JPS6243068A - Modified electrode - Google Patents

Modified electrode

Info

Publication number
JPS6243068A
JPS6243068A JP60182778A JP18277885A JPS6243068A JP S6243068 A JPS6243068 A JP S6243068A JP 60182778 A JP60182778 A JP 60182778A JP 18277885 A JP18277885 A JP 18277885A JP S6243068 A JPS6243068 A JP S6243068A
Authority
JP
Japan
Prior art keywords
electrode
cytochrome
oxygen
substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60182778A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kimura
康弘 木村
Asao Nakamura
中村 朝郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP60182778A priority Critical patent/JPS6243068A/en
Publication of JPS6243068A publication Critical patent/JPS6243068A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To increase stability and efficiency of an oxidation-reduction electrode serving as oxygen electrode of fuel cell by modifying the surface of a conductive substrate with a thin film of polymer having an acidic functional group, and fixing cytochrome c3 through the thin film. CONSTITUTION:The surface of a conductive solid substrate comprising carbon substrate such as graphite or metal substrate such as gold and silver is modified with a thin film of polymer compound having acidic functional group such as acidic amino acid and alginic acid, and cytochrome c3 whose isoelectric point is in a neutral or basic region is fixed through the thin film, or cyto chrome c3 is included with an including agent such as agar and agarose and the surface of substrate is covered with cytochrome c3. Thereby, a modified electrode is formed. Cytochrome c3 is strongly bonded on the surface of sub strate electrostatically, therefore, when it is used in an oxygen electrode of fuel cell, low oxygen reduction overvoltage and high current density can effec tively be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、導電性固体基体の表面にチトクロムC3を有
機高分子化合物で固定した電極、更に詳しくは、導電性
固体基体の表面を酸性官能基を含有する有様高分子化合
物で修飾することによシチトクロムC3を安定に固定化
した電極、又はチトクロムC5を包括固定法によシ安定
に固定化した電極に関する。このような電極は酸素の還
元に使用されたり、燃料電池の酸素極としての使用など
の用途を有する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an electrode in which cytochrome C3 is immobilized on the surface of a conductive solid substrate with an organic polymer compound, and more specifically, the surface of the conductive solid substrate is The present invention relates to an electrode in which cytochrome C3 is stably immobilized by modification with a specific polymer compound containing a group, or an electrode in which cytochrome C5 is stably immobilized by an entrapping immobilization method. Such electrodes have applications such as being used for oxygen reduction and as oxygen electrodes in fuel cells.

(従来技術と問題点) 最近、修飾電極に関する研究は多数行われているが、中
でも、下記反応方程式: %式% に従って反応を行わせる、酸素電極の触媒に関する研究
は、燃料電池の開発に当って極めて重要な課題となって
いる。
(Prior art and problems) Recently, a lot of research has been conducted on modified electrodes, but among them, research on catalysts for oxygen electrodes that carry out reactions according to the following reaction equation: This has become an extremely important issue.

従来、M、R,タラセビ、チ(M、R,Tarasev
ich )らの研究によるヘム蛋白を使用する場合、又
はう、カーゼを使用する場合が知られているが、これら
の場合に使用される素材は、動植物起源であって、大量
に入手することが困難である〔・クイオニレフトロケミ
ストリー・アンド・パイオニネルrティクス(Bloe
lectroehemistry and Bioan
ergs−ticm)第2巻69〜78頁(1975)
及び同第6巻393〜403頁(1979))。
Conventionally, M, R, Tarasev, Chi (M, R, Tarasev
It is known to use heme protein based on the research of ich et al., or to use case, but the materials used in these cases are of animal and plant origin and cannot be obtained in large quantities. It is difficult [Bloe
electrochemistry and bioan
ergs-ticm) Volume 2, pages 69-78 (1975)
and Volume 6, pp. 393-403 (1979)).

また、金属(F’@、Co 、 Mn )フタロシアニ
ン及びIルフイリン、あるいはそれらの誘導体を、電極
上に固定化した酸素電極が良く知られているが、これは
中性付近の溶液中では、酸素を過酸化水素まで、すなわ
ち2電子還元するに過ぎない。コパルトポルフィリンの
2量体を固定化した電極を用いると、強酸(過塩素酸又
はトリフルオロ酢酸)溶液を必要とし、Co 、 Mn
 r Fe等のフタロシアニン錯体又はFe−プロトポ
ルフィリン等を固定化した電極を用いると、強アルカリ
(水酸化カリウム又は水酸化ナトリウム)を必要とする
。これらの場合、酸素は直接に水まで還元されるが、電
解質溶液は、反応で生成した水で希釈されるので濃縮に
よって強酸又は強アルカリ性溶液を再生させる工程を必
要とする欠点がある〔ジャーナル・オプ・エレクトロア
ナリチカル・ケミストリー(J。
In addition, oxygen electrodes in which metal (F'@, Co, Mn) phthalocyanine, I-lufilin, or their derivatives are immobilized on the electrode are well known; It merely reduces to hydrogen peroxide, that is, with two electrons. When using an electrode with immobilized copaltoporphyrin dimer, a strong acid (perchloric acid or trifluoroacetic acid) solution is required, and Co, Mn
When an electrode in which a phthalocyanine complex such as r Fe or Fe-protoporphyrin is immobilized is used, a strong alkali (potassium hydroxide or sodium hydroxide) is required. In these cases, oxygen is directly reduced to water, but since the electrolyte solution is diluted with water produced by the reaction, there is a disadvantage that a step is required to regenerate the strong acid or strong alkaline solution by concentration [Journal. Op Electroanalytical Chemistry (J.

