JPS6242180B2 - - Google Patents

Info

Publication number
JPS6242180B2
JPS6242180B2 JP55114791A JP11479180A JPS6242180B2 JP S6242180 B2 JPS6242180 B2 JP S6242180B2 JP 55114791 A JP55114791 A JP 55114791A JP 11479180 A JP11479180 A JP 11479180A JP S6242180 B2 JPS6242180 B2 JP S6242180B2
Authority
JP
Japan
Prior art keywords
pressure
valve
oil pressure
rotational speed
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55114791A
Other languages
Japanese (ja)
Other versions
JPS5740101A (en
Inventor
Hayato Sugawara
Junichi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11479180A priority Critical patent/JPS5740101A/en
Publication of JPS5740101A publication Critical patent/JPS5740101A/en
Publication of JPS6242180B2 publication Critical patent/JPS6242180B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Transmission Device (AREA)

Description

【発明の詳細な説明】 本発明は回転数・油圧変換装置に関し、特に、
車軸等の回転数に比例した油圧を出力し、したが
つて自動車用自動変速機に適用するに好適な回転
数・油圧変換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotation speed/hydraulic conversion device, and in particular,
The present invention relates to a rotation speed/hydraulic pressure conversion device that outputs oil pressure proportional to the rotation speed of an axle, etc., and is therefore suitable for application to automatic transmissions for automobiles.

従来の自動車用自動変速機に用いられる車軸回
転数・油圧変換装置はカバナーバルブと呼ばれ、
機械的に構成されていた。
The axle rotation speed/hydraulic pressure conversion device used in conventional automatic transmissions for automobiles is called a Kavanagh valve.
It was constructed mechanically.

第1図は、この従来の回転数・油圧変換装置を
示す。
FIG. 1 shows this conventional rotational speed/hydraulic pressure conversion device.

第1図において、ケース1内に回転軸2が嵌合
され、該回転軸内には油圧ポンプからの変動油圧
が供給されるライン圧通路3と回転数に対応した
油圧が出力されるカバナ圧通路4とが形成されて
いる。
In Fig. 1, a rotating shaft 2 is fitted in a case 1, and inside the rotating shaft there is a line pressure passage 3 to which fluctuating hydraulic pressure from a hydraulic pump is supplied, and a cabana pressure passage to which hydraulic pressure corresponding to the rotation speed is output. A passage 4 is formed.

回転軸2の先端には、一体となつて回転するバ
ルブボデイ5が固定され、該バルブボデイには、
半径方向に移動可能なガバナバルブ6と、該ガバ
ナバルブに沿つて半径方向に移動可能な大ウエイ
ト7と、前記ガバナバルブ6の先端部に固定され
た小ウエイト8と、該小ウエイトと前記大ウエイ
トとの間に配置された圧縮スプリング9とが設け
られている。また、バルブボデイ5の大ウエイト
7案内部には、該大ウエイトの半径方向最外位置
を規制するためのストツパ10が装着されてい
る。
A valve body 5 that rotates integrally is fixed to the tip of the rotating shaft 2, and the valve body includes:
A governor valve 6 that is movable in the radial direction, a large weight 7 that is movable in the radial direction along the governor valve, a small weight 8 fixed to the tip of the governor valve 6, and a combination of the small weight and the large weight. A compression spring 9 is provided between the two. Further, a stopper 10 is attached to the guide portion of the large weight 7 of the valve body 5 for regulating the outermost position of the large weight in the radial direction.

前記ガバナバルブ6には、カバナ圧通路4内の
ガバナ圧が作用する二つの受圧面11,12が形
成されている。これらの受圧面は異なつた面積を
有し、ガバナバルブ6を図中下方へ引込める方向
に作用する受圧面11は他側の受圧面12より大
きな面積を有している。
The governor valve 6 is formed with two pressure receiving surfaces 11 and 12 on which the governor pressure in the cabana pressure passage 4 acts. These pressure receiving surfaces have different areas, and the pressure receiving surface 11 that acts in the direction of retracting the governor valve 6 downward in the figure has a larger area than the pressure receiving surface 12 on the other side.

