JPS6242706B2 - - Google Patents

Info

Publication number
JPS6242706B2
JPS6242706B2 JP3162278A JP3162278A JPS6242706B2 JP S6242706 B2 JPS6242706 B2 JP S6242706B2 JP 3162278 A JP3162278 A JP 3162278A JP 3162278 A JP3162278 A JP 3162278A JP S6242706 B2 JPS6242706 B2 JP S6242706B2
Authority
JP
Japan
Prior art keywords
base
metal
joint
temperature
brazing filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3162278A
Other languages
Japanese (ja)
Other versions
JPS54123548A (en
Inventor
Toshitsugu Ooi
Tooru Degawa
Toshimitsu Kaneda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP3162278A priority Critical patent/JPS54123548A/en
Publication of JPS54123548A publication Critical patent/JPS54123548A/en
Publication of JPS6242706B2 publication Critical patent/JPS6242706B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はろう材を用いる耐熱超合金の接合法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for joining heat-resistant superalloys using a brazing filler metal.

[従来の技術] 一般に鉄基、Ni基又はCo基等の耐熱超合金は
高い高温強度を得るために、その成分中に酸化し
易い強化元素を含んでいる。例えばNi基強析出
型合金はγ′相(金属間化合物Ni3(Al、Ti)を
主成分としている)の析出硬化によつて高い高温
強度を得ており、そのため接合性は極めて悪い。
[Prior Art] In general, heat-resistant superalloys such as iron-based, Ni-based, or Co-based superalloys contain reinforcing elements that are easily oxidized in their components in order to obtain high high-temperature strength. For example, Ni-based strong precipitation type alloys obtain high high-temperature strength through precipitation hardening of the γ' phase (mainly composed of the intermetallic compound Ni 3 (Al, Ti)), and therefore have extremely poor bondability.

接合法として一般的なものに溶融溶接法がある
が、溶接作業あるいはそれに続く熱処理の過程で
割れが生じ易く健全な溶接を行うには種々の困難
を伴う。また構造上溶融溶接が実施できない場合
も多い。
A common joining method is fusion welding, but cracks tend to occur during welding work or the subsequent heat treatment process, making it difficult to achieve sound welding. Additionally, there are many cases where fusion welding cannot be performed due to structural reasons.

溶融溶接以外の接合法として従来から真空ろう
接や、拡散接合などが採用されている。真空ろう
接の場合、一般的な方法として、JISやASTMな
どに規定されているNiろう、Pdろう材を用いる
ろう接法があり、溶融溶接に比し簡便である等多
くの利点があるため一部に使用されている。しか
し高温強度が低いという根本的な欠点があり、使
用範囲はかなり制限される。一方、高温強度に優
れた接合法として、例えば拡散接合法がある。こ
れには母材同志を直接加圧、、加熱することによ
つて、固相状態で接合する方法及び、母材間隙に
挿入した薄い金属箔を母材中に拡散させ、組織を
均一化する方法(TLP法)などがあるが、健全
な接合を行うためには、いずれの方法も接合すべ
き母材界面が十分に清浄であること、及び厳密な
仕上げ精度を有していることが不可欠であり、さ
らに、接合部の拡散処理に長時間を必要とする。
Vacuum brazing, diffusion bonding, etc. have traditionally been used as bonding methods other than fusion welding. In the case of vacuum brazing, the common method is to use Ni or Pd brazing filler metal as specified by JIS or ASTM, which has many advantages such as being simpler than fusion welding. Used in some parts. However, it has a fundamental drawback of low high-temperature strength, which limits its range of use considerably. On the other hand, as a bonding method with excellent high-temperature strength, there is, for example, a diffusion bonding method. This method involves directly pressurizing and heating the base materials to join them in a solid state, or by inserting a thin metal foil into the gap between the base materials and diffusing it into the base material to homogenize the structure. There are various methods such as the TLP method, but for any method, it is essential that the interface between the base materials to be joined be sufficiently clean and that the finishing accuracy be strict. Furthermore, a long time is required for the diffusion treatment of the bonded portion.

優れた高温強度を得る他の方法として、ろう材
自体の高温強度を改善する方法がある。これは
Ti、Al等の時効硬化性元素を含有させたろう材
を使用する方法であり、母材強度に近い優れた高
温特性が得られるとされている。しかしその反面
ろう接過程でろう材が著しく酸化され易く、その
ため酸化され易いTi、Al等の元素を含まないろ
う材を用いた場合に比して接合作業も困難とな
る。
Another method for obtaining excellent high-temperature strength is to improve the high-temperature strength of the brazing filler metal itself. this is
This method uses a brazing filler metal containing age-hardening elements such as Ti and Al, and is said to provide excellent high-temperature properties close to the strength of the base material. On the other hand, however, the brazing filler metal is extremely susceptible to oxidation during the brazing process, making the joining work more difficult than when using a brazing filler metal that does not contain elements that are easily oxidized, such as Ti and Al.

