JPS6242872B2 - - Google Patents
Info
- Publication number
- JPS6242872B2 JPS6242872B2 JP17509381A JP17509381A JPS6242872B2 JP S6242872 B2 JPS6242872 B2 JP S6242872B2 JP 17509381 A JP17509381 A JP 17509381A JP 17509381 A JP17509381 A JP 17509381A JP S6242872 B2 JPS6242872 B2 JP S6242872B2
- Authority
- JP
- Japan
- Prior art keywords
- parts
- cured product
- magnesia
- weight
- magnesia cement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical class [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 68
- 239000000395 magnesium oxide Substances 0.000 claims description 30
- 239000004568 cement Substances 0.000 claims description 25
- 239000000835 fiber Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 16
- 239000003365 glass fiber Substances 0.000 claims description 15
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 11
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 10
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 6
- -1 alkaline earth metal carbonate Chemical class 0.000 claims description 6
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 5
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 5
- 235000019341 magnesium sulphate Nutrition 0.000 claims description 5
- 238000001723 curing Methods 0.000 description 11
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229960002337 magnesium chloride Drugs 0.000 description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 3
- 239000001095 magnesium carbonate Substances 0.000 description 3
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229940050906 magnesium chloride hexahydrate Drugs 0.000 description 2
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical group C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明はマグネシアセメント組成物に関する。
マグネシアセメント硬化体は緻密であつて、機
械的特性にすぐれるほか、不燃性であるため、建
材等の分野において従来の有機合成材料に代替
し、その可燃性の問題を解決し得る材料として注
目されている。
一般にマグネシアセメントを短時間に硬化させ
るには、高活性のマグネシアを用いた配合物を加
熱すればよいが、この場合、硬化時に硬化体に亀
裂が発生し、その機械的強度を低下させることが
多い。一方、低い温度で緩慢に硬化させれば、硬
化時には硬化体に亀裂が発生することはないが、
長期間にわたつて乾燥した高温条件での用途に供
された場合、硬化体に微細な亀裂が発生しやす
く、耐熱性に欠ける。このような問題を解決する
ため、マグネシアセメントに長さ数mmのガラス長
繊維を混入したり、ガラス粉を配合することが提
案されている。このような方法によつては加熱硬
化時に硬化体に亀裂が生じることはある程度まで
防止できるが、しかし、硬化体が高温下に長期間
曝された場合、依然として微細な亀裂が発生し、
耐熱性は何ら改善されない。
本発明は上記した問題を解決するためになされ
たものであつて、急速に熱硬化しても硬化体に亀
裂が生じないと共に、長期の熱安定性及び機械的
強度にすぐれた硬化体を与えるマグネシアセメン
ト組成物を提供することを目的とする。
本発明のマグネシアセメント組成物は、活性マ
グネシアと、塩化マグネシウム及び/又は硫酸マ
グネシウムとからなるマグネシアセメント組成物
において、活性マグネシア100重量部について繊
維長が0.1〜0.3mmに最多分布をもつガラス繊維25
〜40重量部と、アルカリ土類金属炭酸塩10〜80重
量部とを含有することを特徴とするものである。
本発明のマグネシアセメント組成物は、既に知
られているように、活性マグネシア100重量部に
ついて塩化マグネシウムを無水物換算で20〜60重
量部又は硫酸マグネシウムを無水物換算で15〜
100重量部含有し、塩化マグネシウムと硫酸マグ
ネシウムとが併用される場合には、通常、その割
合は硫酸マグネシウム1モルについて塩化マグネ
シウム0.4〜5モルであつて、その合計量は活性
マグネシア100重量部について25〜75重量部であ
る。
本発明においては、マグネシアセメント組成物
はさらに活性マグネシア100重量部について繊維
長が0.1〜0.3mmの範囲に最多分布を有するガラス
短繊維25〜40重量部含有する。繊維長の最多分布
が0.3mmより大きいときは、マグネシアセメント
組成物への均一な分散が困難となり、配合量が制
限される結果、その硬化体が高温下に長期間置か
れたとき、微細な亀裂の発生を抑える耐熱性が発
現しない。特に、ガラス長繊維と幣用した場合、
