JPS6242013B2 - - Google Patents

Info

Publication number
JPS6242013B2
JPS6242013B2 JP54018298A JP1829879A JPS6242013B2 JP S6242013 B2 JPS6242013 B2 JP S6242013B2 JP 54018298 A JP54018298 A JP 54018298A JP 1829879 A JP1829879 A JP 1829879A JP S6242013 B2 JPS6242013 B2 JP S6242013B2
Authority
JP
Japan
Prior art keywords
link chain
corrosion resistance
link
melt
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54018298A
Other languages
Japanese (ja)
Other versions
JPS55110717A (en
Inventor
Takao Abe
Yasuo Kamitsuma
Tateo Tamamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1829879A priority Critical patent/JPS55110717A/en
Publication of JPS55110717A publication Critical patent/JPS55110717A/en
Publication of JPS6242013B2 publication Critical patent/JPS6242013B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0087Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for chains, for chain links
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は荷役機器としてのモートルブロツク及
びチエーンブロツクに係り、高強度高靭性耐食性
を有するリンクチエーンの製造法に関する。 〔発明の背景〕 モートルブロツクあるいはチエーンブロツク
は、揚重機としての使命がある。これらに使用さ
れるリンクチエーンには荷物の吊り上げ、吊り下
げにおいて直接荷重が付加されると共に異常な荷
吊りにより、著しい応力が負荷されることがあ
る。このようなことからリンクチエーンには、高
強度を有すること、リンクチエーンの接触部の摩
耗に耐えうるように耐摩耗性に優れていることが
要求される。また安全性から高靭性であることが
要求される。一方、近年、食品、医療及び漁業関
係においては、上述の性質のみならず耐食性に優
れたリンクチエーンを要望してきている。耐食リ
ンクチエーンとしては、従来からステンレス鋼製
のリンクチエーンあるいは各種のメツキ処理を施
したものが用いられている。しかしこれらの方法
で作られたものでは、要求される機能が十分に得
られないばかりでなく高価であるという欠点があ
る。 〔発明の目的〕 本発明の目的は、上述の欠点を無くした強靭で
耐摩耗性及び耐食性に優れたリンクチエーンの製
造方法を提供することにある。 〔発明の概要〕 本発明者らは高強度で耐摩耗性かつ耐食性を有
するリンクチエーンを開発すべく種々研究した結
果、以下に示すような成分組成の溶融液と製作工
程において達成することができた。すなわち、鉄
鋼系からなるリンチエーンを浸炭または窒化処理
し、その雰囲気のまま重量%でSn;30〜65%、
Bi;35〜70%からなる組成の溶融液中に直接挿入
し焼入冷却することによつて強靭で耐摩耗性及び
耐食性を有するリンクチエーンが得られることを
見出した。ここでSn―Bi合金の溶融液の温度は
250℃以下が好ましい。250℃以下であれば、これ
らの組成の溶融液では焼入冷却効果及びリンクチ
エーンとしての所定の強度が容易に得られる。前
記組成のSn―Bi合金の凝固点は190〜200℃の範
囲である。Sn―Bi合金を上記組成範囲としたの
は、第1に融点を190℃前後にでき、この温度以
上、250℃以下の溶融液中に、浸炭、浸炭窒化及
び通常の焼入温度から、直接挿入し冷却すること
によつて、リンクチエーンの焼入効果が十分得ら
れることにある。上記組成範囲外では、融点が高
くなりすぎ焼入効果が十分でなくなる。第2に本
溶融液中に挿入することによつて、溶融液が処理
物に付着され、これが耐食性に著しい効果を与え
ることにある。 リンクチエーン素材には重量でC0.1〜0.5%、
Si1%以下、Mn3%以下、Mo0.1〜1%、残Feか
らなる合金を使用することが好ましい。 〔発明の実施例〕 化学組成が重量%でC;0.22%、Si;0.25%、
Mn;1.40%、Mo;0.35℃、P;0.013%、S;
0.012%、残Feからなる合金で作られた線径7.1mm
φのリンクチエーンについて、各種の試験を行つ
た。は本発明法、すなわちリンクチエーンを
870℃×20分浸炭後、浸炭雰囲気中に保持された
重量%でSn;60%、Bi;40%からなる組成の210
℃溶融液中に挿入冷却し10分間保持したものであ
る。は従来より行われている870℃×20分浸炭
後油冷し、200℃で焼もどし処理したものであ
る。はの方法により処理したものを、Sn溶
融メツキしたものである。はSuS304で作られ
たものである。 第1図は上記4種類のリンクチエーンの引張強
度を示したものである。これより明らかなように
本発明によつて作られたのものは、の従来品
の耐食性を有しないものと強度及び靭性ともに同
等の特性を示し、耐食性を有するのSn溶融メ
ツキしたもの及びのSnS340ステンレス鋼製の
ものより強度的に優れていることがわかる。リン
クチエーンの引張強度は、クレーン規格により定
格荷重の5倍以上と定められており、7.1mmφリ
ンクチエーンの場合は、定格荷重1ton用に用いら
れる。本発明のリンクチエーンは、さらに安全率
20%を見込んだ値の6ton以上をも十分満足するこ
とがわかる。 第2図は上記4種類のリンクチエーンの片振り
疲れ試験結果を示したものであるが、本発明品
は、のSn溶融メツキしたもの及びのSnS304
ステンレス鋼で作られたものより優れ、従来品
と同等であることがわかる。 第3図は上記4種類のリンクチエーンを定格荷
重1tonのモートルブロツクの実機に用いリンクチ
エーンの摩耗試験を行つたものである。試験条件
は無潤滑状態で荷重1tonを吊り下げて動作させた
ものである。この結果は第2図の疲れ試験結果と
同じくの本発明品は、耐食性を有する及び
より優れ、従来品とほぼ同じ耐摩耗性を有する
ことがわかる。 次に耐食性試験として屋外における暴露試験を
行つた結果、の従来品は、約3日経過後より赤
錆を発生し、10日以上過ぎるとほぼ全面に赤錆を
発生した。の本発明品、のSn溶融メツキ品
及びのSnS304品は100日以上でも赤錆の発生は
まつたく見られなかつた。 表は各種の性能試験結果について総合評価した
ものである。この結果、本発明品は各項目の性能
において最も優れており、強靭かつ耐食性に優れ
ていることがわかる。 第4図は強靭で、かつ耐食性に優れたリンクチ
エーンを製作する製造工程Aと従来法の工程B
を示したものである。製造工程においても従来方
法に比べて約半分の工程で済むことがわかる。 〔発明の効果〕 従来、機械構造部材の耐食性を得るためには、
簡易法としてメツキ処理を施していたが、強度を
[Field of Application of the Invention] The present invention relates to a motor block and a chain block as cargo handling equipment, and relates to a method for manufacturing a link chain having high strength, high toughness, and corrosion resistance. [Background of the Invention] A motor block or chain block has a mission as a lifting machine. Direct loads are applied to the link chains used in these systems when lifting and suspending loads, and significant stress may be applied due to abnormal load lifting. For this reason, the link chain is required to have high strength and excellent wear resistance so that the contact portions of the link chain can withstand wear. Furthermore, high toughness is required for safety. On the other hand, in recent years, in the fields of food, medicine, and fisheries, there has been a demand for link chains that not only have the above-mentioned properties but also have excellent corrosion resistance. As corrosion-resistant link chains, link chains made of stainless steel or those subjected to various plating treatments have conventionally been used. However, products manufactured using these methods not only do not provide the required functionality, but also have the disadvantage that they are expensive. [Object of the Invention] An object of the present invention is to provide a method for manufacturing a link chain that is strong and has excellent wear resistance and corrosion resistance, eliminating the above-mentioned drawbacks. [Summary of the Invention] As a result of various research conducted by the present inventors in order to develop a link chain having high strength, wear resistance, and corrosion resistance, the present inventors have found that this can be achieved using a melt having the composition shown below and the manufacturing process. Ta. That is, lynchene made of steel is carburized or nitrided, and Sn is 30 to 65% by weight in that atmosphere.