Electroanal、 Chem、 )第101巻
117〜122頁(1979)及びザ・ジャーナル・オ
プ・ジ・アメリカン・ケミカル・ソサイエティ(J、A
m。
Electroanal, Chem, ) Vol. 101, pp. 117-122 (1979) and The Journal of the American Chemical Society (J, A.
m.

Chem、 Soc、 )第102巻6027〜603
6頁(1980)、バイオエレクトロケミストリー・ア
ンド・ノ々イオエネルrティクス第4巻18〜29頁(
1977)参照〕。
Chem, Soc, ) Volume 102 6027-603
6 (1980), Bioelectrochemistry and Bioenergetics Vol. 4, pp. 18-29 (
(1977)].

(本発明の目的) 本発明は、これらの問題点を解消するためKなによりi
化合物を介してチトクロムc3を安定に核基体に固定す
るか、あるいはチトクロムC3を包括固定化法によシ該
基体に安定に固定することに二す、酸素の効率良い還元
触媒などとして使用可能とすることを目的とする。
(Objective of the present invention) The present invention aims to solve these problems.
By stably fixing cytochrome C3 to a nuclear substrate via a compound, or by stably fixing cytochrome C3 to the substrate by an entrapping immobilization method, it can be used as an efficient oxygen reduction catalyst. The purpose is to

(問題解決の為の手段と作用) 酸素の還元触媒は前記の通り、フタロシアニン、Iルフ
ィリン#lI導体を中心としてこれまでに数多く報告さ
れている。しかし、酸素を効率良く水にまで還元し、燃
料電池の酸素極として使用した場合大きな電流密度の取
シ出せるしかも安定な触媒はこれまでに見出されていな
い。
(Means and Actions for Solving Problems) As mentioned above, many oxygen reduction catalysts have been reported, mainly phthalocyanine and Iluphyrin #lI conductors. However, a stable catalyst that efficiently reduces oxygen to water and can draw a large current density when used as an oxygen electrode in a fuel cell has not yet been found.

特許公開公報特開昭57−205970では、チトクロ
ムc3を導電性固体基体の表面に吸着固定化した電極は
、酸素を効率良く水にまで還元することを示した。しか
し、チトクロムc3を基体表面に安定に強く吸着固定化
する場合、使用する導電性固体基体の種類によりチトク
ロムc3の吸着安定性、及び、その酸素還元触媒能が異
なる為、その使用範囲は制限されていた。
Japanese Patent Publication No. 57-205970 shows that an electrode in which cytochrome c3 is adsorbed and immobilized on the surface of a conductive solid substrate efficiently reduces oxygen to water. However, when cytochrome c3 is strongly and stably adsorbed and immobilized on the surface of a substrate, the range of its use is limited because the adsorption stability of cytochrome c3 and its oxygen reduction catalytic ability vary depending on the type of conductive solid substrate used. was.

そこで本発明では鋭意研究した結果、その等電点よシ酸
性の声領域においてはカチオン性蛋白質としての挙動を
とるチトクロムC5を、導電性固体基体の表面に酸性官
能基を含む有機高分子化合物で化学修飾を施し安定に固
定化又は包括固定化することにより、チトクロムC3固
定化電極が安定な酸素還元電極となることを見出した。
Therefore, as a result of extensive research in the present invention, we have discovered that cytochrome C5, which behaves as a cationic protein in its isoelectric point and acidic voice region, can be synthesized using an organic polymer compound containing acidic functional groups on the surface of a conductive solid substrate. It has been found that by chemically modifying and stably immobilizing or comprehensively immobilizing the cytochrome C3, the cytochrome C3 immobilized electrode becomes a stable oxygen reduction electrode.

すなわち、本発明の電極を概観すれば次の型に分けられ
る。
That is, the electrodes of the present invention can be broadly classified into the following types.

(イ)導電性固体基体の表面に高分子量の酸性アミノ酸
、又は破りアクリル酸、アルギン酸、Nafion等と
チトクロムcsf同時に固定化した電極。
(a) An electrode in which high molecular weight acidic amino acids, broken acrylic acid, alginic acid, Nafion, etc., and cytochrome CSF are simultaneously immobilized on the surface of a conductive solid substrate.

(ロ) チトクロムC3を寒天、アガロース、ポリアク
リルアミドゲル等で包括固定化した電極。
(b) An electrode in which cytochrome C3 is comprehensively immobilized with agar, agarose, polyacrylamide gel, etc.