[発明が解決しようとする問題点] 以上述べてきたように優れた高温強度が得られ
る接合法としていくつかの方法が考案されている
が、いずれも極めて高度の接合技術を必要とす
る。また、接合過程での母材界面や、ろう材の酸
化が十分に防止できなかつた場合には、健全な接
合部が得られず、強度も当然低下する。そのた
め、信頼性に優れた接合部を得ることは容易では
ない。
[Problems to be Solved by the Invention] As described above, several joining methods have been devised that provide excellent high-temperature strength, but all of them require extremely sophisticated joining techniques. Furthermore, if oxidation of the base metal interface or the brazing material cannot be sufficiently prevented during the joining process, a sound joint cannot be obtained and the strength will naturally decrease. Therefore, it is not easy to obtain a highly reliable joint.

[問題点を解決するための手段] 本発明は、Ni基耐熱超合金の母材同志を接合
するに際し、初期間隙を0.1mm〜0.9mmとし、3〜
9%のBを含むNi基のろう材を母材の間に介在
させ、溶融ろう材と接触して母材表面が溶融する
温度以上に加熱し、該ろう材を溶融させると共に
母材の接合予定面を0.015mm以上溶食させ、これ
によつて母材とろう材が融合されてなり、母材中
に含有されていた強化元素が配分された接合部を
降温後も該接合部が残留されるように両母材間に
形成し、この接合部を介して前記両母材の接合を
なすようにしたことを特徴とする。
[Means for Solving the Problems] In the present invention, when joining base materials of Ni-based heat-resistant superalloys, the initial gap is set to 0.1 mm to 0.9 mm, and 3 to
A Ni-based brazing filler metal containing 9% B is interposed between the base materials, and the base metal is heated to a temperature higher than that at which the surface of the base metal melts when it comes into contact with the molten brazing filler metal, thereby melting the brazing filler metal and joining the base materials. The planned surface is eroded by 0.015 mm or more, and the base metal and filler metal are fused together, and the joint where the strengthening elements contained in the base metal are distributed remains even after the temperature has cooled down. It is characterized in that it is formed between the two base materials so that the base materials are joined to each other through this joint portion.

また、本発明は、さらに必要に応じて強化熱処
理する。
Further, in the present invention, a strengthening heat treatment is further performed as necessary.

[作用] 本発明においては、Ni基の耐熱超合金(母
材)の間にBを含むNi基のろう材を介在させて
両母材の接合を行うが、加熱により該ろう材は溶
融し、母材の接合界面をも溶け込ます。この溶け
込みに伴いろう材の融液組成は、耐熱超合金組成
側に接近する。このように、本発明においては、
次の〜 ろう材の溶融、 母材界面の所定深さ以上の溶け込み及び溶け
込み成分の液相拡散、 融液組成の母材組成への急速なシフト、 融液の固相化、 なる一連の反応工程を経て、 母材中に含有されていた強化元素が配分され
てなる接合部を介した母材同志の接合の完成、 がなされる。上記接合部は、接合完了(降温)後
も母材間に残留する。この接合部は、強化熱処理
を施しても消失しない。
[Function] In the present invention, a Ni-based brazing material containing B is interposed between the Ni-based heat-resistant superalloy (base material) to join the two base materials, but the brazing material is melted by heating. , it also melts the bonding interface of the base metal. With this melting, the melt composition of the brazing filler metal approaches the composition of the heat-resistant superalloy. In this way, in the present invention,
The following series of reactions: melting of the brazing filler metal, penetration of the base metal interface to a predetermined depth or higher, liquid-phase diffusion of melted components, rapid shift of the melt composition to the base metal composition, solidification of the melt, and so on. Through the process, the bonding between the base materials is completed through a joint formed by distributing the reinforcing elements contained in the base materials. The bonded portion remains between the base materials even after bonding is completed (temperature decrease). This joint does not disappear even when subjected to strengthening heat treatment.

上記のように、本発明においては、特定のろう
材を用いて基本的には液相拡散により新しい接合
部(接合層)を母材間に創出、残留させるもので
ある。そして、そのため、 (イ) この接合部は、母材から配分された強化元素
を含むものであり、従来のろう接層と異なり、
高温強度が高い。
As described above, in the present invention, a new joint (joint layer) is basically created and left between base materials by liquid phase diffusion using a specific brazing material. Therefore, (a) This joint contains reinforcing elements distributed from the base material, and unlike the conventional soldering layer,
High temperature strength.

(ロ) 母材表面が溶融されるから、母材表面に酸化
被膜が存在していてもこれを溶融除去するよう
になる。
(b) Since the surface of the base material is melted, even if there is an oxide film on the surface of the base material, it will be melted and removed.