It has been found that a link chain that is strong, wear-resistant, and corrosion-resistant can be obtained by directly inserting the link chain into a melt having a composition of 35 to 70% Bi, and quenching and cooling the link chain. Here, the temperature of the Sn-Bi alloy melt is
The temperature is preferably 250°C or lower. If the temperature is 250° C. or lower, a quenching cooling effect and a predetermined strength as a link chain can be easily obtained with a melt having these compositions. The freezing point of the Sn-Bi alloy having the above composition is in the range of 190 to 200°C. The reason why the Sn-Bi alloy has the above composition range is that firstly, it can have a melting point of around 190℃, and it can be directly processed from carburizing, carbonitriding, and normal quenching temperatures in a molten liquid at temperatures above this temperature and below 250℃. By inserting and cooling the link chain, a sufficient hardening effect can be obtained. Outside the above composition range, the melting point will be too high and the hardening effect will not be sufficient. Second, by inserting it into the melt, the melt adheres to the object to be treated, which has a significant effect on corrosion resistance. Link chain material contains C0.1-0.5% by weight,
It is preferable to use an alloy consisting of 1% or less Si, 3% or less Mn, 0.1 to 1% Mo, and the remainder Fe. [Embodiment of the invention] Chemical composition is C: 0.22%, Si: 0.25%,
Mn; 1.40%, Mo; 0.35°C, P; 0.013%, S;
Wire diameter 7.1mm made of alloy consisting of 0.012% and residual Fe
Various tests were conducted on the φ link chain. uses the method of the present invention, that is, the link chain.
After carburizing at 870°C for 20 minutes, 210 with a composition consisting of Sn; 60%, Bi; 40% by weight was kept in the carburizing atmosphere.
It was inserted into a molten liquid at ℃, cooled, and held for 10 minutes. The material was carburized at 870°C for 20 minutes, which is the conventional method, and then oil-cooled and tempered at 200°C. The material was treated using the method described above and was then hot-plated with Sn. is made with SuS304. FIG. 1 shows the tensile strength of the four types of link chains mentioned above. As is clear from this, the products made according to the present invention have the same strength and toughness as the conventional products without corrosion resistance, and the products made with Sn hot-plated and SnS340 stainless steel have corrosion resistance. It can be seen that it is superior in strength to steel. The tensile strength of a link chain is determined by crane standards to be at least 5 times the rated load, and in the case of a 7.1mmφ link chain, it is used for a rated load of 1 ton. The link chain of the present invention further has a safety factor
It can be seen that it satisfies the value of 6 tons or more considering 20%. Figure 2 shows the results of the oscillation fatigue test of the four types of link chains mentioned above.
It can be seen that it is superior to those made of stainless steel and is equivalent to conventional products. Figure 3 shows a link chain wear test using the four types of link chains mentioned above in an actual motor block with a rated load of 1 ton. The test conditions were a 1 ton load suspended and operated without lubrication. This result is the same as the fatigue test result shown in FIG. 2, and it can be seen that the product of the present invention has superior corrosion resistance and almost the same wear resistance as the conventional product. Next, as a corrosion resistance test, an outdoor exposure test was conducted, and the results showed that the conventional product developed red rust after about 3 days, and red rust appeared on almost the entire surface after 10 days or more. The products of the present invention, the Sn hot-plated products, and the SnS304 products showed no red rust even after being used for more than 100 days. The table shows a comprehensive evaluation of various performance test results. As a result, it can be seen that the product of the present invention has the best performance in each item, and has excellent toughness and corrosion resistance. Figure 4 shows manufacturing process A and conventional process B for producing a link chain that is strong and has excellent corrosion resistance.
This is what is shown. It can be seen that the manufacturing process is about half that of the conventional method. [Effect of the invention] Conventionally, in order to obtain corrosion resistance of mechanical structural members,
Plating treatment was applied as a simple method, but the strength