本発明に用いるチトクロムC3は等電点が中性或いは塩
基性領域にあるDesulfovibrio vulg
arisMiyazaki  、 D、vulgari
s  Hlldenborough  、  D。
The cytochrome C3 used in the present invention is a Desulfovibrio vulg whose isoelectric point is in the neutral or basic region.
arisMiyazaki, D, vulgari
s Hlldenborough, D.

desulfur[cana  Norway 1 D
、aalexlgens  、 D。
desulfur [cana Norway 1 D
, aalexlgens , D.

baculatum、D、 glgas等のチトクロム
c3が用いられ、好ましくはり、vulgaria M
lyazaki F(D、v、M、F)、D、vulg
arls Hlldenborough (D4.H)
、D、  desul−furleana Norwa
y (D、d、N)が用いられる。()内は略号である
Cytochrome c3 such as G. baculatum, D, GLGAs, etc. is used, preferably Glycine, Vulgaria M.
lyazaki F (D, v, M, F), D, vulg
arls Hlldenborough (D4.H)
, D. desul-furleana Norway
y (D, d, N) is used. The numbers in parentheses are abbreviations.

これらの硫酸還元菌は、どこにでもあり、容易に入手可
能である(例えばNCIMB Ltd、TorryRe
seareh 5tation (Scotland)
、から手に入れることができる〕。ちなみに硫酸還元菌
は、自然界から容易に分離可能である(「科学」第51
巻第6号、369〜376(1981)参照)。
These sulfate-reducing bacteria are ubiquitous and easily available (e.g. NCIMB Ltd, TorryRe
seareh 5tation (Scotland)
, available from]. By the way, sulfate-reducing bacteria can be easily isolated from the natural world (Science No. 51).
Vol. 6, 369-376 (1981)).

又、(イ)の固定化に用いる高分子量の酸性アミノ酸と
してはポリグルタミン酸、ポリアスノ4ラギン酸が挙げ
られ更に一部水解していればそのエステルでも良い。
Further, examples of the high molecular weight acidic amino acids used for immobilization (a) include polyglutamic acid and polyasno-4-lagic acid, and esters thereof may also be used as long as they are partially hydrolyzed.

(ロ)に用いられる寒天またはアガロースはrル化温度
が35〜70℃のものでよく、又ポリアクリルアミドゲ
ルは例えば架橋度C=2チ以上、総濃度T=54以上で
用いることができる。ただし、丁=5Q/。
The agar or agarose used in (b) may have a sulfurization temperature of 35 to 70°C, and polyacrylamide gel may be used, for example, with a degree of crosslinking C = 2 or more and a total concentration T = 54 or more. However, ding=5Q/.

好゛ましくViC=2〜5%、以上で用いることができ
る。
It is preferable to use ViC=2 to 5%, or more.

(イ)、仲)に用いられる導電性固体基体としては、グ
ラッシーカーデン、メソカーゲン、グラファイト等の炭
素質基体、金、銀、白金等の金属基体、酸化スズ、酸化
インジウム等の透明性電極、グイ素、二酸化チタン等の
牛導体基体が挙げられる。
Examples of conductive solid substrates used in (a) and middle) include carbonaceous substrates such as glassy carbon, mesocarbon, and graphite; metal substrates such as gold, silver, and platinum; transparent electrodes such as tin oxide and indium oxide; Examples include copper conductor substrates such as titanium dioxide and titanium dioxide.

ラム 本発明の電極の炸裂−は例えば次の様に行なうことがで
きる3、すなわち、先ず導電性固体基体、fll 、t
 Hストレス・アニールド・パイロリティック・グラフ
ァイト(SAPG)表面に固定化剤、例えばポリグルタ
ミン酸の薄膜をスピンコード法(特願昭6O−4077
2)等により作裏した後、該電極を10−3M〜10−
8M、好ましくは10−5〜10−’Mのチトクロムc
5溶液に浸漬し修飾電極とするか、又はポリグルタミン
酸の溶液にチトクロムc3を溶解した後電極表面に被覆
、乾燥、水洗後修飾電極とすることができる。
The detonation of the electrode of the present invention can be carried out, for example, as follows: first, a conductive solid substrate, fll, t
A thin film of an immobilizing agent, such as polyglutamic acid, is applied to the surface of H-stress annealed pyrolytic graphite (SAPG) using a spin-coding method (patent application No. 6O-4077).
2) etc., the electrode is 10-3M to 10-
8M, preferably 10-5 to 10-'M cytochrome c
A modified electrode can be obtained by immersing the electrode in a solution of 5, or by dissolving cytochrome c3 in a solution of polyglutamic acid, coating the electrode surface, drying, and washing with water to obtain a modified electrode.

これを一般的に言えば、導電性固体基体の表面を先ず適
当な方法で酸性官能基を有する高分子化合物の薄膜で修
飾し、ついでこの有機高分子化合物の酸性官能基を介し
てチトクロムc3を導電性固体基体表面に固定するか、
又は、有機高分子化合物の酸性官能基を介してチトクロ
ムc3を該有機高分子化合物に固定した後、その固定化
物を導電性固体基体の表面に適当な方法によシ塗布、固
定するのである。
Generally speaking, the surface of a conductive solid substrate is first modified with a thin film of a polymeric compound having an acidic functional group by an appropriate method, and then cytochrome c3 is added via the acidic functional group of this organic polymeric compound. fixed on the surface of a conductive solid substrate, or
Alternatively, after cytochrome c3 is immobilized on the organic polymer compound via the acidic functional group of the organic polymer compound, the immobilized product is coated and fixed on the surface of the conductive solid substrate by an appropriate method.

