JPS6241970B2 - - Google Patents

Info

Publication number
JPS6241970B2
JPS6241970B2 JP6120884A JP6120884A JPS6241970B2 JP S6241970 B2 JPS6241970 B2 JP S6241970B2 JP 6120884 A JP6120884 A JP 6120884A JP 6120884 A JP6120884 A JP 6120884A JP S6241970 B2 JPS6241970 B2 JP S6241970B2
Authority
JP
Japan
Prior art keywords
parts
group
polymer
aromatic
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6120884A
Other languages
Japanese (ja)
Other versions
JPS60206829A (en
Inventor
Teiji Obara
Masayuki Ooba
Shinichi Sanada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6120884A priority Critical patent/JPS60206829A/en
Publication of JPS60206829A publication Critical patent/JPS60206829A/en
Publication of JPS6241970B2 publication Critical patent/JPS6241970B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は芳香族ポリエステルアミドの製造方法
に関し、更に詳しくは、耐熱性、機械的強度及び
成形性を損なうことなく、高度に精製された芳香
族ポリエステルアミドの製造方法に関する。 〔発明の技術的背景とその問題点〕 近年、高分子化学工業の進展に伴い、耐熱性、
機械的強度及び電気絶縁性等が優れた芳香族ポリ
エステルアミドが開発されてきているが、電気・
電子分野において要求される高性能樹脂として、
必ずしも十分満足できるものは得られていないの
が現状である。 この高性能樹脂を得るために、鋭意研究・開発
が進められた結果、特開昭57―108129号公報、特
開昭57―108130号公報、特開昭56―157423号公
報、特公昭46―37739号公報、ジヤーナル・オ
ブ・ポリマー・サイエンス:ポリマー・ケミスト
リー・エデシヨン、第20巻、683頁、1982年
〔Journal of Polymer Science:Polymer
Chemistry Edition,20,683(1982)〕等に種々
の方法が提案されている。 これらの提案における芳香族ポリエステルアミ
ドの製造方法としては、溶液重合法又は界面重合
法を適用して、テレフタル酸もしくはイソフタル
酸又はこれらの誘導体(A)と、2,2―(4′―ヒド
ロキシ―4″―アミノジフエニル)プロパン又はそ
の誘導体(B)より製造される方法が開示されてい
る。 溶液重合法は前記した(A)及び(B)の原料を非反応
性有機溶剤中、第3級アミン等の酸受容剤の存在
下に反応せしめる製造方法である。また、界面重
合方法は前記した(A)の原料を含む非反応性有機溶
剤溶液と前記した(B)の原料を含むアルカリ水溶液
を混合して、反応せしめる製造方法である。 これらの製造方法により得られる芳香族ポリエ
ステルアミドは耐熱性が良好である(例えば、ガ
ラス転位温度:220℃以上)反面、同時に、成形
温度も高いため成形性の低下を招くという欠点が
あつた。したがつて、上記した種々の特性をバラ
ンス良く具備した芳香族ポリエステルアミドの製
造方法が切望されていた。 また、得られる芳香族ポリエステルアミドは、