【表】 要する場合、従来のZn及びSnなどの溶融メツキ
では処理温度が高いため強度の低下を余儀なくさ
れていた。本発明によれば、靭性耐摩耗性耐食性
の改善に加え、焼入れとメツキとを同時に行うの
で製造工程をも短縮できる。
[Table] When required, conventional hot-melt plating using Zn, Sn, etc. requires a reduction in strength due to the high processing temperature. According to the present invention, in addition to improving toughness, wear resistance, and corrosion resistance, the manufacturing process can also be shortened because quenching and plating are performed simultaneously.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はリンクチエーンの引張試験結果を示す
特性図、第2図は同じく疲れ試験結果を示す特性
図、第3図は同じく摩耗試験結果を示す特性図、
第4図は製造工程図である。
Figure 1 is a characteristic diagram showing the results of a link chain tensile test, Figure 2 is a characteristic diagram showing the results of a fatigue test, and Figure 3 is a characteristic diagram showing the results of a wear test.
FIG. 4 is a manufacturing process diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄鋼材料からなるリンクチエーンを浸炭又は
窒化処理後、その雰囲気中のまま重量でSn30〜
65%、Bi35〜70%からなる組成の溶融液中に直接
挿入し、焼入冷却と、前記Sn―Bi合金のメツキ
処理を同時に行うことを特徴とするリンクチエー
ンの製造法。
1 After carburizing or nitriding a link chain made of steel material, it becomes Sn30~ by weight in that atmosphere.
A method for manufacturing a link chain, characterized in that the link chain is directly inserted into a melt having a composition of 65% Bi and 35 to 70% Bi, and quenching and cooling and plating of the Sn--Bi alloy are performed simultaneously.
JP1829879A 1979-02-21 1979-02-21 Manufacture of link chain Granted JPS55110717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1829879A JPS55110717A (en) 1979-02-21 1979-02-21 Manufacture of link chain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1829879A JPS55110717A (en) 1979-02-21 1979-02-21 Manufacture of link chain