(ハ) 従つて、TLP法の如く接合すべき母材界面
を清浄化しておくことや表面を高い仕上げ精度
としておくことが不要である。また、接合部
(母材間層)自体が高強度であるから、TLP法
の如く母材間層を消失させるための長時間の拡
散処理(固相拡散処理)を施すことが不要であ
る。
(c) Therefore, as in the TLP method, it is not necessary to clean the interface of the base materials to be joined or to maintain the surface with high finishing accuracy. Furthermore, since the joint (interlayer between base materials) itself has high strength, it is not necessary to perform a long diffusion treatment (solid phase diffusion treatment) to eliminate the interlayer between base materials as in the TLP method.

(ニ) ろう材自体、Ti、Al等の易酸化性元素を含
有せず、ろう接過程での処理が極めて平易であ
る。
(d) The brazing material itself does not contain easily oxidizable elements such as Ti and Al, and is extremely easy to process during the brazing process.

等の作用効果が奏される。The following effects are achieved.

[手段の補足説明] 本発明によつて接合される耐熱超合金は公知の
Ni基のものである。このNi基の耐熱超合金に含
まれる強化元素としてはAl、Ti、Mo、W、Nb、
Ta等が挙げられる。
[Supplementary explanation of means] The heat-resistant superalloy joined by the present invention is a known
It is Ni-based. Strengthening elements contained in this Ni-based heat-resistant superalloy include Al, Ti, Mo, W, Nb,
Examples include Ta.

即ち、耐熱超合金の強化メカニズムとしては、
大別すると次の2種類が挙げられる。
In other words, the strengthening mechanism of heat-resistant superalloys is as follows:
Broadly speaking, there are two types:

1つは析出硬化メカニズムによるものである。
これは材料の中に、Ni3AlやNi3Ti等の金属間化合
物をつくり、高温での強化を行うものであり、強
化元素としては、Al及びTiが該当する。他の強
化機構は、固溶強化メカニズムによるものであ
る。これはマトリツクス中に元素が固溶すること
でマトリツクス全体を強化するものであり、強化
元素としては、Mo、W、Nb、Ta等が該当する。
One is through a precipitation hardening mechanism.
This creates intermetallic compounds such as Ni 3 Al and Ni 3 Ti in the material to strengthen it at high temperatures, and the strengthening elements include Al and Ti. Another strengthening mechanism is through a solid solution strengthening mechanism. This strengthens the entire matrix by dissolving elements in the matrix, and examples of strengthening elements include Mo, W, Nb, and Ta.

本発明において用いるろう材は接合すべき母材
と同じ基の合金であるべきであり、また拡散定数
が極めて大きい侵入型元素であるBを主な融点降
下元素として含有していることが必要であるが、
その他CやPあるいはSi、Mn等の置換型の融点
降下元素を付加的に含有していても差支えない。
このような条件を満たしさえすればどのようなろ
う材でも良く他の合金成分には制約がない。その
ため公知のろう材の中のある種のものは、本発明
にそのまま用いることができる。例えばNi基耐
熱超合金部材の接合においては、JISに規定され
ているろう材BNi−2、BNi−7等が使用可能で
ある。これらのろう材は上述したようにTi、Al
等の酸化し易い強化元素を含有していないので取
扱いは容易である。
The brazing filler metal used in the present invention should be an alloy of the same base as the base metal to be joined, and it should also contain B, an interstitial element with an extremely large diffusion constant, as the main melting point-depressing element. Yes, but
There is no problem even if it additionally contains substituted melting point lowering elements such as C, P, Si, and Mn.
Any brazing filler metal may be used as long as it satisfies these conditions, and there are no restrictions on other alloy components. Therefore, certain types of known brazing materials can be used as they are in the present invention. For example, in joining Ni-based heat-resistant superalloy members, brazing filler metals BNi-2, BNi-7, etc. specified by JIS can be used. As mentioned above, these brazing fillers are made of Ti, Al
It is easy to handle because it does not contain reinforcing elements that are easily oxidized.

なお、本発明においては、母材の溶かし込み量
を適正とするために、ろう材のB含有率は3〜9
%(重量)とする。
In addition, in the present invention, in order to make the melting amount of the base metal appropriate, the B content of the brazing filler metal is 3 to 9.
% (weight).