長繊維の間のマグネシアセメント組成物のマトリ
ツクス間に短繊維が十分に分散せず、硬化体の耐
熱性を改善し得ない。好ましくは短繊維はすべて
繊維長が1mm以下である。繊維長の最多分布が
0.1mmり小さい場合にも、硬化体の耐熱性が改善
されない。特に、長繊維と併用するとき、マグネ
シアセメントマトリツクスとの接触面積が過少で
あるため、硬化体の耐熱性の改善に効果がない。
短繊維としてはガラス繊維が用いられる。
短繊維の配合による硬化体の耐熱性改善の効果
は、短繊維と共にアルカリ土類金属炭酸塩を併用
することにより、さらに顕著となる。これはマグ
ネシアセメントマトリツクスの収縮膨張性、特に
繊維の長さ方向に直交する方向への収縮膨張性を
緩和するので、マトリツクス内での微細な亀裂の
発生を防止すると考えられる。アルカリ土類金属
炭酸塩の配合量は活性マグネシア100重量部つい
て10〜80重量部である。10重量部より少ないとき
は上記効果が十分でなく、80重量部を越えると、
水を加えたときに増粘し、十分に混練することが
できないからである。アルカリ土類金属炭酸塩の
好ましい具体例としては炭酸カルシウム、炭酸マ
グネシウム等を挙げることができ、その粒径は繊
維間に十分に分散するように10μ以下が好まし
い。
本発明においては、前記したようにマグネシア
セメント組成物に従来より用いられているガラス
繊維の長繊維を補強剤として配合してもよく、ま
た、上記繊維のマツトや織成物に含浸させてもよ
い。さらに、硬化体の耐水性を向上させるために
水不溶性リン酸塩等の添加剤や、種々の骨材、充
填剤を配合してもよい。
本発明のマグネシアセメント組成物は、従来よ
り知られているように、これに活性マグネシア
100重量部について水40〜150重量部を配合し、混
練後、所要形状に賦形し、60〜100℃程度の温度
に加熱して硬化させる。
本発明のマグネシアセメント組成物は、以上の
ように特定の範囲に最多分布を有するガラス短繊
維とアルカリ土類金属炭酸塩とを併用し、マグネ
シアセメントマトリツクスにおける収縮膨張をよ
く抑えて、硬化体に長期にわたる耐熱性を与える
と共に、急速加熱硬化時にも硬化体に亀裂を生じ
させず、機械的強度にすぐれた硬化体を形成す
る。
以下に本発明の実施例を比較例と共に挙げる
が、本発明はこれら実施例により何ら限定される
ものではない。なお、部は重量部である。
実施例 1
活性マグネシア(700℃焼成)100部を塩化マグ
ネシウム6水塩85部、トリポリリン酸ナトリウム
0.7部及び水60部からなる水溶液に混合してマグ
ネシアセメントペーストを調整し、さらに炭酸カ
ルシウム20部と、繊維長が1mm以下であつて、最
多分布が0.1〜0.3mmの範囲にある下記の繊維長分
布を有するガラス短繊維10部を混合した。これを
型枠に注型し、80℃に急速に昇温し、15分間加熱
して硬化させた。硬化時、硬化体に亀裂は発生せ
ず、また、冷却後、型崩れなく脱型することがで
きた。常温で4週間養生して硬化体を得た。
ガラス短繊維の繊維長分布
0.1mm以下 8.5%
0.1mmを越え0.2mm以下 36.5%
0.2mmを越え0.3mm以下 25.5%
0.3mmを越え0.4mm以下 14.5%
0.4mmを越え0.5mm以下 7.5%
0.5mmを越え0.6mm以下 3.3%
0.6mmを越え0.7mm以下 0.75%
0.7mmを越え0.8mm以下 1.0%
0.8mmを越え0.9mm以下 0.25%
0.9mmを越え1.0mm以下 2.0%
実施例 2
活性マグネシア(700℃焼成)100部を塩化マグ
ネシウム6水塩73部と水59部とからなる水溶液に
混合してマグネシアセメントペーストを調製し、
さらに炭酸カルシウム40部と前記ガラス短繊維5
部を混合した。これをチヨツプドストランドマツ
ト13部に含浸し、積層して常温で硬化させた後、
4週間養生して硬化体を得た。
実施例 3
活性マグネシア(700℃焼成)100部を無水硫酸
マグネシウム50部と水100部からなる水溶液に混
合してマグネシアセメントペーストを調製し、さ
らに炭酸マグネシウム30部と前記ガラス短繊維10
部を混合した。これをチヨツプドストランドガラ
スマツト11部に含浸し、積層し、常温で硬化させ
た。常温で4週間養生して硬化体を得た。
比較例 1
実施例1と同じマグネシアセメントペーストに
炭酸マグネシウム及びガラス短繊維を添加するこ
となく、実施例1と同じ条件で加熱硬化させた。
硬化時、硬化体に微細な亀裂が多数発生した。常
温で4週間養生して硬化体を得た。
比較例 2
実施例2と同じマグネシアセメントペーストに
前記ガラス短繊維のみを5部配合し、チヨツプド
ストランドガラスマツト12部に含浸、積層した。
常温で硬化させた後、4週間養生して硬化体を得
た。
比較例 3
実施例2において前記ガラス短繊維の代わりに
粉砕ガラス7.5部を加えた以外は、全く同様にし
て硬化体を得た。
以上のようにして得た各硬化体を100℃の乾燥
空気中に2週間放置した後、表面状態を観察する
と共に、建築用ボード類の曲げ試験法(JIS
A1408)に基づいて曲げ試験を行なつた。また、
乾燥処理しない硬化体についても同様に曲げ試験
を行なつた。結果を下表を示す。
The present invention relates to magnesia cement compositions. Hardened magnesia cement is dense, has excellent mechanical properties, and is nonflammable, so it is attracting attention as a material that can replace conventional organic synthetic materials in the field of building materials and solve the problem of flammability. has been done. Generally, to cure magnesia cement in a short time, it is enough to heat a compound containing highly active magnesia, but in this case, cracks may occur in the cured product during curing, reducing its mechanical strength. many. On the other hand, if it is cured slowly at a low temperature, cracks will not occur in the cured product during curing, but