車軸が回転し、これに応じて回転軸2が回転す
ると、大ウエイト7、ガバナバルブ6および小ウ
エイト8に遠心力が作用する。
When the axle rotates and the rotating shaft 2 rotates accordingly, centrifugal force acts on the large weight 7, governor valve 6, and small weight 8.

所定の回転数までは、大ウエイト7の遠心力は
ガバナスプリング9に対抗し、回転数増大ととも
に大ウエイト7が半径方向へ移動する。この状態
では、この大ウエイト7の遠心力並びにガバナバ
ルブ6および小ウエイト8自体の遠心力の合力と
ガバナバルブ6の受圧面11,12に作用するガ
バナ圧とが均合うことによつて、該カバナ圧が回
転数に対応して調節される。
Until a predetermined number of rotations, the centrifugal force of the large weight 7 opposes the governor spring 9, and as the number of rotations increases, the large weight 7 moves in the radial direction. In this state, the resultant force of the centrifugal force of the large weight 7 and the centrifugal forces of the governor valve 6 and small weight 8 themselves and the governor pressure acting on the pressure receiving surfaces 11 and 12 of the governor valve 6 are balanced, so that the cabana pressure is is adjusted according to the rotation speed.

回転数が上がり、大ウエイト7がストツパ10
に当接してガバナバルブ6に遠心力を及ぼさなく
なると、これ以上の回転数領域では、圧縮された
ガバナスプリング9と小ウエイト8およびガバナ
バルブ6自体の遠心力との合力に対抗するよう
に、ガバナバルブ6の受圧面11,12に作用す
るカバナ圧(出力油圧)が調圧される。
The rotation speed increases and the large weight 7 becomes a stopper of 10.
When the centrifugal force is no longer exerted on the governor valve 6 by contacting the The cabana pressure (output oil pressure) acting on the pressure receiving surfaces 11 and 12 of is regulated.

以上の回転数に対するカバナ圧(カバナ圧通路
4内の油圧)の変化特性が第2図に例示されてい
る。
The change characteristics of the cabana pressure (hydraulic pressure in the cabana pressure passage 4) with respect to the above-mentioned rotational speeds are illustrated in FIG.

第2図によれば、大ウエイト7がストツプさせ
られる前後の特性、すなわち第1段階13と第2
段階14とは、その間の移行点15で不連続にな
つている。このため、従来の装置では、回転数と
油圧(カバナ圧)とが正確に対応しないという欠
点があつた。
According to FIG. 2, the characteristics before and after the large weight 7 is stopped, that is, the first stage 13 and the second stage
The stage 14 is discontinuous at a transition point 15 therebetween. For this reason, conventional devices have had the disadvantage that the rotational speed and oil pressure (cabana pressure) do not correspond accurately.

また、カバナ圧は遠心力とガバナバルブ6の受
圧面積の差とのバランスで生ずる圧力であるた
め、車軸の回転数の2乗に比例することから、車
軸の回転数と圧力とが線型的に対応しないという
欠点がある。
In addition, cabana pressure is the pressure generated by the balance between centrifugal force and the difference in the pressure receiving area of the governor valve 6, so it is proportional to the square of the axle rotation speed, so the axle rotation speed and pressure correspond linearly. The disadvantage is that it does not.

さらに、装置が純機械的に構成されていること
から、構造が複雑となり信頼性が低いという欠点
があつた。
Furthermore, since the device is constructed purely mechanically, the structure is complicated and reliability is low.

なお、本発明に関連する先行技術として、特開
昭48−98278号公報が挙げられる。
In addition, as prior art related to the present invention, Japanese Patent Application Laid-Open No. 48-98278 can be mentioned.

