JPS6242024B2 - - Google Patents

Info

Publication number
JPS6242024B2
JPS6242024B2 JP53039360A JP3936078A JPS6242024B2 JP S6242024 B2 JPS6242024 B2 JP S6242024B2 JP 53039360 A JP53039360 A JP 53039360A JP 3936078 A JP3936078 A JP 3936078A JP S6242024 B2 JPS6242024 B2 JP S6242024B2
Authority
JP
Japan
Prior art keywords
steel strip
molten metal
plating
tank
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53039360A
Other languages
Japanese (ja)
Other versions
JPS54131535A (en
Inventor
Shigeo Itano
Seiji Nishikawa
Heizaburo Furukawa
Daizo Yamazaki
Yoshikyo Nakagawa
Jusaburo Imamura
Tetsuyoshi Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3936078A priority Critical patent/JPS54131535A/en
Publication of JPS54131535A publication Critical patent/JPS54131535A/en
Publication of JPS6242024B2 publication Critical patent/JPS6242024B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0036Crucibles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/006Pattern or selective deposits
    • C23C2/0062Pattern or selective deposits without pre-treatment of the material to be coated, e.g. using masking elements such as casings, shields, fixtures or blocking elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】 本発明は鋼帯の片面のみに亜鉛、アルミニウム
等の耐食性金属を連続的に溶融メツキする方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously hot-dip plating a corrosion-resistant metal such as zinc or aluminum on only one side of a steel strip.

片面のみに亜鉛メツキを施した鋼帯は、メツキ
施工面の耐食性保有、非メツキ面の塗装性および
溶接性保有の点より自動車用、建材用等に適して
いる。
Steel strips that are galvanized on only one side are suitable for use in automobiles, building materials, etc. because of the corrosion resistance of the plated surface and the paintability and weldability of the unplated surface.

鋼帯のみにメツキする方法として、非酸化性雰
囲気中の溶融金属浴の表面に、溶融金属の表面張
力および湿潤特性を利用して、メニスカスを形成
させ鋼帯の片面のみを接触させて溶融メツキする
方法(特開昭52―134826号)等が提案されてい
る。
As a method of plating only the steel strip, a meniscus is formed on the surface of a molten metal bath in a non-oxidizing atmosphere by utilizing the surface tension and wetting properties of the molten metal, and only one side of the steel strip is contacted. A method to do this (Japanese Patent Application Laid-open No. 134826/1983) has been proposed.

この方法は第1図に示すように鋼帯Kをシール
ロールAにより非酸化性雰囲気のメツキ室D内に
導びき、デフレクターロールBおよびロールCに
より、メニスカスGを形成した溶融金属Fと片面
のみ接触させて溶融メツキを施こし、その後ガス
ジエツトノズルHにより余分の溶融金属を除去し
て、メツキ室Dから冷却室Jに出すものである。
この方法は非常に簡潔で優れた方法であるが、溶
融金属の表面張力と湿潤特性により生ずる鋼帯と
溶融金属浴面の間に生ずるメニスカスのみを利用
してメツキするために、金属浴面と鋼帯面との間
隔を正確に制御維持する必要がある。しかるに、
この方法では鋼帯の進行方向に交る断面に多少の
彎曲があつたり鋼帯の速度が早くなると、間隔の
正確な制御が困難になり非メツキ個所が生ずる恐
れがある。また、高速メツキ時には、メニスカス
部に雰囲気ガスをかみ込み、メツキ不良が生じや
すくなるので、自ずと、メツキ速度に限界があ
る。
In this method, as shown in Fig. 1, a steel strip K is guided into a plating chamber D in a non-oxidizing atmosphere by a seal roll A, and then a molten metal F with a meniscus G formed thereon is removed by a deflector roll B and a roll C. They are brought into contact to perform molten plating, and then excess molten metal is removed by a gas jet nozzle H and delivered from the plating chamber D to the cooling chamber J.
This method is very simple and excellent, but since it uses only the meniscus that occurs between the steel strip and the molten metal bath surface due to the surface tension and wetting characteristics of the molten metal, it It is necessary to accurately control and maintain the distance from the steel strip surface. However,
In this method, if there is some curvature in the cross section intersecting the direction of steel strip movement or if the speed of the steel strip increases, accurate control of the spacing becomes difficult and there is a risk that non-plated areas may occur. Furthermore, during high-speed plating, atmospheric gas is trapped in the meniscus portion, which tends to cause plating defects, so there is naturally a limit to the plating speed.