又、包括固定化については例えば、次の様に行なうこと
ができる。包括固定剤、例えば寒天の1〜3%溶液に7
0℃以下の温度にてチトクロムc3を均一に溶解し、グ
ル化する前に素早く電極表面に被覆し、冷却、モル化後
水洗することによシ修飾電極とすることができる。
Moreover, comprehensive immobilization can be carried out as follows, for example. 7 in an entrapping fixative, e.g. a 1-3% solution of agar.
A modified electrode can be obtained by uniformly dissolving cytochrome c3 at a temperature of 0° C. or lower, quickly coating the electrode surface before gluing, cooling and washing with water after moleization.

又、酸性官能基をもつアルギン酸は塩化カルシウム等を
加えることによりグル化し、包括固定剤にもなシうる。
Furthermore, alginic acid having an acidic functional group can be glued by adding calcium chloride or the like, and can also be used as an entrapping fixative.

即ち、アルギン酸の1〜3s溶液にチトクロムc3を溶
解した後混合溶液を電極上に塗布、次いで0.1M塩化
カルシウム水溶液を加えグル化し、水洗後修飾電極とす
ることができる。
That is, after dissolving cytochrome c3 in a 1 to 3 s solution of alginic acid, the mixed solution is applied onto the electrode, and then a 0.1M calcium chloride aqueous solution is added to form a gel, and after washing with water, a modified electrode can be obtained.

これを一般的に言えば、包括固定化は有機高分子化合物
を可溶の条件から不溶の条件に郡すことによシ生じたr
ル中にチトクロムc3を同定化する方法である。
Generally speaking, entrapping immobilization occurs when an organic polymer compound is changed from soluble to insoluble conditions.
This is a method to identify cytochrome c3 in a sample.

よ 次江上記電極に−る酸素分子の還元は次の様に行うこと
ができる。即ち、本発明の該修飾電極を空気飽和リン酸
緩衝溶液を満たした電解セルに設置し、25℃にてサイ
クリックデルタンメトリーによシ酸素分子の還元を測定
する。
Yojie: The reduction of oxygen molecules at the above electrode can be carried out as follows. That is, the modified electrode of the present invention is placed in an electrolysis cell filled with an air-saturated phosphate buffer solution, and the reduction of oxygen molecules is measured by cyclic deltametry at 25°C.

本発明の修飾電極は未修飾電極に比べ中性領域で効率良
く酸素を還元することが可能である。
The modified electrode of the present invention can reduce oxygen more efficiently in the neutral region than an unmodified electrode.

次に本発明の修飾電極の安定性について概説する。該修
飾電極はチトクロムc3が修飾電極表面の酸性官能基と
静電的に強く安定に結合しているために未修飾電極に直
接チトクロムc5を吸着させた電極に比し、酸素の還元
に優れた安定した性能を示す。
Next, the stability of the modified electrode of the present invention will be outlined. In this modified electrode, cytochrome c3 is electrostatically strongly and stably bonded to the acidic functional group on the surface of the modified electrode, so it is superior in reducing oxygen compared to an electrode in which cytochrome c5 is directly adsorbed on an unmodified electrode. Shows stable performance.

また、近年エネルギーの有効利用の観点から、燃料電池
による発電が注目を集めている。この電池は、現在大き
く分けて3つの型のものが知られておシ、このうち水素
ガスと酸素ガスを用いる第一世代リン酸型のものが検討
されている。この電池の構成は水素を酸化する水素極と
、酸素を還元する酸素極とから成り立ち触媒活性の点か
ら、水素極に比して酸素極に優れた触媒が強く要求され
ており、低い酸素還元過電圧、並びに大きな電流密度の
取シ出せる高出力のものが必要とされている。本発明の
電極を燃料電池の酸素極に用いることによシ材料腐食の
少ない中性領域にて大きな電流密度が取シ出せることを
見出した。
Furthermore, in recent years, power generation using fuel cells has been attracting attention from the viewpoint of effective use of energy. Three types of batteries are currently known, and among these, a first-generation phosphoric acid type battery that uses hydrogen gas and oxygen gas is being studied. The structure of this battery consists of a hydrogen electrode that oxidizes hydrogen and an oxygen electrode that reduces oxygen.From the point of view of catalytic activity, there is a strong demand for a catalyst that is superior to the oxygen electrode compared to the hydrogen electrode. There is a need for high output power that can handle overvoltages as well as large current densities. It has been found that by using the electrode of the present invention as an oxygen electrode of a fuel cell, a large current density can be extracted in a neutral region where material corrosion is low.

以下、本発明を実施例をもって例証する。The invention will now be illustrated with examples.