母材の接合すべき全界面を確実にかつ一様に溶
融するためには、母材界面層の溶け込み深さは少
なくとも0.015mm以上とする。母材界面は結晶粒
界などに沿つて選択的に溶融する傾向を有してい
るため、溶け込み深さが0.015mmより少なければ
未溶融部分が残存する恐れのあることが実験的な
検討の結果明らかとなつた。母材の溶け込み深さ
は接合すべき2個の母材の初期間隙、ろう材中の
B元素含有量、加熱温度及び加熱時間によつて支
配される。即ち初期間隙が増せば溶け込み深さも
増加する。0.015mm以上の溶け込み深さを確保す
るためには母材とろう材の組合わせの調整に加え
て、初期間隙を適当に、即ち、従来の接合法に比
べて大きな初期間隙となるように調整することが
大切である。
In order to reliably and uniformly melt all the interfaces of the base metals to be joined, the penetration depth of the base metal interface layer should be at least 0.015 mm or more. Experimental studies have shown that the base metal interface tends to melt selectively along grain boundaries, so if the penetration depth is less than 0.015 mm, unmelted parts may remain. It became clear. The penetration depth of the base metals is controlled by the initial gap between the two base metals to be joined, the B element content in the brazing filler metal, the heating temperature, and the heating time. That is, as the initial gap increases, the penetration depth also increases. In order to ensure a penetration depth of 0.015 mm or more, in addition to adjusting the combination of base metal and filler metal, the initial gap must be adjusted appropriately, that is, the initial gap is larger than that of conventional joining methods. It is important to do so.

これは、母材の接合界面を十分に深く溶かすた
めには、それだけ多くのろう材を必要とするから
である。一般の真空ろう接では0.1mm以下の狭い
間隙が必要とされているが、本発明の接合法で
は、0.1mm以上の初期間隙が必要であり、初期間
隙を0.9mmに広げた場合でも良好な剪断強度が得
られる。
This is because a large amount of brazing filler metal is required to melt the bonding interface of the base metal sufficiently deeply. General vacuum brazing requires a narrow gap of 0.1 mm or less, but the joining method of the present invention requires an initial gap of 0.1 mm or more, and even if the initial gap is widened to 0.9 mm, it will still work well. Shear strength is obtained.

ろう材中のB含有量は前記の通り3〜9%が適
正である。また、接合温度は1100℃以上が好適で
あり、その温度での保持時間は数分前後程度で十
分である。なお、本発明では母材の界面層を均一
に溶解することが不可欠であるので、母材に損傷
を与えない範囲でできる限り高い温度域で接合さ
せることが望ましい。例えば、後掲の実施例に採
用されているBNi−2のろう接温度は1010〜1175
℃とされているが、実施例1の場合はその上限に
近い1150℃(5分間保持)にて接合を行つてい
る。
As mentioned above, the appropriate B content in the brazing filler metal is 3 to 9%. Further, the bonding temperature is preferably 1100° C. or higher, and a holding time of about several minutes at that temperature is sufficient. In addition, in the present invention, it is essential to uniformly melt the interface layer of the base material, so it is desirable to bond at the highest possible temperature range without damaging the base material. For example, the soldering temperature of BNi-2 used in the examples below is 1010 to 1175.
℃, but in the case of Example 1, bonding was performed at 1150°C (held for 5 minutes), which is close to the upper limit.

なお、前述したように、本発明の接合法は初期
間隙が広い場合(0.9mm以下)にも良好な接合性
が得られ、従つて高度な仕上げ精度を要しないと
いう大きな特徴を有している。そのため単に向い
合つた二平面の接合以外に、曲面部分の接合や、
嵌合部材の接合なども容易に実施することができ
る。第4図はそのような接合部の1例を示したも
のであり、これはターボ機械用の2重構造をもつ
羽根である。第4図においては1は羽根本体、2
は中子であり、接合すべき部分3は押しつぶされ
た円筒状をしている。
As mentioned above, the joining method of the present invention has the major feature that good joining performance can be obtained even when the initial gap is wide (0.9 mm or less), and therefore high finishing accuracy is not required. . Therefore, in addition to simply joining two planes facing each other, we can also join curved parts,
It is also possible to easily join the fitting members. FIG. 4 shows an example of such a joint, which is a double-layer blade for a turbomachine. In Figure 4, 1 is the blade root body, 2
is a core, and the part 3 to be joined has a crushed cylindrical shape.

接合法は次の通りである。Ni基超合金IN738で
できた羽根本体とハロステロイXでできた中子の
接合部間隙は、ほぼ0.3mmあり、この間隙にJIS
BNi−2をろう材として入れ、接合条件、1150℃
で5分間保持した。一度冷却後、さらに強化を行
うために1130℃で2時間強化熱処理を行つてあ
る。この中子は、前面に微細な冷却孔があいてお
り、羽根下部から流入する冷却空気を用すための
通路となつている。この中子の存在により、羽根
内部の冷却は効率的に行われ、羽根全体の温度上
昇がさけられ、羽根としての性能を保つことがで
きる。
The joining method is as follows. The gap between the blade base body made of Ni-based superalloy IN738 and the core made of Halosteroy X is approximately 0.3 mm.
BNi-2 was added as a brazing material, bonding conditions were 1150℃
It was held for 5 minutes. Once cooled, a strengthening heat treatment was performed at 1130°C for 2 hours to further strengthen the material. This core has fine cooling holes in its front surface, which serve as passages for cooling air flowing in from the lower part of the blades. Due to the presence of this core, the inside of the blade is efficiently cooled, the temperature of the entire blade is prevented from increasing, and the performance of the blade can be maintained.