本発明は、従来のこのような欠点を改良せんと
して提供するものである。すなわち、本発明は、
鋼帯の表面を清浄、還元処理したのち、溶融金属
槽に導入して鋼体の片面のみを溶融金属でメツキ
するに当り、非酸化性雰囲気中におかれた溶融金
属槽を鋼帯進行方向にセキにて分割し、ポンプに
よつて上手の槽中の溶融金属浴表面を下手の槽中
の溶融金属浴表面より高位にして、上手の槽中の
溶融金属を連続的に溢流させ、溢流した溶融金属
を下手の槽中に連続的に流入せしめることにより
生ずる分割セキ上方の溶融金属の隆起流れに前記
上手槽側を高く下手槽側を低くする傾斜をもたせ
て鋼帯の片面を接触させ、傾斜の高位側に鋼帯を
走行させて鋼帯の片面のみを溶融メツキすること
を特徴とする片面溶融メツキ方法である。
The present invention is provided as an attempt to improve these conventional drawbacks. That is, the present invention
After the surface of the steel strip has been cleaned and reduced, it is introduced into a molten metal bath and only one side of the steel body is plated with molten metal. The molten metal bath surface in the upper tank is raised to a higher level than the molten metal bath surface in the lower tank using a pump, and the molten metal in the upper tank is continuously overflowed. The bulging flow of molten metal above the dividing tank, which is caused by continuously flowing the overflowing molten metal into the lower tank, is sloped so that the upper tank side is higher and the lower tank side is lower, so that one side of the steel strip is This is a one-sided hot-plating method characterized by hot-plating only one side of the steel strip by bringing the steel strip into contact with the steel strip and running the steel strip on the higher side of the slope.

次に本発明の一実施例を第2図、第3図により
溶融亜鉛メツキを例にとり詳細に説明する。還元
炉2以前の設備にて表面を清浄化された鋼帯1は
約450℃の温度に維持された状態でメツキ室3に
導入される。メツキ室3の入口には還元炉2へメ
ツキ室3の雰囲気ガスが混入しないように、雰囲
気シール機構を設けるのが望ましい。例えば、シ
ールロール5,6とスリツト4を併用するなどが
よい。
Next, one embodiment of the present invention will be described in detail with reference to FIGS. 2 and 3, taking hot-dip galvanizing as an example. The steel strip 1 whose surface has been cleaned in the equipment before the reduction furnace 2 is introduced into the plating chamber 3 while being maintained at a temperature of about 450°C. It is desirable to provide an atmosphere sealing mechanism at the entrance of the plating chamber 3 to prevent atmospheric gas from the plating chamber 3 from entering the reduction furnace 2. For example, it is preferable to use the seal rolls 5, 6 and the slit 4 together.

メツキ室3内にはセキ13により分割された溶
融亜鉛槽11および12があり、それぞれの亜鉛
槽には、溶融亜鉛を流出入させるための開口15
を設けてある。この両開口は溶融亜鉛に侵食され
難いセラミツクなどの材質から成る輸送管16に
より互いに連結される。そして、この輸送管16
の途中には、溶融亜鉛を循環させるための駆動源
となるポンプ17を設ける。このポンプとして
は、例えば電磁ポンプ等を使用するのが寿命、メ
ンテナンスの点から望ましい。また、輸送管16
には、管内輸送中の溶融亜鉛の凝固を防止するた
めにヒータ18を設けるのがよい。
Inside the plating chamber 3, there are molten zinc tanks 11 and 12 divided by a partition 13, and each zinc tank has an opening 15 through which molten zinc flows in and out.
is provided. Both openings are connected to each other by a transport pipe 16 made of a material such as ceramic that is not easily corroded by molten zinc. And this transport pipe 16
A pump 17 serving as a driving source for circulating the molten zinc is provided in the middle. As this pump, it is desirable to use, for example, an electromagnetic pump or the like from the viewpoint of longevity and maintenance. In addition, the transport pipe 16
It is preferable to provide a heater 18 in order to prevent solidification of molten zinc during transportation within the pipe.