実施例1 ポリグルタミン酸修飾電極 PG (Po1y Glutamle acid M!
−6,200)の5チDMF溶液0.5 μmを5AP
G (幾何表面積0.2 cm”)上に塗布し、風乾後
室温1wHgで3時間減圧乾燥を行なった。
Example 1 Polyglutamic acid modified electrode PG (Polyglutamic acid M!
5AP
G (geometric surface area: 0.2 cm"), air-dried, and then dried under reduced pressure at room temperature of 1 wHg for 3 hours.

これを3.5 X 10−5Mチトク。ムc3溶液(D
、マ、M、F )溶液(pH7,0)中に1分間浸漬し
良く水洗後チトクロムc3修飾電極を得た。
This is 3.5 x 10-5M. Mu c3 solution (D
, M, M, F) solution (pH 7,0) for 1 minute, and after thorough washing with water, a cytochrome c3-modified electrode was obtained.

実施例2 SPG (Sodium polyglutamate
 Mw =6,200 )の5チ水溶液0.5μlを5
APG (5waφ)上に塗布し乾燥後、IN硫酸水溶
液で中和、水洗、乾燥後ポリグルタミン醗修飾電極とし
た。
Example 2 SPG (Sodium polyglutamate
Mw = 6,200)
After coating on APG (5waφ) and drying, it was neutralized with an aqueous IN sulfuric acid solution, washed with water, and dried to obtain a polyglutamine-modified electrode.

以後、実施例1と同様にして、チトクロムc3修飾電極
を得た。
Thereafter, in the same manner as in Example 1, a cytochrome c3 modified electrode was obtained.

実施例3 GC(Glassy Carbon、 3Wφ)を用い
実施例1と同様にPCを塗布し、チトクロムc3を固定
化し修飾電極とした。
Example 3 Using GC (Glassy Carbon, 3Wφ), PC was applied in the same manner as in Example 1, and cytochrome c3 was immobilized to form a modified electrode.

実施例4(アルギン酸ナトリウムによる固定)アルギン
酸ナトリウム3Qqを1−の水に加え100℃で溶解、
溶解後室温まで冷却しチトクロムc、 (D、v、M、
F ) 111Fを加え均一に溶解、この溶液を5AP
G上に塗布した後0. I M塩化カルシクム水溶液に
12時間浸漬しチトクロムC5固定化電極を得た。
Example 4 (Fixation with sodium alginate) Sodium alginate 3Qq was added to 1- water and dissolved at 100°C.
After dissolving, cool to room temperature and dissolve cytochrome c, (D, v, M,
F) Add 111F and dissolve it uniformly, and mix this solution with 5AP
After applying on G. The electrode was immersed in an IM calcium chloride aqueous solution for 12 hours to obtain a cytochrome C5 immobilized electrode.

該電極をPH7,4,10mM ト’)ス緩衝溶液に浸
漬しアルゴンガスで脱気し、200 mV/Sの掃引速
度でサイクリックビルタモグラム全測定した。3図1が
その測定結果である。ピーク面積よりチトクロムc3の
電極表面固定量は1. I X I Q −” mol
/cm”であった。
The electrode was immersed in a pH7, 4, 10mM T') buffer solution, degassed with argon gas, and the cyclic virtammogram was completely measured at a sweep rate of 200 mV/S. 3 Figure 1 shows the measurement results. From the peak area, the amount of cytochrome c3 fixed on the electrode surface is 1. IXIQ-”mol
/cm”.

実施例5  NaflonによるチトクロムC5の固定
Naflon 117(Aldrlch社製)R−フル
オロアルキルスルホン酸樹脂、Equiv wt、 1
100.5重量%アルコール溶液)10μlとチトクロ
ムC5溶液(3X10 M)50μlを良く混合し、混
合溶液1μl’frマイクロシリンジで5APG上に塗
布、乾燥し充分に水洗した後チトクロムc3修飾電極を
得た。
Example 5 Immobilization of cytochrome C5 with Naflon Naflon 117 (manufactured by Aldrlch) R-fluoroalkyl sulfonic acid resin, Equiv wt, 1
10 μl of 100.5 wt% alcohol solution) and 50 μl of cytochrome C5 solution (3×10 M) were mixed well, 1 μl of the mixed solution was applied onto 5APG using a microsyringe, dried, and thoroughly washed with water to obtain a cytochrome C3 modified electrode. .

固定化量はサイクリックゲルタモグラムより算出し1.
2 X 10  mol/cm”であった。
The amount of immobilization was calculated from the cyclic gel tamogram.1.
2×10 mol/cm”.

実施例6−リアクリルアミドによるチトクロムc3の固
定 アクリルアミド475rn9、ビスアクリルアミド25
■、チトクロムe3 (D、v、M、F) 40 W 
k用い架橋度C=5チ、総濃度T=5%のチトクロムC
3溶液を炸裂した。この水溶液1μlを5APG 上に
塗布し風乾した後、O,OS*の過硫酸アンモニウム、
テトラメチルエチレンソアミン水溶液に浸漬し架橋した
Example 6 - Immobilization of cytochrome c3 with lyacrylamide Acrylamide 475rn9, Bisacrylamide 25
■, Cytochrome e3 (D, v, M, F) 40 W
Cytochrome C with a degree of crosslinking C=5T and a total concentration T=5%
3 solutions exploded. After applying 1 μl of this aqueous solution on 5APG and air drying, ammonium persulfate of O,OS*,
It was immersed in an aqueous solution of tetramethylethylenesoamine for crosslinking.