When used in dry, high-temperature conditions for a long period of time, the cured product tends to develop fine cracks and lacks heat resistance. In order to solve these problems, it has been proposed to mix long glass fibers several millimeters in length or mix glass powder into magnesia cement. Although this method can prevent cracks from forming in the cured product during heat curing to a certain extent, if the cured product is exposed to high temperatures for a long period of time, minute cracks will still occur.
Heat resistance is not improved at all. The present invention has been made to solve the above-mentioned problems, and provides a cured product that does not crack even when rapidly cured by heat, and has excellent long-term thermal stability and mechanical strength. The purpose is to provide a magnesia cement composition. The magnesia cement composition of the present invention is a magnesia cement composition comprising activated magnesia and magnesium chloride and/or magnesium sulfate, in which 25 glass fibers have a maximum fiber length distribution of 0.1 to 0.3 mm for 100 parts by weight of activated magnesia.
40 parts by weight and 10 to 80 parts by weight of an alkaline earth metal carbonate. As already known, the magnesia cement composition of the present invention contains 20 to 60 parts by weight of magnesium chloride or 15 to 60 parts of magnesium sulfate in terms of anhydride based on 100 parts by weight of active magnesia.
When magnesium chloride and magnesium sulfate are used together, the ratio is usually 0.4 to 5 mol of magnesium chloride per 1 mol of magnesium sulfate, and the total amount is 100 parts by weight of active magnesia. 25 to 75 parts by weight. In the present invention, the magnesia cement composition further contains 25 to 40 parts by weight of short glass fibers having a maximum fiber length distribution in the range of 0.1 to 0.3 mm per 100 parts by weight of active magnesia. When the maximum fiber length distribution is larger than 0.3 mm, it becomes difficult to uniformly disperse the magnesia cement into the composition, and as a result, the amount of compounding is limited. The heat resistance that suppresses the occurrence of cracks is not developed. Especially when used with long glass fibers,
The short fibers are not sufficiently dispersed in the matrix of the magnesia cement composition between the long fibers, and the heat resistance of the cured product cannot be improved. Preferably, all short fibers have a fiber length of 1 mm or less. The maximum distribution of fiber length is
Even if it is smaller than 0.1 mm, the heat resistance of the cured product will not be improved. In particular, when used in combination with long fibers, the contact area with the magnesia cement matrix is too small, making it ineffective in improving the heat resistance of the cured product.