しかして、ポンプ17に矢印の如き方向に駆動
力が生ずるごとくすれば、溶融亜鉛は流動し、さ
らに、槽11の横断面積を槽12の横断面積より
小さくして、槽11の溶融亜鉛の浴表面レベルA
が槽12の溶融亜鉛の浴表面レベルBより高位に
保持すれば、このとき、セキ13のために、セキ
上方に隆起部14が生じる。この隆起部14に鋼
帯の片面のみが接触するごとく鋼帯の位置をロー
ル9とロール10の高さを調整する。即ち、ロー
ル9よりロール10の高さを高位にして、この間
の鋼帯1に傾斜をもたせるごとく調整しながら溶
融亜鉛の隆起部14と接触が容易になる。そして
溶融亜鉛の流れと相対する方向に鋼帯を移動させ
れば、片面のみに連続的に溶融メツキが施され
る。鋼帯の通過位置の調節はロール8,9および
10により行う。なお、隆起部14の鋼帯への接
触長さは、メツキ厚さに関与する重要なメツキ条
件であるが、この接触長さは、溶融亜鉛循環用ポ
ンプ17の輸送量を制御して隆起部14の高さを
調節することで容易に調節することができる。ま
た、接触長さは、前述の如く、ロール8,9およ
び10によつても調節可能であり、従来の表面張
力および湿潤特性のみを利用してメツキする方法
のように非常に微妙な位置調整の必要はない。従
つて、高速メツキ時においても位置調整を、容易
に行うことができる。さらに、溶融亜鉛と鋼帯と
は接触部で両者が逆方向に移動するので、従来の
ような雰囲気ガスのメツキ部へのかみ込みが生じ
難く、従つて高速メツキが可能である。
Therefore, if a driving force is generated in the pump 17 in the direction shown by the arrow, the molten zinc will flow, and further, by making the cross-sectional area of the tank 11 smaller than the cross-sectional area of the tank 12, the molten zinc in the tank 11 will flow. surface level A
If the surface level B of the molten zinc in the tank 12 is maintained at a higher level than the surface level B of the molten zinc in the tank 12, at this time, a raised portion 14 is formed above the gap due to the gap 13. The position of the steel strip and the heights of the rolls 9 and 10 are adjusted so that only one side of the steel strip contacts this raised portion 14. That is, the height of the roll 10 is set higher than the roll 9, and the steel strip 1 between the rolls 10 and 10 is adjusted to have an inclination so that it can easily come into contact with the raised portions 14 of the molten zinc. Then, by moving the steel strip in a direction opposite to the flow of molten zinc, hot-dip plating is continuously applied to only one side. Adjustment of the passing position of the steel strip is performed by rolls 8, 9 and 10. Note that the contact length of the raised portion 14 with the steel strip is an important plating condition that is related to the plating thickness. It can be easily adjusted by adjusting the height of 14. In addition, as mentioned above, the contact length can also be adjusted by the rolls 8, 9, and 10, and the position can be adjusted very delicately, unlike the conventional plating method using only surface tension and wetting characteristics. There is no need for Therefore, position adjustment can be easily performed even during high-speed plating. Further, since the molten zinc and the steel strip move in opposite directions at the contact portion, atmospheric gas is less likely to get caught in the plating portion as in the conventional method, and high-speed plating is therefore possible.

溶融亜鉛隆起部14に接触して片面のみにメツ
キされた鋼帯は、その後ロール10により上方に
移動方向を変え、ノズル19より噴出される非酸
化性の雰囲気ガスにより、過剰の溶融亜鉛は除去
され、メツキ厚さが制御される。その後、メツキ
鋼帯は隔壁20に設けてあるシール用スリツト2
1を介して冷却室22に入り、こゝでメツキ亜鉛
を冷却凝固させてメツキを得る。
The steel strip, which has been plated on only one side in contact with the molten zinc ridge 14, is then moved upward by the roll 10, and excess molten zinc is removed by non-oxidizing atmospheric gas ejected from the nozzle 19. and the plating thickness is controlled. After that, the plated steel strip is inserted into the sealing slit 2 provided in the partition wall 20.
1 into a cooling chamber 22, where the plating zinc is cooled and solidified to obtain plating.