該電極をよく水洗した後、サイクリックゾルタンメトリ
ーによシチトクロムc3の電極表面への固定量を測定し
た。
After thoroughly washing the electrode with water, the amount of cytochrome c3 fixed on the electrode surface was measured by cyclic soltammetry.

電極表面固定量は1. OX 10−10−l2%がで
あった。
The amount fixed on the electrode surface is 1. OX was 10-10-12%.

実施例q 寒天によるチトクロムC5の固定寒天末(D
ifco Laboratories製)15■を水0
.5dに分散し、加熱沸騰下溶解させた。50℃まで冷
却後チトクロムe3 (D、v、M、F ) 0.1■
を加え均一になるまで攪拌後5APG上に塗布し冷却、
乾燥後チトクロムC3寒天固定化電極を得た。
Example q Fixation of cytochrome C5 with agar Agar powder (D
ifco Laboratories) 15■ in water 0
.. 5d and dissolved under heating and boiling. After cooling to 50℃, cytochrome e3 (D, v, M, F) 0.1■
Add and stir until uniform, then apply on 5APG and cool.
After drying, a cytochrome C3 agar-immobilized electrode was obtained.

電極表面固定量はサイクリックざルタンメトリーによF
) 2.7 x 10   mol/CR”であった。
The amount fixed on the electrode surface was determined by cyclic sartanmetry.
) 2.7 x 10 mol/CR".

実施例8 酸素の還元(1) 実施例2の電極を空気で飽和させた25■℃、pH7,
0,0,03Mのリン酸緩衝溶液で満たした電解セルに
設置し、電位を基準電極(Ag/AgCt)に対して+
〇、3vから−1,0■まで100 mV/S (7)
速度で掃引し、サイクリックボルタモダラムを測定した
Example 8 Reduction of oxygen (1) The electrode of Example 2 was saturated with air at 25°C, pH 7,
It is installed in an electrolytic cell filled with 0,0,03M phosphate buffer solution, and the potential is set to + with respect to the reference electrode (Ag/AgCt).
〇, 3v to -1,0■ 100 mV/S (7)
The cyclic voltammodalum was measured by sweeping at speed.

一方、未修飾の5APGを用いて同様の条件下で測定を
行なった。
On the other hand, measurements were performed under similar conditions using unmodified 5APG.

図2に示す通りチトクロムC3を1き飾した電極(実線
)は未修飾電極(破線)に対し酸素の還元反応に対して
非常に優れた触媒能を示した。
As shown in FIG. 2, the electrode decorated with cytochrome C3 (solid line) exhibited extremely superior catalytic ability for the oxygen reduction reaction compared to the unmodified electrode (broken line).

実施例 9 酸素の還元(If) 実施例3の電極を用いて実施例8と同様の条件下でサイ
クリックポルタモグラムを測定した。
Example 9 Oxygen Reduction (If) A cyclic portamogram was measured using the electrode of Example 3 under the same conditions as Example 8.

その結果、図3に示す通りチトクロムC3修飾電極(実
線)は未修飾電極(破線)に比べ優れた触媒能を示した
As a result, as shown in FIG. 3, the cytochrome C3-modified electrode (solid line) showed superior catalytic ability compared to the unmodified electrode (broken line).

実mf’No  アルギン酸ナトリウム固定化チトクロ
ムcs (D、v、M、F )による酸素の還元実施例
4の電極を用い、空気で飽和させた−7、0110mM
のトリス緩衝溶液で満たした電解セルに設置し、実施例
8と同様の条件下でサイクリック〆・νタモグラムを測
定した。
Actual mf'No Reduction of oxygen by sodium alginate-immobilized cytochrome cs (D, v, M, F) Using the electrode of Example 4, -7,0110 mM saturated with air
The sample was placed in an electrolytic cell filled with a Tris buffer solution, and the cyclic limit/v tamogram was measured under the same conditions as in Example 8.

その結果図4に示す通りチトクロムC3修飾電極は優れ
た触媒能を示した。
As a result, as shown in FIG. 4, the cytochrome C3-modified electrode showed excellent catalytic ability.

実施例11  Naflon固定化チトクロムe!、!
極による酸素の還元 実施例5の電極を空気で飽和させたPH7,0,30m
M !Jン酸緩衝溶液で満たした電解セルに設置し、実
施例8と同様の条件下でサイクリックビルタモグラムを
測定した。
Example 11 Naflon-immobilized cytochrome e! ,!
Reduction of oxygen by electrode The electrode of Example 5 was saturated with air at pH 7,0,30m.
M! The sample was placed in an electrolytic cell filled with a J-acid buffer solution, and a cyclic biltamogram was measured under the same conditions as in Example 8.

その結果図5に示す通シ該電極は酸素還元に対し優れた
触媒能を示した。
As a result, the electrode shown in FIG. 5 showed excellent catalytic ability for oxygen reduction.