本発明の目的は、前述のような従来装置の欠点
を解除し、例えばエンジンのアイドリングから高
回転までの全回転数領域で回転数に比例した油圧
を供給しうる回転数・油圧変換装置を提供するこ
とである。
An object of the present invention is to provide a rotational speed/hydraulic pressure conversion device that can eliminate the drawbacks of the conventional devices as described above, and can supply hydraulic pressure proportional to the rotational speed in the entire rotational speed range from engine idling to high rotational speed. It is to be.

本発明の特徴は、車軸等の回転数に対応してデ
ユーテイ制御されたデイジタル信号によつて電磁
弁を作動させ、該電磁弁によつて、油圧源からの
変動油圧を回転数に線形的に対応した油圧に変換
することである。
A feature of the present invention is that a solenoid valve is actuated by a digital signal that is duty-controlled in accordance with the rotational speed of the axle, etc., and the solenoid valve allows fluctuations in oil pressure from a hydraulic power source to be applied linearly to the rotational speed. This means converting it into a corresponding hydraulic pressure.

以下、第3図を参照して本発明の実施例を説明
する。
Hereinafter, embodiments of the present invention will be described with reference to FIG.

自動車の車軸あるいはエンジン回転軸、または
これらに連結された回転軸にギヤ16が取付けら
れ、該ギヤに近接して回転数センサ17が取付け
られている。この回転数センサは、ギヤ16の回
転数すなわち車軸等の回転数を検出し、回転数に
比例した信号を出力する。
A gear 16 is attached to an axle of an automobile, an engine rotating shaft, or a rotating shaft connected thereto, and a rotation speed sensor 17 is attached close to the gear. This rotation speed sensor detects the rotation speed of the gear 16, that is, the rotation speed of the axle, etc., and outputs a signal proportional to the rotation speed.

回転数センサ17からの信号は、例えばマイク
ロコンピユータを使用した制御回路18に入力さ
れ、該信号により、ある基準パルス信号のデユー
テイを変化させて、例えばエンジンのアイドリン
グから最高回転数まで車軸等の回転数に比例した
制御信号が作られる。制御回路18で作られた制
御信号19は油圧回路側の電磁弁20に入力さ
れ、該電磁弁の開閉時間を前記デユーテイに対応
して制御するようになつている。
The signal from the rotational speed sensor 17 is input to a control circuit 18 using, for example, a microcomputer, and the duty of a certain reference pulse signal is changed based on the signal to control the rotation of the axle, etc., from engine idling to maximum rotational speed. A control signal proportional to the number is generated. A control signal 19 generated by the control circuit 18 is input to a solenoid valve 20 on the hydraulic circuit side, and the opening/closing time of the solenoid valve is controlled in accordance with the duty.

一方、エンジンの回転に伴なつて変化する油圧
ポンプ(図示せず)からの供給油圧21は、先
ず、定圧弁22に導入される。該定圧弁22は、
弁内圧23およびバネ24によつて変位するピス
トン25と、該ピストンの他側に形成されたフイ
ードバツク油圧室26と、抵抗27を有するフイ
ードバツク通路28とを備えている。
On the other hand, oil pressure 21 supplied from a hydraulic pump (not shown), which changes as the engine rotates, is first introduced into a constant pressure valve 22 . The constant pressure valve 22 is
It includes a piston 25 that is displaced by a valve internal pressure 23 and a spring 24, a feedback hydraulic chamber 26 formed on the other side of the piston, and a feedback passage 28 having a resistor 27.

供給油圧21によつて弁内圧23が変化する
が、その圧力は抵抗27を通つてフイードバツク
油圧室26に作用する。このため、フイードバツ
ク油圧とピストン25の受圧面積との積による作
用力(図中右向き)と、バネ24の押圧力とが釣
合い、変動する弁内圧23を一定の設定圧力に安
定化させようとする。
The valve internal pressure 23 changes depending on the supplied hydraulic pressure 21, and this pressure acts on the feedback hydraulic chamber 26 through the resistor 27. Therefore, the acting force (towards the right in the figure) due to the product of the feedback oil pressure and the pressure receiving area of the piston 25 balances the pressing force of the spring 24, and attempts to stabilize the fluctuating valve internal pressure 23 to a constant set pressure. .