なお、メツキ室3内の圧力は、ノズル19より
噴出される非酸化性雰囲気ガスのために比較的高
いレベルに維持することができるが、急に低下し
た場合のことも想定して、予備の雰囲気ガス導入
口7を設けておくのが望ましい。さらに、溶融亜
鉛隆起部14との鋼帯接触部の裏面側に、鋼帯端
部から回り込む溶融亜鉛を抑制するために、ガス
吹付ノズル23を第3図のように鋼帯両端部上方
に設け、雰囲気ガス等を吹付けるのが望ましい。
The pressure inside the plating chamber 3 can be maintained at a relatively high level due to the non-oxidizing atmospheric gas ejected from the nozzle 19, but in case of a sudden drop, a reserve It is desirable to provide an atmospheric gas inlet 7. Furthermore, gas spray nozzles 23 are provided above both ends of the steel strip as shown in FIG. 3, on the back side of the steel strip contact area with the molten zinc bulge 14, in order to suppress the molten zinc coming around from the steel strip ends. It is desirable to spray atmospheric gas, etc.

以上の実施例は溶融亜鉛メツキを施こす場合の
ものであるが、アルミニウムその他の耐食性金属
を鋼帯の片面のみに溶融メツキする場合も全く同
様の方法で行うことができる。
Although the above embodiments are for hot-dip galvanizing, the same method can be used to hot-dip galvanize only one side of a steel strip with aluminum or other corrosion-resistant metal.

以上のように、本発明は、従来の溶融金属の表
面張力と湿潤特性を利用してメツキする方法(特
公開昭52―134826号)に比べ、溶融金属を鋼帯の
片面に半強制的に衝突させるので、溶融金属面と
鋼帯との接触長さ制御が容易であり、かつ、雰囲
気ガスがメツキ部にかみ込み難いので、高速で片
面メツキが可能となり経済的に有利である。
As described above, compared to the conventional plating method that utilizes the surface tension and wettability of molten metal (Japanese Patent Publication No. 134826/1982), the present invention is able to semi-forcibly apply molten metal to one side of a steel strip. By colliding with each other, it is easy to control the contact length between the molten metal surface and the steel strip, and atmospheric gas is less likely to get caught in the plating area, making it possible to perform single-sided plating at high speed, which is economically advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の片面溶融メツキ法の断面図、第
2図は本発明の一実施例の断面図、第3図は第2
図中のノズルの位置関係を示す図である。 第1図において、A…シールロール、B…デフ
レクターロール、C…ロール、D…メツキ室、E
…メツキ槽、F…溶融金属、G…メニスカス、H
…ガスジエツトノズル、I…雰囲気ガス導入口、
J…冷却室、K…鋼帯。 第2,3図において、1…鋼帯、2…還元炉、
3…メツキ室、4…スリツト、5,6…シールロ
ール、7…雰囲気ガス導入口、8,9,10…ロ
ール、11,12…溶融亜鉛槽、13…分割セ
キ、14…隆起部、15…開口、16…輸速管、
17…ポンプ、18…ヒータ、19…ガスジエツ
トノズル、20…隔壁、21…シール用スリツ
ト、22…冷却室、23…ガス吹付ノズル。
Fig. 1 is a sectional view of a conventional single-sided melt plating method, Fig. 2 is a sectional view of an embodiment of the present invention, and Fig. 3 is a sectional view of an embodiment of the present invention.
It is a figure which shows the positional relationship of the nozzle in a figure. In Fig. 1, A... seal roll, B... deflector roll, C... roll, D... plating chamber, E
...Plating tank, F...Molten metal, G...Meniscus, H
...Gas jet nozzle, I...Atmosphere gas inlet,
J...Cooling chamber, K...Steel strip. In Figures 2 and 3, 1... steel strip, 2... reduction furnace,
3... Plating chamber, 4... Slit, 5, 6... Seal roll, 7... Atmospheric gas inlet, 8, 9, 10... Roll, 11, 12... Molten zinc tank, 13... Divided section, 14... Protrusion, 15 ...opening, 16...transport pipe,
17... Pump, 18... Heater, 19... Gas jet nozzle, 20... Partition wall, 21... Seal slit, 22... Cooling chamber, 23... Gas spray nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼帯の表面を清浄、還元処理したのち、溶融
金属槽に導入して鋼帯の片面のみを溶融金属でメ
ツキするに当り、非酸化性雰囲気中におかれた溶
融金属槽を鋼帯進行方向にセキにて分割し、ポン
プによつて上手の槽中の溶融金属浴表面を下手の
槽中の溶融金属浴表面より高位にして、上手の槽
中の溶融金属を連続的に溢流させ、溢流した溶融
金属を下手の槽中に連続的に流入せしめことによ
り生ずる分割セキ上方の溶融金属の隆起流れに前
記上手槽側を高く下手槽側を低くする傾斜をもた
せて鋼帯の片面を接触させ、傾斜の高位側に鋼帯
を走行させて鋼帯の片面のみを溶融メツキするこ
とを特徴とする片面溶融メツキ方法。
1 After the surface of the steel strip has been cleaned and reduced, the steel strip is introduced into a molten metal bath and only one side of the steel strip is plated with molten metal. The molten metal bath surface in the upper tank is raised to a higher level than the molten metal bath surface in the lower tank using a pump, and the molten metal in the upper tank is continuously overflowed. , one side of the steel strip is created by allowing the overflowing molten metal to continuously flow into the lower tank, so that the bulging flow of the molten metal above the dividing tank is sloped so that the upper tank side is higher and the lower tank side is lower. A single-sided hot plating method characterized by hot plating only one side of the steel strip by running the steel strip on the higher side of the slope.
JP3936078A 1978-04-04 1978-04-04 One side molten metal plating Granted JPS54131535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3936078A JPS54131535A (en) 1978-04-04 1978-04-04 One side molten metal plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3936078A JPS54131535A (en) 1978-04-04 1978-04-04 One side molten metal plating