本実施例で示したタービンブレード等の高温、
回転機器については、接合部の信頼性は非常に大
切である。即ち、タービン1台には、ブレードが
数100枚あり、この内の1枚が接合不良であつて
ものタービンは破壊する。このため、接合部の信
頼性はきわめて重要である。因みに、従来の接合
法によつた場合には、極めて高度な表面清浄化処
理を施さない限り、母材の接合界面には酸化被膜
層が厚く残留し、この部分が未着部となつて接合
部の破壊、強度低下の原因となる。この未着部層
は強度上のバラツキの主原因となり、信頼性が低
下する。
The high temperature of the turbine blades etc. shown in this example,
For rotating equipment, reliability of joints is extremely important. That is, one turbine has several hundred blades, and if one of these blades is poorly connected, the turbine will be destroyed. Therefore, the reliability of the joint is extremely important. Incidentally, when conventional bonding methods are used, unless extremely sophisticated surface cleaning treatment is applied, a thick oxide film layer remains at the bonding interface of the base materials, and this area becomes an unbonded area and fails to bond. This may cause damage to the parts and decrease in strength. This unattached layer is the main cause of variations in strength and reduces reliability.

これに対し、本発明方法を採用した場合には、
母材界面部を溶融してしまうので、酸化被膜は存
在しなくなり、接合強度及び接合信頼性が大幅に
向上される。
On the other hand, when the method of the present invention is adopted,
Since the interface between the base materials is melted, there is no oxide film, and the bonding strength and reliability are greatly improved.

本発明において、析出硬化型の母材を接合した
場合には母材の強化熱処理に準じた熱処理を必要
に応じ施すことによつて、高温強度をさらに改善
することが可能である。強化熱処理を施すと元素
成分の内、ろう材中に予め多く含まれており、母
材を溶融させるのを目的としていたB成分の母材
への拡散が促進される。このため、接合部の融点
の上昇に伴う強化が生じるわけであるが、接合金
属部自体はB以外の拡散速度が非常に遅いため、
この強化熱処理によつては消滅しない。また接合
後に母材の熱処理条件に準じた溶体化処理、並び
に時効処理を行うことによつて剪断強度は著しく
改善される。
In the present invention, when a precipitation hardening type base material is joined, the high temperature strength can be further improved by performing a heat treatment similar to the strengthening heat treatment of the base material as necessary. When the strengthening heat treatment is performed, among the elemental components, the diffusion of component B, which is already contained in a large amount in the brazing filler metal and whose purpose is to melt the base material, into the base material is promoted. For this reason, strengthening occurs as the melting point of the joint increases, but since the diffusion rate of substances other than B in the joint metal part itself is extremely slow,
It does not disappear through this strengthening heat treatment. Further, the shear strength can be significantly improved by performing solution treatment and aging treatment in accordance with the heat treatment conditions of the base material after bonding.

[実施例] 以下実施例を示し、本発明についてさらに詳細
に説明する。
[Example] The present invention will be explained in further detail by showing examples below.

JIS BNi−2をろう材として使用しNi基、超合
金IN738試験片を接合した。第1図に接合界面初
期間隙と母材界面層の溶け込み深さとの関係を調
べた結果を示す。なお、接合条件としては
10-4torrの真空中で1150℃に5分間保持した。ま
た、昇温速度は300℃/分であり、降温速度も同
様である。
JIS BNi-2 was used as a brazing material to join Ni-based superalloy IN738 specimens. Figure 1 shows the results of investigating the relationship between the initial gap at the bonding interface and the penetration depth of the base metal interface layer. In addition, the bonding conditions are
The temperature was maintained at 1150° C. for 5 minutes in a vacuum of 10 −4 torr. Further, the temperature increase rate was 300°C/min, and the temperature decrease rate was also the same.

第1図から、初期間隙を0.1mm以上にすれば、
母材の溶け込み深さは0.015mm以上あり良好な接
合界面が得られることが認められる。
From Figure 1, if the initial gap is set to 0.1 mm or more,
The penetration depth of the base metal is 0.015 mm or more, which indicates that a good bonding interface can be obtained.

実施例 2 IN738試験片とハステロイX試験片とを実施例
1と同じ接合条件下で接合した。この場合の常温
剪断強度の測定結果を第2図に示す(第2図の白
丸)。
Example 2 An IN738 test piece and a Hastelloy X test piece were bonded under the same bonding conditions as in Example 1. The measurement results of the room temperature shear strength in this case are shown in FIG. 2 (white circles in FIG. 2).