従つて、定圧弁22により、供給油圧21の変
動にかかわらず、常に一定の油圧が提供される。
Therefore, the constant pressure valve 22 always provides a constant hydraulic pressure regardless of fluctuations in the supplied hydraulic pressure 21.

定圧弁22の下流側には前記電磁弁20のボー
ル(開閉弁体)29が配置され、該ボールはバネ
30によつてケース31に押付けられている。
A ball (opening/closing valve body) 29 of the electromagnetic valve 20 is arranged downstream of the constant pressure valve 22, and the ball is pressed against a case 31 by a spring 30.

電磁弁20に通電されると、ボール29がバネ
30に抗して吸引され、該ボールで閉じられてい
たドレイン32が開放されて油路を開く。油路が
開くと、油がドレイン32に流れ出し、電磁弁2
0の下流側の制御油圧33が低くなる。このまま
電磁弁20に通電し続けると制御油圧33が急激
に低くなるが、電磁弁20への通電を停止すると
バネ30の復元力によつてボール29がケース3
1に押付けられ、ドレイン32が閉じられる。ド
レイン32が閉じると、定圧弁22下流側の油路
に設けた抵抗34を通して一定油圧35が作用す
るので、制御油圧33は再び上昇しはじめる。
When the electromagnetic valve 20 is energized, the ball 29 is attracted against the spring 30, and the drain 32, which was closed by the ball, is opened and the oil passage is opened. When the oil passage opens, oil flows into the drain 32 and the solenoid valve 2
The control oil pressure 33 on the downstream side of 0 becomes low. If the solenoid valve 20 continues to be energized, the control oil pressure 33 will drop rapidly, but when the solenoid valve 20 is de-energized, the restoring force of the spring 30 will cause the ball 29 to move to the case 3.
1 and the drain 32 is closed. When the drain 32 closes, a constant oil pressure 35 acts through a resistance 34 provided in the oil path downstream of the constant pressure valve 22, so the control oil pressure 33 starts to rise again.

このように、電磁弁20下流側の制御油圧33
は、常に変動を行なつているが、この積分値は該
電磁弁の開閉時間(図示の例では閉じ時間)に比
例している。図示の例では、制御油圧33は電磁
弁20の閉じ時間の割合が大きい程上昇するの
で、回転数に正比例した油圧を得るためには、制
御回路18からの制御信号19は回転数に比例し
て電磁弁20の閉じ時間割合(すなわち通電しな
い時間割合)を増加させるものにする必要があ
る。これはデユーテイ制御の回路設計によつて適
宜実施しうることである。
In this way, the control hydraulic pressure 33 downstream of the solenoid valve 20
is constantly changing, and this integral value is proportional to the opening/closing time (in the illustrated example, the closing time) of the solenoid valve. In the illustrated example, the control oil pressure 33 increases as the proportion of the closing time of the solenoid valve 20 increases, so in order to obtain oil pressure that is directly proportional to the rotation speed, the control signal 19 from the control circuit 18 must be proportional to the rotation speed. Therefore, it is necessary to increase the closing time ratio of the electromagnetic valve 20 (ie, the time ratio during which the electromagnetic valve 20 is not energized). This can be implemented as appropriate by designing the duty control circuit.

電磁弁20の下流側にはフイルタ36が設けら
れている。このフイルタ36は、電磁弁20から
脈動油圧である制御油圧33を一定の指定油圧3
7に変換するためのものである。
A filter 36 is provided downstream of the solenoid valve 20. This filter 36 converts the control oil pressure 33, which is a pulsating oil pressure, from the solenoid valve 20 into a constant designated oil pressure 3.
7.