Publications (2)

Publication Number Publication Date
JPS54131535A JPS54131535A (en) 1979-10-12
JPS6242024B2 true JPS6242024B2 (en) 1987-09-05

Family

ID=12550894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3936078A Granted JPS54131535A (en) 1978-04-04 1978-04-04 One side molten metal plating

Country Status (1)

Country Link
JP (1) JPS54131535A (en)

Also Published As

Publication number Publication date
JPS54131535A (en) 1979-10-12

Similar Documents

Publication Publication Date Title
US20060113354A1 (en) Method and installation for dip coating of a metal strip, in particular of a steel strip
CA1234514A (en) Flow coating of metals
PL126450B1 (en) Finish treatment method used in the continuous proces ofdouble-sided plating ferrous alloy strips with molten metal and apparatus therefor
US6923864B2 (en) Plant for the dip-coating of a metal strip
EP0308435B1 (en) A method for controlling the thickness of an intermetallic layer on a continuous steel product in a continuous hot-dip galvanizing process
UA73220C2 (en) Method and apparatus for hot coating of metal strip
US4971842A (en) Method for controlling the thickness of an intermetallic layer on a continuous steel product in a continuous hot-dip galvanizing process
JP2858043B2 (en) Cooling method of zinc-aluminum alloy plated steel wire
US5399376A (en) Meniscus coating steel strip
US4173663A (en) Dipless metallizing process and apparatus
US3941906A (en) Hot dip metallizing process
JPS6242024B2 (en)
US5512321A (en) Process for coating elongated materials with multiple layers
DE69221007T2 (en) Method and device for applying molten metal coatings
US4052234A (en) Method for continuously quenching electrolytic tin-plated steel strip
US4352838A (en) Dipless metallizing process
US4207831A (en) Apparatus for one side coating of a continuous strip
US4422403A (en) Dipless metallizing apparatus
US4288476A (en) One side coating of continuous strand
JPH07157854A (en) Method for cleaning inside of snout of hot dip metal coating
KR100641756B1 (en) Finishing device for conventional hot dip coating of metal strip
US20240352569A1 (en) Method for manufacturing hot-dip metal-coated steel strip
JPH0832951B2 (en) Seal box for hot metal plating or painting
JPH0730673Y2 (en) Seal box for metal strip surface treatment equipment
AU2022341700A1 (en) Molten metal-plated steel strip production method