溶液重合法によつて製造される場合には、重合反
応時に副生する第3級アミンの塩酸塩を不純物と
して含み、また界面重合法によつて製造される場
合には、重合反応時に副生する無機塩、もしく
は、時として重合反応に使用される分散剤を不純
物として含み、これらの不純物が得られる重合体
の加熱成形時もしくは加熱使用時に、重合体の分
離促進もしくは着色等を招く原因ともなつてい
た。このため、当業界においては、不純物が十分
に除去された芳香族ポリエステルアミドの出現が
望まれていた。 〔発明の目的〕 本発明の目的は上記した欠点の解消にあり、耐
熱性、機械的強度及び電気絶縁性等を損なうこと
なく、高度に精製された芳香族ポリエステルアミ
ドの製造方法を提供することにある。 〔発明の概要〕 本発明の芳香族ポリエステルアミドの製造方法
は、 一般式: (式中、Xは塩素原子又は臭素原子を表わす)
で示される芳香族ジカルボン酸ジハライドと、 一般式: (式中、R1〜R4は、それぞれ、同一であつて
も異なつていてもよく、水素原子、ハロゲン原
子、炭素原子数1〜4のアルキル基、フエニル基
又は炭素原子数1〜4のアルコキシ基を表わし、
Yはメチレン基、炭素原子数2〜6のアルキリデ
ン基、酸素原子、イオウ原子、カルボニル基又は
スルホニル基を表わし、nは0又は1である)で
示される芳香族ジヒドロキシ化合物及び 一般式: (式中、R5〜R8は、それぞれ、同一であつて
も異なつていてもよく、水素原子、ハロゲン原
子、炭素原子数1〜4のアルキル基、フエニル基
又は炭素原子数1〜4のアルコキシ基を表わす) で示される芳香族ヒドロキシアミノ化合物とを反
応せしめて芳香族ポリエステルアミドを製造する
に当たり、粗芳香族ポリエステルアミドを含むハ
ロゲン化炭化水素溶剤とケトン系溶剤及び/又は
エーテル系溶剤から成る有機混合溶剤溶液を水で
洗浄し、ついで、有機混合溶剤溶液相を水相と分
離して有機混合溶剤溶液相より芳香族ポリエステ
ルアミドを析出せしめることを特徴とするもので
ある。 本発明に使用される芳香族ジカルボン酸ジハラ
イド(A)としては、例えばイソフタル酸ジクロリ
ド、テレフタル酸ジクロリド、イソフタル酸ジブ
ロミド、テレフタル酸ジブロミド等が挙げられ、
これから成る群より選ばれた少なくとも1種のも
のが使用される。 本発明に使用される芳香族ジヒドロキシ化合物
(B)としては、例えばヒドロキノン、レゾルシン、
4,4′―ジヒドロキシフエニルメタン、1,1―
ビス(4′―ヒドロキシフエニル)エタン、2,2
―ビス(4′―ヒドロキシフエニル)プロパン、
2,2―ビス(4′―ヒドロキシフエニル)ブタ
ン、1,1―ビス(4′―ヒドロキシフエニル)シ
クロヘキサン、4,4―ジヒドロキシジフエニル
エーテル、4,4′―ジヒドロキシジフエニルスル
フイド、4,4′―ジヒドロキシジフエニルケト
ン、4,4′―ジヒドロキシジフエニルスルホン、
2,2―ビス(3′―ブロモ―4′―ヒドロキシフエ
ニル)プロパン、2,2―ビス(3′―メチル―
4′―ヒドロキシフエニル)プロパン等が挙げら
れ、これらから成る群より選ばれた少なくとも1
種のものが使用される。 本発明に使用される芳香族ヒドロキシアミノ化
合物(C)としては、例えば2,2―(4′―ヒドロキ
シ―4″―アミノジフエニル)プロパン、2,2―
(3′―メチル―4′―ヒドロキシ―4″―アミノジフ
エニル)プロパン、2,2―(4′―ヒドロキシ―
3″―メチル―4″―アミノジフエニル)プロパン、
2,2―(3′―クロロ―4′―ヒドロキシ―4″―ア
ミノジフエニル)プロパン、2,2―(4′―ヒド
ロキシ―3″―クロロ―4″―アミノジフエニル)プ
ロパン、2,2―(3′―ブロモ―4′―ヒドロキシ
―4″―アミノジフエニル)プロパン、2,2―
(4′―ヒドロキシ―3″―ブロモ―4″―アミノジフ
エニル)プロパン、2,2―(4′―ヒドロキシ―
3″―フエニル―4″―アミノジフエニル)プロパ