Glass fiber is used as the short fiber. The effect of improving the heat resistance of the cured product by adding short fibers becomes even more remarkable when an alkaline earth metal carbonate is used together with the short fibers. This is thought to reduce the shrinkage/expansion properties of the magnesia cement matrix, particularly the shrinkage/expansion properties in the direction perpendicular to the longitudinal direction of the fibers, and thus prevent the formation of fine cracks within the matrix. The amount of alkaline earth metal carbonate is 10 to 80 parts by weight per 100 parts by weight of active magnesia. When it is less than 10 parts by weight, the above effects are not sufficient, and when it exceeds 80 parts by weight,
This is because the viscosity increases when water is added, making it impossible to knead thoroughly. Preferred specific examples of the alkaline earth metal carbonate include calcium carbonate, magnesium carbonate, etc., and the particle size thereof is preferably 10 μm or less so as to be sufficiently dispersed between the fibers. In the present invention, as described above, long glass fibers conventionally used in magnesia cement compositions may be blended as a reinforcing agent, or mats or woven materials of the above fibers may be impregnated. good. Furthermore, additives such as water-insoluble phosphates, various aggregates, and fillers may be added to improve the water resistance of the cured product. As is conventionally known, the magnesia cement composition of the present invention contains activated magnesia.
For every 100 parts by weight, 40 to 150 parts by weight of water is mixed, and after kneading, it is shaped into a desired shape and heated to a temperature of about 60 to 100°C to harden. As described above, the magnesia cement composition of the present invention uses short glass fibers having a maximum distribution in a specific range in combination with an alkaline earth metal carbonate, suppresses contraction and expansion in the magnesia cement matrix, and forms a cured product. In addition to providing long-term heat resistance to the product, the cured product does not crack even during rapid heating and curing, and forms a cured product with excellent mechanical strength. Examples of the present invention are listed below along with comparative examples, but the present invention is not limited to these Examples in any way. Note that parts are parts by weight. Example 1 100 parts of activated magnesia (calcined at 700°C), 85 parts of magnesium chloride hexahydrate, and sodium tripolyphosphate
Prepare a magnesia cement paste by mixing with an aqueous solution consisting of 0.7 parts and 60 parts of water, and further add 20 parts of calcium carbonate and the following fibers with a fiber length of 1 mm or less and a maximum distribution in the range of 0.1 to 0.3 mm. 10 parts of short glass fibers with length distribution were mixed. This was poured into a mold, rapidly raised to 80°C, and heated for 15 minutes to harden. During curing, no cracks were generated in the cured product, and after cooling, it was possible to remove the product from the mold without losing its shape. A cured product was obtained by curing at room temperature for 4 weeks. Fiber length distribution of short glass fibers 0.1 mm or less 8.5% More than 0.1 mm and less than 0.2 mm 36.5% More than 0.2 mm and less than 0.3 mm 25.5% More than 0.3 mm and less than 0.4 mm 14.5% More than 0.4 mm and less than 0.5 mm 7.5% 0.5 mm More than 0.6mm and less than 3.3% More than 0.6mm and less than 0.7mm 0.75% More than 0.7mm and less than 0.8mm 1.0% More than 0.8mm and less than 0.9mm 0.25% More than 0.9mm and less than 1.0mm 2.0% Example 2 Activated magnesia (700 A magnesia cement paste was prepared by mixing 100 parts of magnesium chloride hexahydrate (calcined at
Further, 40 parts of calcium carbonate and 5 parts of the short glass fiber
parts were mixed. This was impregnated into 13 parts of chopped strand pine, laminated and cured at room temperature.
A cured product was obtained after curing for 4 weeks. Example 3 Magnesia cement paste was prepared by mixing 100 parts of activated magnesia (calcined at 700°C) with an aqueous solution consisting of 50 parts of anhydrous magnesium sulfate and 100 parts of water, and further mixed with 30 parts of magnesium carbonate and 10 parts of the short glass fibers.
parts were mixed. This was impregnated into 11 parts of chopped strand glass mat, laminated and cured at room temperature. A cured product was obtained by curing at room temperature for 4 weeks. Comparative Example 1 The same magnesia cement paste as in Example 1 was heat-cured under the same conditions as in Example 1 without adding magnesium carbonate and short glass fibers.
During curing, many fine cracks were generated in the cured product. A cured product was obtained by curing at room temperature for 4 weeks. Comparative Example 2 5 parts of the short glass fibers alone were added to the same magnesia cement paste as in Example 2, and 12 parts of chopped strand glass mat was impregnated and laminated.