実施例12 アルギン酸ナトリウム固定化チトクロムe
3 (D、d、N )による酸素の還元実施例4と同様
の方法によl)D、dRのチトクロムc3をアルギン酸
ナトリウムで固定化した電極を得た。電極表面へのチト
クロムc3の固定量はサイクリックゾルタンメトリーに
より5.2 X 10−” mo 1//Crr?であ
った。
Example 12 Sodium alginate immobilized cytochrome e
3 Reduction of oxygen using (D, d, N) An electrode in which cytochrome c3 of D and dR was immobilized with sodium alginate was obtained in the same manner as in Example 4. The amount of cytochrome c3 immobilized on the electrode surface was determined by cyclic soltammetry to be 5.2 x 10-'' mo 1//Crr?.

該電極を空気で飽和させたp)l 7.0110mMの
トリス緩衝溶液で満たした電解セルに設置し、実施例8
と同様の条件下でサイクリックがルタモグラムを測定し
た。
The electrode was placed in an electrolytic cell filled with p)l 7.010mM Tris buffer solution saturated with air and
Cyclic measured the lutamogram under similar conditions.

その結果、図6に示す通りチトクロムc s (D、d
R)修飾電極は優れた触媒能を示した。
As a result, as shown in Figure 6, cytochrome c s (D, d
R) The modified electrode showed excellent catalytic ability.

実施例13 アルギン酸ナトリウム固定化チトクロムe
3 (D、v、H)による酸素の還元実施例4と同様の
方法によ、j) D、v、Hのチトクロムc3をアルギ
ン酸ナトリウムで固定化した電極を得た。
Example 13 Sodium alginate immobilized cytochrome e
3 Reduction of oxygen using (D, v, H) By the same method as in Example 4, an electrode in which cytochrome c3 of j) D, v, and H was immobilized with sodium alginate was obtained.

電極表面へのチトクロムC3の固定量はサイクリックゾ
ルタンメトリーにより7.7 X 10−10−l2/
(/であった。
The amount of cytochrome C3 immobilized on the electrode surface was determined by cyclic soltammetry to be 7.7 x 10-10-l2/
(/Met.

該電極を空気で飽和させた−7.0.10mM)リス緩
衝溶液で満たした電解セルに設置し実施例8と同様の条
件下でサイクリック鱈?ルタモグラムを測定した。
The electrode was placed in an electrolytic cell filled with an air-saturated -7.0.10mM) Lith buffer solution, and cyclic cod? Lutamogram was measured.

その結果図7に示す通りチトクロムc3(D、v、H)
修飾電極は優れた触媒能を示した。
As a result, as shown in Figure 7, cytochrome c3 (D, v, H)
The modified electrode showed excellent catalytic ability.

実施例14 チトクロムC3寒天固定化電極による酸素
の還元 実施例7の電極を用いて、空気飽和、−(70,30綱
リン酸緩衝溶液中でサイクリックビルタンメ) IJ−
により酸素の還元を測定した。
Example 14 Reduction of oxygen using cytochrome C3 agar-immobilized electrode The electrode of Example 7 was used to conduct air-saturated, - (cyclic birutamme in 70,30 phosphate buffer solution) IJ-
Oxygen reduction was measured by

結果、図8に示す通シ寒天固定化チトクロムC3(D、
v、M、F )修飾電極は優れた触媒能を示した。
As a result, the cytochrome C3 (D,
v, M, F) The modified electrode showed excellent catalytic ability.

実施例1ぢ(安定性) 実施例1の電極を空気飽和pH7,0,0,03Mリン
酸緩衝溶液に浸漬し30分毎にサイクリックビルタンメ
トリーを測定し酸素還元のピークmlを測定した。
Example 1 (stability) The electrode of Example 1 was immersed in an air-saturated pH 7,0,0,03M phosphate buffer solution, and cyclic birutammetry was measured every 30 minutes to measure the peak ml of oxygen reduction. .

一方未修飾5APG電極を3.5X10  Mのチトク
ロムc3溶液に30秒間浸漬させチトクロムC3修飾電
極とし、上記電極と同様の条件下で酸素還元ピーク電流
を測定した。
On the other hand, an unmodified 5APG electrode was immersed in a 3.5×10 M cytochrome c3 solution for 30 seconds to obtain a cytochrome C3 modified electrode, and the oxygen reduction peak current was measured under the same conditions as the above electrode.

図9に示す通)実施例1の電極は酸素還元において安定
した性能を示した。
The electrode of Example 1 shown in FIG. 9 showed stable performance in oxygen reduction.

実施例16(酸素極の分極曲線) 実施例2の電極をカソード極とし、空気飽和−7,0,
0,03Mリン酸緩衝溶液中で3mV/Sの掃引速度で
分極曲線を測定した。
Example 16 (Polarization curve of oxygen electrode) The electrode of Example 2 was used as a cathode, and the air saturation was -7.0,
Polarization curves were measured in 0.03M phosphate buffer solution at a sweep rate of 3 mV/S.