ン、2,2―(4′―ヒドロキシ―3″―メトキシ―
4″―アミノジフエニル)プロパン、2,2―
(3′―ブロモ―4′―ヒドロキシ―3″―ブロモ―
4″―アミノジフエニル)プロパン等が挙げられ、
これらから成る群より選ばれた少なくとも1種の
ものが使用される。 本発明に使用される有機混合溶剤はハロゲン化
炭化水素溶剤とケトン系溶剤及び/又はエーテル
系溶剤とから成るものである。ここで、ハロゲン
化炭化水素溶剤としては、たとえば塩化メチレ
ン、クロロホルム、四塩化炭素、ジクロロエタ
ン、トリクロロエタン、テトラクロロエタン、ジ
クロロエチレン、トリクロロエチレン、テトラク
ロロエチレン、炭素数3以上の各種塩素化物等が
挙げられる。ケトン系溶剤としては、例えばアセ
トン、メチルエチルケトン、シクロヘキサノン、
アセトフエノン等が挙げられる。エーテル系溶剤
としては、例えばテトラヒドロフラン、1,4―
ジオキサン等が挙げられる。これらの溶剤は、そ
れぞれの群から選ばれた少なくとも1種以上のも
のが使用され、また各溶剤の混合系としても使用
される。この各溶剤の混合系としては、塩化メチ
レンとシクロヘキサノン、クロロホルムとシクロ
ヘキサノン、ジクロロエタンとシクロヘキサノ
ン、塩化メチレンとテトラヒドロフラン、クロロ
ホルムとテトラヒドロフラン、ジクロロエタンと
テトラヒドロフラン、塩化メチレンと1,4―ジ
オキサン、クロロホルムと1,4―ジオキサン、
ジクロロエタンと1,4―ジオキサン、塩化メチ
レンとシクロヘキサノン及びテトラヒドロフラ
ン、塩化メチレンとシクロヘキサノン及び1,4
―ジオキサン、塩化メチレンとアセトン及びテト
ラヒドロフラン、塩化メチレンとアセトン及び
1,4―ジオキサン、クロロホルムとシクロヘキ
サノン及びテトラヒドロフラン、クロロホルムと
シクロヘキサノン及び1,4―ジオキサン、クロ
ロホルムとアセトン及びテトラヒドロフラン、ク
ロロホルムとアセトン及び1,4―ジオキサン等
が挙げられる。 本発明の製造方法は種々の方法で実施可能であ
る。すなわち、例えば、(1)出発物質として芳香族
ジカルボン酸ジハライドを使用し、ハロゲン化炭
化水素溶剤及び第3級アミンの存在下、均一溶液
中で重縮合反応を行う方法、(2)出発物質として芳
香族ジカルボン酸ジハライドを使用し、ハロゲン
化炭化水素溶剤及び必要に応じて触媒として第3
級アミンが添加された塩基性化合物の水溶液の存
在下での不均一溶液中重縮合反応を行う方法等が
挙げられる。 本発明における反応原料の配合割合は、芳香族
ジカルボン酸ジハライド(A)に対し芳香族ジヒドロ
キシ化合物(B)及び芳香族ヒドロキシアミノ化合物
(C)の合計量がモル比で0.9〜1.1の範囲、好ましく
は0.95〜1.05の範囲である。これら化合物の配合
割合が上記した範囲を外れる場合は、良好な機械
的強度を発現するに十分な高重合体が得られ難
く、好ましくない。また、化合物(B)に対する化合
物(C)の配合割合はモル比で、0.1〜10の範囲、好
ましくは0.2〜5の範囲である。化合物Bに対す
る化合物(C)の配合割合が0.1より少ない場合は、
重合体の耐熱性が劣り、10より多い場合は、耐熱
性は向上するが、軟化温度が高くなり成形性が劣
るため、好ましくない。 本発明における重合反応は芳香族ジカルボン酸
ジハライドと、芳香族ジヒドロキシ化合物及び芳
香族ヒドロキシアミノ化合物とを反応させる。こ
の時の反応条件は、好ましくは、窒素等の不活性
雰囲気中、撹拌下、通常−20〜50℃、好ましくは
0〜30℃で、通常0.1〜20時間、好ましくは1〜
10時間である。 本発明における芳香族ポリエステルアミドを含
む有機溶剤溶液とは、上記した重合反応終了液そ
のもの、重合反応終了液に他の有機溶剤を混合し
た溶液、重合反応終了液から一度芳香族ポリエス
テルアミドを分離後、再度有機混合溶剤溶液に溶
解させた溶液等を意味する。すなわち、ハロゲン
化炭化水素溶剤とケトン系溶剤及びエーテル系溶