After curing at room temperature, a cured product was obtained by curing for 4 weeks. Comparative Example 3 A cured product was obtained in exactly the same manner as in Example 2, except that 7.5 parts of crushed glass was added instead of the short glass fibers. After leaving each cured product obtained in the above manner in dry air at 100°C for two weeks, the surface condition was observed, and the bending test method for architectural boards (JIS
A bending test was conducted based on A1408). Also,
A bending test was also conducted on the cured product that was not subjected to drying treatment. The results are shown in the table below.
【表】
本発明のマグネシアセメント組成物によれば、
硬化体は高温乾燥処理の前後を通じて曲げ強度は
ほとんど変わらないが、比較例の組成物によれ
ば、高温乾燥処理後には硬化体の機械的強度が著
しく低下した。[Table] According to the magnesia cement composition of the present invention,
The bending strength of the cured product was almost unchanged before and after the high temperature drying treatment, but according to the composition of the comparative example, the mechanical strength of the cured product significantly decreased after the high temperature drying treatment.
Claims (1)
又は硫酸マグネシウムとからなるマグネシアセメ
ント組成物において、活性マグネシア100重量部
について繊維長が0.1〜0.3mmに最多分布をもつガ
ラス繊維25〜40重量部と、アルカリ土類金属炭酸
塩10〜80重量部とを含有することを特徴とするマ
グネシアセメント組成物。1 Activated magnesia, magnesium chloride and/or
Or, in a magnesia cement composition consisting of magnesium sulfate, 25 to 40 parts by weight of glass fibers having a maximum fiber length distribution of 0.1 to 0.3 mm for 100 parts by weight of activated magnesia, and 10 to 80 parts by weight of an alkaline earth metal carbonate. A magnesia cement composition comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17509381A JPS5879857A (en) | 1981-10-31 | 1981-10-31 | Magnesia cement composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17509381A JPS5879857A (en) | 1981-10-31 | 1981-10-31 | Magnesia cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5879857A JPS5879857A (en) | 1983-05-13 |
JPS6242872B2 true JPS6242872B2 (en) | 1987-09-10 |
Family
ID=15990122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17509381A Granted JPS5879857A (en) | 1981-10-31 | 1981-10-31 | Magnesia cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5879857A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007001839A (en) * | 2005-06-27 | 2007-01-11 | Yoichi Takamiya | Manufacturing method of composition containing magnesia cement |
-
1981
- 1981-10-31 JP JP17509381A patent/JPS5879857A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5879857A (en) | 1983-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3203813A (en) | Thermal insulating material, composition and process for making the same | |
GB2190371A (en) | Moulding material | |
JPS6242872B2 (en) | ||
DE2853333C2 (en) | Process for the production of a mineral foam | |
US2000338A (en) | Method of indurating clay and product formed therefrom | |
US4832746A (en) | Cured extruded articles of metal fiber-reinforced hydraulic materials, and method for production thereof | |
EP0078508A1 (en) | Inorganic foam and process for its preparation from tertiary metal phosphates | |
US2170434A (en) | Article of manufacture and method of making the same | |
JP3181152B2 (en) | Composition for fireproof coating | |
JPS6320784B2 (en) | ||
JPH0761876A (en) | Production of inorganic hardened material | |
US2042096A (en) | Heat insulation material and process of making same | |
JPH06171995A (en) | Castable heat insulating material | |
JPS5879883A (en) | Manufacture of magnesia cement composite body | |
JPH09194249A (en) | Production of water-repellent ceramic building material | |
JPH10324762A (en) | High-strength noncombustible phenol resin foam | |
SU1016265A1 (en) | Raw mix for making fire protection material | |
JP3026230B2 (en) | Heat and thermal insulation coatings and moldings | |
JPS6096554A (en) | Manufacture of cementitious composite body | |
JPS5879861A (en) | Manufacture of magnesia cement cured formed body | |
JPS5841748A (en) | Manufacture of cement product | |
JPH06211557A (en) | Hardenable inorganic composition | |
JPS6319469B2 (en) | ||
JP2864862B2 (en) | Cement compositions and cement extruded products | |
JP3365811B2 (en) | Method for producing hydraulic molded product |