancing/retracting mechanism such as a piston is provided in the detection chamber provided through the communication hole and the compartment, and the detection chamber is connected with piping before the receiver tank passes through the separator, and the advancing/retracting mechanism and the valve mechanism are connected. Therefore, it has become possible to detect the pressure before passing through the separator, and use this detected pressure to make the pressure after passing through the separator the operating pressure for operating the pneumatic tick and unloader.

従つて、従来のレギユレータより極めて正確に
レシーバタンク内の圧力値を検出し、アンローダ
を作動せしめることができ、又セパレータが目詰
りした場合にもアンローダを適確に作動させレシ
ーバタンク内の異常な圧力上昇を防止することが
でき圧縮機の安定した運転が可能となり、セパレ
ータの目詰りによる上述した欠陥を防止すること
が可能となつた。
Therefore, it is possible to detect the pressure value in the receiver tank more accurately than conventional regulators and operate the unloader. Also, even if the separator becomes clogged, the unloader can be operated properly and abnormalities in the receiver tank can be detected. It is possible to prevent a pressure increase and enable stable operation of the compressor, making it possible to prevent the above-mentioned defects due to clogging of the separator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の圧縮機の容量調整を示す概略
図、第2図及び第3図は本発明の一実施例を示す
ものである。 40……ニユーマチツクアンローダ、41……
オリフイス、42……隔室、46……アンローダ
バルブ、47……スプリング、50……レギユレ
ータ、51……検出室、52……ピストン、53
……スプリング、55……側壁、60……連通
孔、61,62……開口部、70……レシーバタ
ンク、71……セパレータ、43,72,73…
…パイプ、76……油。
FIG. 1 is a schematic diagram showing capacity adjustment of a conventional compressor, and FIGS. 2 and 3 show an embodiment of the present invention. 40...New machine unloader, 41...
Orifice, 42... Compartment, 46... Unloader valve, 47... Spring, 50... Regulator, 51... Detection chamber, 52... Piston, 53
... Spring, 55 ... Side wall, 60 ... Communication hole, 61, 62 ... Opening, 70 ... Receiver tank, 71 ... Separator, 43, 72, 73 ...
...pipe, 76...oil.

Claims (1)

【特許請求の範囲】 1 吸入口にニユーマチツクアンローダを、吐出
口にレシーバタンクをそれぞれ接続し、且つ前記
ニユーマチツクアンローダをレギユレータを介し
てセパレータを内蔵するレシーバタンクに接続し
て成る圧縮機において、 前記レギユレータにレシーバタンクのセパレー
タ通過前及び通過後の圧力をそれぞれ導入し、前
記セパレータ通過後の圧力をニユーマチツクアン
ローダに導入して該ニユーマチツクアンローダの
作動圧となすと共に、前記セパレータ通過前の圧
力を検出圧として、前記作動圧のニユーマチツク
アンローダへの導入量を制御することを特徴とす
る圧縮機の容量調整方法。 2 吸入口にニユーマチツクアンローダを、吐出
口にレシーバタンクをそれぞれ接続し、且つ前記
ニユーマチツクアンローダをレギユレータを介し
てセパレータを内蔵するレシーバタンクに接続し
て成る圧縮機において、 前記レギユレータは、一の連通孔と該連通孔を
開閉自在の弁機構を有し、該連通孔の一方をレシ
ーバタンクのセパレータ通過後に配管接続し、他
方をニユーマチツクアンローダの隔室へそれぞれ
配管接続すると共に、前記連通孔に隔壁を介して
設けた検出室にピストン又はダイアフラム等の進
退機構を設け、該検出室をレシーバタンクのセパ
レータ通過前に配管接続し、前記弁機構に前記進
退機構を連結したことを特徴とする圧縮機の容量
調整装置。
[Scope of Claims] 1. A compressor comprising a pneumatic unloader connected to the suction port, a receiver tank connected to the discharge port, and the pneumatic unloader connected to the receiver tank containing a separator via a regulator. In this step, the pressure of the receiver tank before and after passing through the separator is introduced into the regulator, and the pressure after passing through the separator is introduced into the pneumatic unloader to be the operating pressure of the pneumatic unloader, and the pressure of the receiver tank is A method for adjusting the capacity of a compressor, characterized in that the amount of the operating pressure introduced into the pneumatic unloader is controlled using the pressure before passing as the detected pressure. 2. A compressor in which a pneumatic unloader is connected to the suction port, a receiver tank is connected to the discharge port, and the pneumatic unloader is connected to the receiver tank containing a separator via a regulator, the regulator: It has a communication hole and a valve mechanism that can freely open and close the communication hole, one of the communication holes is connected to the receiver tank after passing through the separator, and the other is connected to the compartment of the pneumatic unloader, and the other is connected to the compartment of the pneumatic unloader. A reciprocating mechanism such as a piston or a diaphragm is provided in the detection chamber provided through a partition in the communication hole, the detecting chamber is connected to the piping before the receiver tank passes through the separator, and the reciprocating mechanism is connected to the valve mechanism. Features: Compressor capacity adjustment device.
JP56207017A 1981-12-23 1981-12-23 Method and device for regulating capacity of compressor Granted JPS58110878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56207017A JPS58110878A (en) 1981-12-23 1981-12-23 Method and device for regulating capacity of compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56207017A JPS58110878A (en) 1981-12-23 1981-12-23 Method and device for regulating capacity of compressor

Publications (2)

Publication Number Publication Date
JPS58110878A JPS58110878A (en) 1983-07-01
JPS6243078B2 true JPS6243078B2 (en) 1987-09-11

Family

ID=16532814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56207017A Granted JPS58110878A (en) 1981-12-23 1981-12-23 Method and device for regulating capacity of compressor

Country Status (1)

Country Link
JP (1) JPS58110878A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181022A (en) * 1988-12-29 1990-07-13 Kubota Ltd Engine equipped with geared supercharger
JP5999035B2 (en) * 2013-06-26 2016-09-28 Jfeスチール株式会社 Valve maintenance equipment and valve maintenance method

Also Published As

Publication number Publication date
JPS58110878A (en) 1983-07-01

Similar Documents

Publication Publication Date Title
US5388967A (en) Compressor start control and air inlet valve therefor
US4362475A (en) Compressor inlet valve
US4406589A (en) Compressor
DE3787572T2 (en) Inflation control of an air dryer for compressors with turbocharging.
US5509273A (en) Gas actuated slide valve in a screw compressor
US5135374A (en) Oil flooded screw compressor with thrust compensation control
US4335582A (en) Unloading control system for helical screw compressor refrigeration system
US4459085A (en) Pressure control system for automotive pneumatic pressure supply line
US4553906A (en) Positive displacement rotary compressors
US5127386A (en) Apparatus for controlling a supercharger
CA1163252A (en) Unloading means for a gas compressor
US5044894A (en) Capacity volume ratio control for twin screw compressors
JPS6243078B2 (en)
DE60210088T2 (en) SCREW COMPRESSOR
SU936825A3 (en) Device for controlling output of compressor
US3059832A (en) Unloader control for a rotary compressor
US2065199A (en) Unloader governor device
US4685310A (en) Multi-purpose valve assembly
CN115434888A (en) Method for controlling operation of engine-driven compressor and engine-driven compressor
JPS6411836B2 (en)
JP2543535Y2 (en) Oiled rotary compressor
GB1594268A (en) Control valves
JPH0396668A (en) Oil recovery device of oil cooling type compressor
JPS6025630B2 (en) Oil-fed compressor capacity adjustment valve
US2234462A (en) Valve mechanism for unloading compressors