剤からなる有機混合溶剤は、その各溶剤を全反応
工程中、適宜な時点において使用することを意味
する。例えば、反応溶剤としてハロゲン化炭化水
素溶剤を使用し、反応終了後、反応混合液にハロ
ゲン化炭化水素溶剤とケトン系溶剤を添加する場
合等が挙げられる。また、この有機混合溶剤溶液
は完全に均一系である必要はなく、例えば溶液重
合方法を採用した場合には、副生した第3級アミ
ンの塩酸塩が不溶のまま混在していてもよく、界
面重合方法を採用した場合では水相が若干量混在
していてもよく、あるいはまた、溶剤の種類その
他の条件によつては一部少量のポリマーが膨張し
た状態で存在していてもよい。 本発明に使用される有機混合溶剤におけるハロ
ゲン化炭化水素溶剤とケトン系溶剤及び/又はエ
ーテル系溶剤の配合割合は重量比で、通常、95:
5〜30:70%の範囲、好ましくは90:10〜50:50
%の範囲である。ケトン系溶剤及び/又はエーテ
ル系溶剤の配合割合が5%未満では洗浄効果が不
十分となり、ハロゲン化炭化水素系溶剤の割合が
30%未満では水洗時に有機溶剤溶液相と水相の分
離が不充分となつたり、場合によつては、重合体
生成物が一部析出したりするので好ましくない。
また、ケトン系溶剤とエーテル系溶剤の配合割合
は任意である。 本発明の有機溶剤溶液中の芳香族ポリエステル
アミドの濃度は、通常、1〜40重量%の範囲、好
ましくは5〜30重量%の範囲である。この濃度が
1重量%未満の場合には使用溶剤量が多くなり経
済的に有利でなく、40重量%を超える場合には高
い溶液粘度のため洗浄効果の低下を招き、また、
有機溶剤溶液相と水相の分離が困難となる。 本発明の製造方法における水洗工程は生成した
芳香族ポリエステルアミドを含む有機溶剤溶液を
水洗する工程である。この水洗工程における温度
は、通常、有機溶剤の沸点以下、好ましくは常温
付近であり、圧力は、通常、常圧である。また、
水の使用量及び水洗回数は、それぞれ、通常、洗
浄操作1回当たり有機溶剤溶液に対し、重量比
で、通常、10〜500%の範囲、好ましくは50〜300
%の範囲であり、水洗回数は格別制限されない
が、好ましくは経済性に照らして1〜5回であ
る。 本発明の製造方法における洗浄処理後、単に上
記処理溶液を静置すれば、有機混合溶剤溶液相と
水相に分離するため、両相は容易に分離できる。
ついで、分離した有機混合溶剤溶液相を十分な量
の貧溶剤により処理して重合体を析出させればよ
い。この貧溶剤としては、例えばメタノール、エ
タノール等が挙げられる。この析出物を濾別・乾
燥して芳香族ポリエステルアミドが得られる。 〔発明の効果〕 以上に詳述した通り、本発明の製造方法に係る
芳香族ポリエステルアミドは高度に精製されてい
るため、圧縮生成法、押出し成形法、射出成形法
等の通常の成形法を適用することができ、しかも
成形加工による着色、クラツク、クレーズ等のな
い良好な成形品を得ることができる。また、同時
に、耐熱性、機械的強度、電気絶縁性等が優れる
と共に、高温使用時の着色も少なく、かつ機械的
強度の保持特性も極めて良好であり、耐熱性樹脂
としての工業的価値は大である。 以下において、実施例及び比較例を掲げ、本発
明をさらに詳細に説明する。 〔発明の実施例〕 尚、実施例中に示した対数粘度ηinhはシクロ
ヘキサノンを溶剤とし、濃度0.5g/dlの溶液を
ウベローデ型粘度計を用いて、30℃で測定し、次
式により求めたものである。 ηinh=In(t/to)/c 〔式中、tはポリマー溶液の流下時間、toは溶
剤のみの流下時間、cはポリマーの濃度(単位:
g/dl)を表わす。〕また、実施例中で部、比率
は全て重量基準である。重合反応は窒素雰囲気下
で行つた。成形物の曲げ強度及び曲げ弾性率は、
ASTM D―790の方法に従つて測定した。 実施例 1 2,2―ビス(4′―ヒドロキシフエニル)プロ
パン56.23部と2,2―(4′―ヒドロキシ―4″―