図10に示す通シ非常に優れた電流−電圧特性を示した
As shown in FIG. 10, very excellent current-voltage characteristics were exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

図1.2,3.4.5,6.7および8は、それぞれ、
実施例4,8. 9.10.1+、12゜13および1
4で得られたサイクリックぎルタモグラム(実線・・・
本発明、破線・・・対照例)であり、図9は実施例10
箪極の、酸素還元における安定性を示したもの(実施例
15参照)であシ、図10は実施例16で得られた分極
曲線を示したものである。
Figures 1.2, 3.4.5, 6.7 and 8 are, respectively,
Examples 4 and 8. 9.10.1+, 12°13 and 1
Cyclic gyrtammogram obtained in step 4 (solid line...
present invention, dashed line...control example), and FIG. 9 shows Example 10.
This shows the stability of the cathode in oxygen reduction (see Example 15), and FIG. 10 shows the polarization curve obtained in Example 16.

Claims (1)

【特許請求の範囲】[Claims] 導電性固体基体の表面にチトクロムc_3を有機高分子
化合物で固定した電極。
An electrode with cytochrome c_3 fixed on the surface of a conductive solid substrate using an organic polymer compound.
JP60182778A 1985-08-20 1985-08-20 Modified electrode Pending JPS6243068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60182778A JPS6243068A (en) 1985-08-20 1985-08-20 Modified electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60182778A JPS6243068A (en) 1985-08-20 1985-08-20 Modified electrode

Publications (1)

Publication Number Publication Date
JPS6243068A true JPS6243068A (en) 1987-02-25

Family

ID=16124250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60182778A Pending JPS6243068A (en) 1985-08-20 1985-08-20 Modified electrode

Country Status (1)

Country Link
JP (1) JPS6243068A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005535095A (en) * 2002-08-06 2005-11-17 ソントル ナショナル ド ラ ルシェルシュ ションティフィーク Fuel cell using biofilm as catalyst for air electrode reaction and / or fuel electrode reaction
JP2014053620A (en) * 2013-09-30 2014-03-20 Sony Corp Molecular device, single molecule optical switch element, functional element, molecular wire and electronic apparatus
US8993513B2 (en) 2007-07-13 2015-03-31 Sony Corporation Molecular device, single-molecular optical switching device, functional device, molecular wire, and electronic apparatus using functional device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005535095A (en) * 2002-08-06 2005-11-17 ソントル ナショナル ド ラ ルシェルシュ ションティフィーク Fuel cell using biofilm as catalyst for air electrode reaction and / or fuel electrode reaction
US8993513B2 (en) 2007-07-13 2015-03-31 Sony Corporation Molecular device, single-molecular optical switching device, functional device, molecular wire, and electronic apparatus using functional device
JP2014053620A (en) * 2013-09-30 2014-03-20 Sony Corp Molecular device, single molecule optical switch element, functional element, molecular wire and electronic apparatus

Similar Documents

Publication Publication Date Title
Lei et al. Electron transfer of hemoglobin at electrodes modified with colloidal clay nanoparticles
Oyama et al. Electrochemical responses of multiply-charged transition metal complexes bound electrostatically to graphite electrode surfaces coated with polyelectrolytes
EP0109767B1 (en) Modified electrode
EP0068664B1 (en) A heme protein immobilized electrode
Chen et al. Methylene blue/perfluorosulfonated ionomer modified microcylinder carbon fiber electrode and its application for the determination of hemoglobin
Daido et al. Electrochemistry of cytochrome c: influence of coulombic attraction with indium tin oxide electrode
JP2000188013A (en) High heat-resistant polymer electrolyte
Shigehara et al. Catalysis of the reduction of dioxygen to water at graphite electrodes coated with two transition metal catalysts acting in series
CA2460891C (en) Proton conducting material, proton conducting membrane, and fuel cell
CN114152657A (en) Oxidoreductase for improving electrochemical activity and biosensor containing same
Zheng et al. Electrocatalytic reduction of dioxygen on hemin based carbon paste electrode
Bartlett et al. Approaches to the Integration of Electrochemistry and Biotechnology: I. Enzyme‐Modified Reticulated Vitreous Carbon Electrodes
JPS6243068A (en) Modified electrode
CN105717177B (en) Electrode and preparation method thereof, biosensor and enzyme thermistor devices
RU2229515C1 (en) Hydrogen-oxygen fuel member based on immobilized enzymes
Vaillancourt et al. Electrochemical and Enzymatic Studies of Electron Transfer Mediation by Ferrocene Derivatives with Nafion‐Glucose Oxidase Electrodes
Bianco et al. Ion‐exchange properties of poly (L‐lysine) coatings on pyrolytic graphite electrodes
WO2018154812A1 (en) Molybdenum oxysulfide electrode and utilization thereof
Zhou et al. The electrochemical polymerization of redox dye‐nile blue for the amperometric determination of hemoglobin
Godet et al. Direct electron transfer involving a large protein: glucose oxidase
JPS6261119B2 (en)
Ye et al. Direct electrochemical redox of tyrosinase at silver electrodes
JPS60434B2 (en) Hydrogen generation method
Sun et al. Electrocatalytic reduction of hemoglobin at a chemically modified electrode containing riboflavin
US4797181A (en) Flavin cofactor modified electrodes and methods of synthesis and use