図示の如く、初期間隙が0.1mm以上になると、
常温剪断強度が著しく増大し、特に0.2〜0.4mmの
初期間隙では著しく高強度になることが認められ
た。(これは、前述の通り、母材溶け込み深さが
十分に大きくなつたためである。) 実施例 3 実施例2において、接合終了後に、母材の熱処
理条件と同様の1130℃2hrの溶体化熱処理並びに
843℃、24hrの時効熱処理を施した。結果を第2
図に黒丸にて示す。
As shown in the figure, when the initial gap becomes 0.1 mm or more,
It was observed that the room temperature shear strength increased significantly, especially at an initial gap of 0.2 to 0.4 mm. (As mentioned above, this is because the base metal penetration depth has become sufficiently large.) Example 3 In Example 2, after completion of bonding, solution heat treatment was performed at 1130°C for 2 hours, which was the same as the heat treatment conditions for the base metal. and
Aging heat treatment was performed at 843°C for 24 hours. Second result
Indicated by black circles in the figure.

この結果、実施例2よりもさらに高い常温剪断
強度が発現されることが認められた。また、初期
間隙が0.1mm以上になると常温剪断強度が増大
し、とりわけ0.2〜0.4mmの初期間隙では極めて高
強度であることも、実施例2と同様に認められ
た。
As a result, it was found that even higher room temperature shear strength than in Example 2 was exhibited. Further, as in Example 2, it was also observed that the room temperature shear strength increases when the initial gap is 0.1 mm or more, and particularly, the strength is extremely high at an initial gap of 0.2 to 0.4 mm.

なお、実施例2、3ともに、初期間隙が0.3mm
前後のときに、最も高強度であつた。
In addition, in both Examples 2 and 3, the initial gap was 0.3 mm.
The highest intensity was obtained before and after.

また、実施例2、3において、初期間隙を0.3
mm一定とした場合について、高温剪断強度を測定
した。その結果を第3図に示す。第3図より試験
温度の上昇につれて剪断強度は次第に低下する
が、溶体化処理並びに時効処理を施した試験片は
800℃においてなお30Kg/mm2以上の高い値が得ら
れることが認められる。また、第3図には、比較
材として母材の一方であるハステロイXの高温強
度を示したが、本発明のものはいずれもハステロ
イXよりも高強度であることが認められる。因み
に従来このようなろう材を用いた耐熱ろう接にお
いて上記の様な高い接合強度が得られた例は見当
らない。
In addition, in Examples 2 and 3, the initial gap was set to 0.3
High-temperature shear strength was measured when the mm was constant. The results are shown in FIG. Figure 3 shows that the shear strength gradually decreases as the test temperature increases, but the test specimens subjected to solution treatment and aging treatment
It is recognized that even at 800°C, a high value of 30 Kg/mm 2 or more can be obtained. Furthermore, although FIG. 3 shows the high-temperature strength of Hastelloy X, which is one of the base materials, as a comparison material, it is recognized that all the materials of the present invention have higher strength than Hastelloy X. Incidentally, there have been no examples of heat-resistant brazing using such a brazing filler metal in which high bonding strength as described above has been achieved.

実施例 4 ろう材として、B含有率が3.0%、4.4%、8.7%
である、Ni−6%Cr−6%Si−B系合金を用
い、接合温度を1110〜1250℃の間で変えて、初期
間隙0.1mmにて母材(IN 738合金)の接合を行
い、母材の溶け込み深さを測定した(他の条件は
実施例1と同様であり、接合温度までは300℃/
分で昇温させ、各々の接合温度に5分間保持し、
その後300℃/分で降温させた。)。結果を第5図
に示す。
Example 4 Brazing filler metal with B content of 3.0%, 4.4%, and 8.7%
Using a Ni-6%Cr-6%Si-B alloy, welded the base material (IN 738 alloy) with an initial gap of 0.1mm at a joining temperature of 1110 to 1250°C. The penetration depth of the base metal was measured (other conditions were the same as in Example 1, and the joining temperature was 300℃/
Increase the temperature for 5 minutes, hold each bonding temperature for 5 minutes,
Thereafter, the temperature was lowered at a rate of 300°C/min. ). The results are shown in Figure 5.

前述したように本発明では母材の界面層である
限度以上溶解することが不可欠であるのでこの量
をコントロールすることが必要であるが、第5図
より、ろう材としてB含有率の異なるものを用い
たり、接合温度を変えることにより、母材の溶け
込み深さの調節を容易に行えることが認められ
る。
As mentioned above, in the present invention, it is essential to melt the interface layer of the base material above a certain limit, so it is necessary to control this amount. It is recognized that the weld depth of the base metal can be easily adjusted by using or changing the bonding temperature.

さらに、第5図よりB含有率が少ない程、母材
の溶け込み深さが小さくなり、B含有率が3%よ
りも少ない場合には、1100℃以上の温度では十分
な接合がなし得ず、高温接合せざるを得なくなる
ことも認められる。
Furthermore, as shown in Fig. 5, the lower the B content, the smaller the penetration depth of the base metal, and when the B content is less than 3%, sufficient bonding cannot be achieved at a temperature of 1100°C or higher. It is also recognized that high-temperature bonding may become necessary.