すなわち、変動している制御油圧33は、フイ
ルタ37を通すことにより、回転数に比例した一
定油圧(指定油圧)37になる。この指定油圧3
7を制御するためには電磁弁20の開閉時間を制
御すればよい。
That is, by passing the fluctuating control oil pressure 33 through the filter 37, it becomes a constant oil pressure (designated oil pressure) 37 that is proportional to the rotational speed. This specified oil pressure 3
7 can be controlled by controlling the opening/closing time of the solenoid valve 20.

図示の例では、前記指定油圧37は、増圧弁3
8の一次室39に保持されている。
In the illustrated example, the designated oil pressure 37 is the pressure increaser valve 3
It is held in the primary chamber 39 of 8.

増圧弁38は、ピストン40と、該ピストンの
一側(左側)に形成されたフイードバツク油圧室
41と、増圧弁下流側(出力油圧)から抵抗42
を介して該フイードバツク油圧室41へ連通する
フイードバツク通路43とを備えている。また、
増圧弁38へは前記供給油圧21が導入されるよ
うになつており、該供給油圧とピストン40の開
閉度とによつて弁内圧44が決まるようになつて
いる。
The pressure increase valve 38 includes a piston 40, a feedback hydraulic pressure chamber 41 formed on one side (left side) of the piston, and a resistance 42 from the downstream side (output hydraulic pressure) of the pressure increase valve.
A feedback passage 43 is provided which communicates with the feedback hydraulic chamber 41 via the feedback hydraulic chamber 41. Also,
The supplied hydraulic pressure 21 is introduced into the pressure increase valve 38, and the valve internal pressure 44 is determined by the supplied hydraulic pressure and the degree of opening/closing of the piston 40.

ピストン40の一側(左側)はフイードバツク
油圧の受圧面A2になつており、他側(右側)は
前記指定油圧37の受圧面A1になつており、受
圧面A2は受圧面A1より小さくなつている。
One side (left side) of the piston 40 is a pressure receiving surface A2 for the feedback hydraulic pressure, and the other side (right side) is a pressure receiving surface A1 for the specified hydraulic pressure 37, and the pressure receiving surface A2 is the pressure receiving surface A1. It's getting smaller.

増圧弁38では、指定油圧37とその受圧面積
A1との積と、出力油圧45のフイードバツク油
圧とその受圧面積A2との積とが、常に釣合うた
め、出力油圧45は指定油圧37を両積比A1
A2倍したものと等しくなる。こうして、指定油
圧37に比例した圧力が出力油圧45として得ら
れる。
In the pressure increase valve 38, the specified hydraulic pressure 37 and its pressure receiving area
Since the product of A 1 and the product of the feedback oil pressure of the output oil pressure 45 and its pressure receiving area A 2 are always balanced, the output oil pressure 45 is equal to the specified oil pressure 37 by the product ratio A 1 /
It is equal to A times 2 . In this way, a pressure proportional to the designated oil pressure 37 is obtained as the output oil pressure 45.

第4図は、制御回路の内容を示したもので、内
部には、基準発振器42があり、この発振器42
から出力される基準パルス信号を、分周回路43
において、デユーテイ50%の信号にして、三角波
発生回路44において三角波信号に変換される。
FIG. 4 shows the contents of the control circuit, and there is a reference oscillator 42 inside.
The reference pulse signal output from the frequency dividing circuit 43
The signal is converted into a signal with a duty of 50% and converted into a triangular wave signal in the triangular wave generating circuit 44.

一方、回転数センサー17からの出力はF−V
コンバータ41を通して、電圧値に変換される。
これら、2つの信号の大小をコンパレータ45で
比較して、回転数信号の方が小さければ、トラン
ジスタ46をオフに、回転数信号の方が大きけれ
ばトランジスタ46をオンとして、ソレノイドを
駆動する。
On the other hand, the output from the rotation speed sensor 17 is F-V
It is converted into a voltage value through the converter 41.
A comparator 45 compares the magnitude of these two signals, and if the rotation speed signal is smaller, the transistor 46 is turned off, and if the rotation speed signal is larger, the transistor 46 is turned on to drive the solenoid.