Publications (2)

Publication Number Publication Date
JPS55110717A JPS55110717A (en) 1980-08-26
JPS6242013B2 true JPS6242013B2 (en) 1987-09-05

Family

ID=11967696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1829879A Granted JPS55110717A (en) 1979-02-21 1979-02-21 Manufacture of link chain

Country Status (1)

Country Link
JP (1) JPS55110717A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2271779B1 (en) 2008-04-30 2018-04-04 NV Bekaert SA Steel filament patented in bismuth

Also Published As

Publication number Publication date
JPS55110717A (en) 1980-08-26

Similar Documents

Publication Publication Date Title
Davis Alloying: understanding the basics
KR100421271B1 (en) Precipitation hardened stainless steel alloys with high strength and notch ductility
JPH07103452B2 (en) Case hardening hardened corrosion resistant steel alloy and its products
RU2246553C2 (en) Non-reactive material
US4146412A (en) Galling resistant austenitic stainless steel
JPS6242013B2 (en)
JPS6050870B2 (en) Link chain manufacturing method
JP2991064B2 (en) Non-tempered nitrided forged steel and non-tempered nitrided forged products
JPH0160527B2 (en)
US2826496A (en) Alloy steel
US2784125A (en) Wrought stainless steel
US3392065A (en) Age hardenable nickel-molybdenum ferrous alloys
US2528637A (en) Alloy steel
JPS6059987B2 (en) Manufacturing method of strong wear-resistant and corrosion-resistant link chain
US3674468A (en) High-strength silicon steel
JPS6058305B2 (en) Manufacturing method of high toughness, wear and corrosion resistant link chain
US4744211A (en) Detachable chain and method of producing the same
US3167423A (en) High temperature wear resisting steels
US4220689A (en) Galling resistant austenitic stainless steel powder product
JPH06240404A (en) High grade high carbon cementite alloy cast iron
JPS6059988B2 (en) Manufacturing method of high-toughness wear-resistant and corrosion-resistant link chain
US1999153A (en) Heat treatment of white cast iron
JPS6133073B2 (en)
US3869037A (en) Ferrous alloy and abrasive resistant articles made therefrom
US2677610A (en) High temperature alloy steel and articles made therefrom