[効果] 従来母材界面層の局部的な溶融は溶食と呼ばれ
一種のろう接欠陥とみなされていたが、本発明で
は界面層を均一にかつある限度以上溶融すること
によつて次のような4つの顕著な効果を得てい
る。
[Effect] Conventionally, localized melting of the interface layer of the base metal was called corrosion and was considered a type of soldering defect, but in the present invention, by uniformly melting the interface layer above a certain limit, the following effects can be achieved: Four remarkable effects have been obtained.

第1の効果は、母材表面に存在する酸化皮膜や
不純物が除去され、母材とろう材の濡れ性が著し
く改善されるため、信頼性の高い接合部が得られ
ることである。第2の効果は溶融した母材表面層
とろう材が融合することによつて母材中に含有さ
れていた強化元素が接合部にも配分され、その結
果、接合部が著しく強化されることである。さら
に第3の効果として、母材表面層との融合に伴う
接合部の融点上昇による高温強度の改善等も期待
される。(母材表面層の融合に伴つて、ろう材中
の融点降下元素含有の存在割合が低下し、結果的
に、新たに形成された接合部の融点は上昇する。
高温強度は、材料の融点と比例関係にあり、融点
が高いほど強度は増大される。) 本発明の接合法を用いる上での第4の大きな利
点は、接合すべき両母材間の初期間隙を従来真空
ろう接や拡散接合において要求されていたよりは
大きくとることができる点にある。即ち、一般に
平面あるいは円筒面以外の曲面をもつ接合部を
0.1mm以下の間隙を保持するように仕上げ加工す
ることは著しく困難であるが、本発明では0.1〜
0.9mmのような広い間隙が許容されるので接合部
の仕上げ加工は極めて容易である。このように本
発明は複雑な接合部をもつ部材の接合に適すると
いう大きな利点を有している。
The first effect is that the oxide film and impurities present on the surface of the base material are removed, and the wettability between the base material and the brazing metal is significantly improved, resulting in a highly reliable joint. The second effect is that as the molten base metal surface layer and brazing metal fuse, the reinforcing elements contained in the base metal are distributed to the joint, and as a result, the joint is significantly strengthened. It is. Furthermore, as a third effect, an improvement in high-temperature strength is expected due to an increase in the melting point of the joint due to fusion with the surface layer of the base material. (As the base material surface layer fuses, the proportion of melting point lowering elements in the brazing filler metal decreases, and as a result, the melting point of the newly formed joint increases.
High temperature strength is proportional to the melting point of the material, and the higher the melting point, the higher the strength. ) The fourth major advantage of using the joining method of the present invention is that the initial gap between the two base materials to be joined can be made larger than that required in conventional vacuum soldering or diffusion joining. . In other words, joints that generally have a curved surface other than a flat or cylindrical surface are
It is extremely difficult to perform finishing processing to maintain a gap of 0.1 mm or less, but with the present invention, the gap is 0.1 mm or less.
Finishing of the joint is extremely easy as wide gaps such as 0.9 mm are allowed. As described above, the present invention has the great advantage of being suitable for joining members having complicated joints.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による接合における母材界面初
期間隙と母材の溶け込み深さの関係、第2図は同
じく初期間隙と剪断強度との関係、第3図は同接
合箇所の剪断強度に対する温度の影響を示す。第
4図は本接合法の応用例を示しaは縦断面図、b
はaのX、X断面で、1はタービン羽根本体、2
は中子、3は接合部分。第5図は初期間隙0.1mm
の場合の接合温度と母材の溶け込み深さとの関係
を示す曲線。
Figure 1 shows the relationship between the initial gap at the base metal interface and the penetration depth of the base metal in joining according to the present invention, Figure 2 also shows the relationship between the initial gap and shear strength, and Figure 3 shows the temperature versus shear strength at the same joint location. Show the impact of Figure 4 shows an application example of this joining method, where a is a longitudinal cross-sectional view and b is a vertical cross-sectional view.
is the X,X cross section of a, 1 is the turbine blade body, 2
is the core, and 3 is the joint part. Figure 5 shows the initial gap of 0.1mm.
A curve showing the relationship between welding temperature and base metal penetration depth in the case of .