第5図に、第4図のa〜f各点の信号波形を示
す。
FIG. 5 shows signal waveforms at points a to f in FIG. 4.

なおaは回転数信号である。 Note that a is a rotational speed signal.

第6図は車速と油圧の関係を示す。図中の符号
は第3図の各点の圧力点を示すものである。
Figure 6 shows the relationship between vehicle speed and oil pressure. The symbols in the figure indicate the pressure points at each point in FIG.

なお、第3図の実施例では、定圧弁22および
増圧弁38ともその油圧源として共通の供給油圧
21に接続されているが、必要に応じ、これらに
は別個の供給油圧すなわち異なつた圧力の供給油
圧に接続することもできる。その作用・効果は同
じである。
In the embodiment shown in FIG. 3, the constant pressure valve 22 and the pressure increase valve 38 are both connected to the common supply hydraulic pressure 21 as their hydraulic pressure source, but if necessary, these can be supplied with separate hydraulic pressures, that is, different pressures. It can also be connected to the supply hydraulic pressure. The action and effect are the same.

以上説明した実施例によれば、ギヤ16の回転
数と出力油圧45(または指定油圧37)とを、
例えばエンジンのアイドリングから最高回転数ま
で、すなわち運転領域の全範囲で、線形的に対応
させることができる。このため、例えばオートマ
チツクトランスミツシヨンなどの油圧回路の簡略
化を行なうことができ、高精度でかつ信頼性の高
い回転数・油圧変換装置を提供することができ
る。
According to the embodiment described above, the rotation speed of the gear 16 and the output oil pressure 45 (or designated oil pressure 37) are
For example, it is possible to linearly correspond to the engine from idling to maximum engine speed, that is, over the entire operating range. Therefore, a hydraulic circuit such as an automatic transmission can be simplified, and a highly accurate and reliable rotational speed/hydraulic pressure conversion device can be provided.

また、電気的な信号によつて油圧制御を行なう
ので、構造が簡単で信頼性の高い装置が得られ
る。
Furthermore, since hydraulic control is performed using electrical signals, a device with a simple structure and high reliability can be obtained.

さらに、従来の装置に比べ、供給油圧の変動に
左右されない安定した油圧を出力することができ
る。
Furthermore, compared to conventional devices, it is possible to output stable hydraulic pressure that is not affected by fluctuations in supplied hydraulic pressure.

以上から明らかな如く、本発明によれば、回転
数に正確かつ安定的に線形比例した油圧を出力し
うる回転数・油圧変換装置が得られる。
As is clear from the above, according to the present invention, it is possible to obtain a rotation speed/hydraulic pressure conversion device that can output oil pressure that is linearly proportional to the rotation speed accurately and stably.

すなわち、本発明の特徴は、“油圧ポンプから
の変動油圧を定圧弁により、一旦一定の油圧と
し、この一定油圧を再び電磁弁によつて回転数に
対応する脈動油圧とし、この脈動油圧は回転数に
対応するデユーテイ比で前記電磁弁を制御する制
御回路からの電圧信号によつて作られるものであ
り、最終的にフイルタを介して回転数に比例した
出力油圧を得るようにした点”にある。このよう
に、一度供給油圧を一定なものとして平滑化し、
最終的に取出すべき回転数に対応する成分以外の
成分としての外乱を含まない油圧としておき、こ
れを意図的に制御回路および電磁弁により回転数
に対応する脈動油圧に変換してフイルタにより平
滑化することは、油圧ポンプそれ自体を可変制御
するおりもはるかに簡単な構造で回転数に比例し
た出力油圧を得ることができ、しかもその場合に
回転数以外の外乱的成分が出力油圧に含まれるこ
とを阻止できるものであるということができる。
したがつて、出力油圧は純粋に回転数に比例した
ものとして得ることができる。
In other words, the feature of the present invention is that "the fluctuating oil pressure from the hydraulic pump is once made into a constant oil pressure by a constant pressure valve, this constant oil pressure is again made into pulsating oil pressure corresponding to the rotational speed by a solenoid valve, and this pulsating oil pressure is It is generated by a voltage signal from a control circuit that controls the solenoid valve at a duty ratio corresponding to the number of revolutions, and finally output oil pressure proportional to the number of rotations is obtained through a filter. be. In this way, once the supplied oil pressure is smoothed as a constant,
The hydraulic pressure is set as a component that does not include disturbances other than the components corresponding to the rotational speed that should be finally extracted, and this is intentionally converted into pulsating hydraulic pressure corresponding to the rotational speed using a control circuit and solenoid valve, and then smoothed by a filter. What is more, it is possible to obtain an output oil pressure proportional to the rotation speed with a much simpler structure that variably controls the hydraulic pump itself, and in that case, disturbance components other than the rotation speed are included in the output oil pressure. It can be said that this can be prevented.
Therefore, the output oil pressure can be obtained as being purely proportional to the rotational speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回転数・油圧変換装置を例示す
る縦断面図、第2図は第1図の装置によつて得ら
れる回転数と油圧(カバナ圧)との関係を例示す
る図表、第3図は本発明による回転数・油圧変換
装置の一実施例を示す説明図である。第4図は制
御回路の内容を示す図、第5図は、第4図の動作
説明図、第6図は、第3図の各点の圧力を示す図
である。 17……回転数センサ、18……制御回路、1
9……制御信号、20……電磁弁、21……供給
油圧、22……定圧弁、33……制御油圧、35
……一定油圧、36……フイルタ、37……指定
油圧、38……増圧弁、45……出力油圧。
Fig. 1 is a vertical cross-sectional view illustrating a conventional rotation speed/hydraulic pressure conversion device, and Fig. 2 is a chart illustrating the relationship between the rotation speed and oil pressure (cabana pressure) obtained by the device shown in Fig. 1. FIG. 3 is an explanatory diagram showing an embodiment of the rotation speed/hydraulic pressure conversion device according to the present invention. FIG. 4 is a diagram showing the contents of the control circuit, FIG. 5 is an explanatory diagram of the operation of FIG. 4, and FIG. 6 is a diagram showing the pressure at each point in FIG. 3. 17... Rotation speed sensor, 18... Control circuit, 1
9... Control signal, 20... Solenoid valve, 21... Supply oil pressure, 22... Constant pressure valve, 33... Control oil pressure, 35
...Constant oil pressure, 36...Filter, 37...Specified oil pressure, 38...Pressure increase valve, 45...Output oil pressure.

Claims (1)

【特許請求の範囲】[Claims] 1 回転数センサと、該回転数センサからの信号
を入力として回転数に対応したデユーテイ制御信
号を出力する制御回路と、油圧源としての油圧ポ
ンプより供給される変動油圧を一定にすることに
より外乱的成分を除去する定圧弁と、前記制御回
路出力を入力とし回転数に対応して開閉時間を制
御されもつて前記定圧弁からの一定油圧を回転数
に対応した脈動油圧に変換する電磁弁と、該電磁
弁からの脈動油圧を平滑化し回転数に対応した指
定油圧に変換するフイルター装置とを備えた回転
数・油圧変換装置。
1 A rotational speed sensor, a control circuit that receives a signal from the rotational speed sensor and outputs a duty control signal corresponding to the rotational speed, and a hydraulic pump as a hydraulic pressure source. a constant pressure valve that removes external components; and a solenoid valve that uses the output of the control circuit as an input and whose opening/closing time is controlled in accordance with the rotational speed and converts the constant hydraulic pressure from the constant pressure valve into a pulsating hydraulic pressure corresponding to the rotational speed. A rotation speed/hydraulic pressure conversion device comprising: a filter device that smoothes the pulsating oil pressure from the solenoid valve and converts it into a designated oil pressure corresponding to the rotation speed.
JP11479180A 1980-08-22 1980-08-22 Device for converting rotational frequency into oil pressure Granted JPS5740101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11479180A JPS5740101A (en) 1980-08-22 1980-08-22 Device for converting rotational frequency into oil pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11479180A JPS5740101A (en) 1980-08-22 1980-08-22 Device for converting rotational frequency into oil pressure