Claims (1)

【特許請求の範囲】 1 Ni基耐熱超合金の母材同志を接合するに際
し、初期間隙を0.1mm〜0.9mmとし、3〜9%のB
を含むNi基のろう材を母材の間に介在させ、溶
融ろう材と接触して母材表面が溶融する温度以上
に加熱し、該ろう材を溶融させると共に母材の接
合予定面を0.015mm以上溶食させ、これによつ
て、母材とろう材が融合されてなり、母材中に含
有されていた強化元素が配分された接合部を降温
後も該接合部を残留させるように両母材間に形成
し、この接合部を介して前記両母材の接合をなす
ようにしたことを特徴とするNi基耐熱超合金の
接合法。 2 Ni基耐熱超合金の母材同志を接合するに際
し、初期間隙を0.1mm〜0.9mmとし、3〜9%のB
を含むNi基のろう材を母材の間に介在させ、溶
融ろう材と接触して母材表面が溶融する温度以上
に加熱し、該ろう材を溶融させると共に母材の接
合予定面を0.015mm以上溶食させ、これによて、
母材とろう材が融合されてなり、母材中に含有さ
れていた強化元素が配分された接合部を降温後も
該接合部を残留させるように両部材間に形成し、
この接合部を介して前記両母材を接合した後、強
化熱処理することを特徴とするNi基耐熱超合金
の接合法。
[Claims] 1. When joining base materials of Ni-based heat-resistant superalloys, the initial gap is 0.1 mm to 0.9 mm, and 3 to 9% B
A Ni-based brazing filler metal containing Ni is interposed between the base metals and heated to a temperature higher than that at which the surface of the base metal melts upon contact with the molten brazing filler metal, melting the brazing filler metal and reducing the surface of the base metals to be joined by 0.015 mm or more, and as a result, the base metal and brazing metal are fused, and the joint where the reinforcing elements contained in the base metal are distributed remains in the joint even after the temperature cools down. 1. A method for joining Ni-based heat-resistant superalloys, characterized in that a bond is formed between both base materials, and the two base materials are joined via this joint. 2 When joining base materials of Ni-based heat-resistant superalloys, the initial gap is set to 0.1 mm to 0.9 mm, and 3 to 9% B
A Ni-based brazing filler metal containing Ni is interposed between the base metals and heated to a temperature higher than that at which the surface of the base metal melts upon contact with the molten brazing filler metal, melting the brazing filler metal and reducing the surface of the base metals to be joined by 0.015 By eroding more than mm,
A base metal and a brazing metal are fused, and a joint is formed between the two members so that the joint remains even after the temperature is lowered, and the reinforcing elements contained in the base metal are distributed.
A method for joining Ni-based heat-resistant superalloys, characterized in that after the two base materials are joined through this joint, a strengthening heat treatment is performed.
JP3162278A 1978-03-17 1978-03-17 Brazing method for heat resisting super alloy Granted JPS54123548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3162278A JPS54123548A (en) 1978-03-17 1978-03-17 Brazing method for heat resisting super alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3162278A JPS54123548A (en) 1978-03-17 1978-03-17 Brazing method for heat resisting super alloy

Publications (2)

Publication Number Publication Date
JPS54123548A JPS54123548A (en) 1979-09-25
JPS6242706B2 true JPS6242706B2 (en) 1987-09-09

Family

ID=12336308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3162278A Granted JPS54123548A (en) 1978-03-17 1978-03-17 Brazing method for heat resisting super alloy

Country Status (1)

Country Link
JP (1) JPS54123548A (en)

Also Published As

Publication number Publication date
JPS54123548A (en) 1979-09-25

Similar Documents

Publication Publication Date Title
KR100729893B1 (en) High energy beam welding of single-crystal superalloys and assemblies formed thereby
US7156282B1 (en) Titanium-aluminide turbine wheel and shaft assembly, and method for making same
CA2368329C (en) Nickel-base braze material and braze repair method
EP2119525B1 (en) Method for the production of a blisk
KR100474467B1 (en) Nickel Brazing Material
KR100876171B1 (en) Electron beam welding method
JP2000288778A (en) Repairing material, repairing method using same repairing material and repaired product
JP2000160313A (en) Nickel base super heat resistant alloy and heat treatment before welding, and welding for this nickel base superalloy
JPH10137976A (en) Method for repairing metallic alloy member
JP6838832B2 (en) Welding filler for superalloys
KR102227534B1 (en) A ductile boron bearing nickel based welding material
JP2004527381A (en) High ductility, reduced defect welds for ductile iron and method of making same.
US3844777A (en) Filler alloys for fluxless brazing aluminum and aluminum alloys
JPS6242706B2 (en)
CN114378477A (en) Mixed powder brazing filler metal and preparation method thereof, welding intermediate layer and welding method
JPS5992185A (en) Diffusion joining method
JPH01107973A (en) Manufacture of blade
JP3188095B2 (en) Repair method and repair agent for heat resistant parts
JPS63180377A (en) Manufacture of welding joint
US2376581A (en) Brazing alloy
JPH0313953B2 (en)
US2376580A (en) Brazing alloy
KR20240024733A (en) Overlay welding method
US2376578A (en) Brazing alloy
CN117484009A (en) Nickel-based active brazing material