Publications (2)

Publication Number Publication Date
JPS5740101A JPS5740101A (en) 1982-03-05
JPS6242180B2 true JPS6242180B2 (en) 1987-09-07

Family

ID=14646768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11479180A Granted JPS5740101A (en) 1980-08-22 1980-08-22 Device for converting rotational frequency into oil pressure

Country Status (1)

Country Link
JP (1) JPS5740101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337679U (en) * 1989-08-15 1991-04-11

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0190289A1 (en) * 1984-08-13 1986-08-13 General Electric Company Method for applying thin glass to a thermoplastic resinous substrate
JPS61177507A (en) * 1985-02-01 1986-08-09 Nissan Motor Co Ltd Duty control voltage generating device for automatic transmission
TW494016B (en) 2000-06-23 2002-07-11 Nisshin Seifun Group Inc Mechanical crusher

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137374A (en) * 1974-09-27 1976-03-29 Hitachi Ltd Jidohensokukino seigyosochi
JPS5164161A (en) * 1974-10-07 1976-06-03 Renault Jidohensokusochino seigyoyosoheno kyokyuatsuryokuoseigyosurusochi

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137374A (en) * 1974-09-27 1976-03-29 Hitachi Ltd Jidohensokukino seigyosochi
JPS5164161A (en) * 1974-10-07 1976-06-03 Renault Jidohensokusochino seigyoyosoheno kyokyuatsuryokuoseigyosurusochi

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337679U (en) * 1989-08-15 1991-04-11

Also Published As

Publication number Publication date
JPS5740101A (en) 1982-03-05

Similar Documents

Publication Publication Date Title
EP0493699B1 (en) Feedforward control for automatic transmission torque converter bypass clutch slip
US4200175A (en) Control device for a motor vehicle clutch
CN100422601C (en) Lockup control of torque converter
US4653621A (en) Control system for automatic clutch
GB1486087A (en) Control device for regulating the hydraulic control pressure applied to automatic transmissions in motor vehicles
JP2846362B2 (en) Hydraulic control device for lock-up clutch
KR970061606A (en) Automatic clutch controller and its control method
US6170506B1 (en) Method and circuit for actively cleaning electrohydraulic valves in a hydraulic control valve circuit
JP3358435B2 (en) Transmission control device for continuously variable automatic transmission
KR20030038699A (en) Method and system for regulating the torque transmission capacity of a frictionally engaged, torque transmitting assembly
US6202629B1 (en) Engine speed governor having improved low idle speed stability
JPH06199161A (en) Method and device for controlling output of vehicle driving unit
JPS6118209B2 (en)
JPS6242180B2 (en)
JPS6044650A (en) Control method of continuously variable transmission for vehicle
JPS6060356A (en) Variable-ratio transmission system particularly available for car
GB1604932A (en) Method and device for setting the operating force of gear parts in stepped gears
JPS6252185B2 (en)
JPH05240331A (en) Hydraulic pressure control device of vehicle power transmission device
JPS6368427A (en) Gear shifting controller for continuously variable transmission
JPH0367041A (en) Control device for continuous variable transmission drive system of engine
JP2804799B2 (en) Hydraulic control device for lock-up clutch
US4373610A (en) Speed control apparatus for elevator
US4297589A (en) Speed governor for a hydroelectric unit
JPH08170725A (en) Controller of torque converter with lock-up clutch