アミノジフエニル)プロパン56.00部に塩化メチ
レン1000部とトリエチルアミン105部を加えて撹
拌し溶液とした。この溶液を15〜20℃に保ちつつ
撹拌しながら、イソフタル酸ジクロリド50.10部
とテレフタル酸ジクロリド49.92部を塩化メチレ
ン250部に溶解した溶液を30分間にわたり滴下
し、さらに20〜25℃にて10時間撹拌を行つた。得
られた反応溶液に塩化メチレン1000部とシクロヘ
キサノン900部を加えて均一な混合溶剤溶液とし
た。この混合溶剤溶液に水2000部を加えて激しく
撹拌洗浄した後、分液し、有機混合溶剤溶液相を
引き続き同様にして各々水2000部で4回洗浄操作
を繰り返した。洗浄後の有機混合溶剤溶液を激し
く撹拌しているメタノール15000部中に加えポリ
マーを析出させた。ポリマーを濾別・乾燥し、粉
末状ポリマー168部(収率:95%)を得た。 得られたポリマーの対数粘度は1.27dl/gであ
つた。ポリマーフイルムの赤外吸収スペクトルに
はアミド基に基づく吸収帯が3340cm-1(νN-H
と1670cm-1(νC=O)に、エステル基に基づく吸
収帯が1740cm-1(νC=O)に観察された。このポ
リマーを加圧成形機により、温度280℃、圧力200
Kg/cm2にて圧縮成形し直径100mm、厚さ0.5〜6mm
の円板を試作した。得られた試作板は淡黄色透明
でクラツクやクレーズもなかつた。また、このポ
リマーにより成形された成形物は強靭で耐熱性に
も優れていた。成形物の物性値の例を示すと、曲
げ強度は11.5Kg/mm2、曲げ弾性率は240Kg/mm2
示差走査熱量分析(DSC)によるガラス転位温
度は228℃であつた。 実施例 2 2,2―ビス(4′―ヒドロキシフエニル)プロ
パン45.25部と2,2―(4′―ヒドロキシ―4″―
アミノジフエニル)プロパン45.00部とトリメチ
ルベンジルアンモニウムクロリド0.50部に1.001
規定の水酸化ナトリウム水溶液803.4部を加えて
溶解し、10℃に保持した。イソフタル酸ジクロリ
ド40.15部とテレフタル酸ジクロリド40.27部を塩
化メチレン1500部に溶解した溶液を、10℃に保持
され激しく撹拌されている上記水溶液に速やかに
注入し、10〜15℃に保ちつつ1時間撹拌を行つ
た。次いで1規定塩酸13部を加えた後、シクロヘ
キサノン800部と水1000部を加えて洗浄、分液し
た後、有機混合溶剤溶液をさらに各々水2000部で
2回洗浄した。洗浄後の有機混合溶剤溶液を激し
く撹拌しているメタノール10000部中に加えポリ
マーを析出させた。ポリマーを濾別・乾燥し、粉
末状ポリマー133部(収率:94%)を得た。 得られたポリマーの対数粘度は0.74dl/gであ
り、実施例1と同様にして圧縮成形して得たシー
ト及び板はクラツクやクレーズもなく淡黄色透明
で強靭なものであつた。 実施例 3 2,2―ビス(4′―ヒドロキシフエニル)プロ
パン57.32部と2,2―(4′―ヒドロキシ―4″―
アミノジフエニル)プロパン55.98部にテトラヒ
ドロフラン1000部とトリエチルアミン106部を加
えて撹拌し溶液とした。この溶液を15〜20℃に保
ちつつ撹拌しながら、イソフタル酸ジクロリド
50.71部とテレフタル酸ジクロリド50.26部をテト
ラヒドロフラン250部に溶解した溶液を30分間に
わたり滴下し、さらに20〜25℃にて15時間撹拌を
行つた。得られた反応溶液にテトラヒドロフラン
1500部を加えた後、重合反応中に副生し析出して
いる塩酸トリエチルアミンを濾別し均一なテトラ
ヒドロフラン溶液を得た。この溶液を激しく撹拌
しているメタノール12000部中に加えポリマーを
析出させた。ポリマーを濾別・乾燥し、粗ポリマ
ー粉末172部(収率:97%)を得た。粗ポリマー
の対数粘度は1.06dl/gであつた。 得られた粗ポリマー粉末90部をクロロホルム
800部とテトラヒドロフラン200部の混合溶剤に溶
解し水1000部を加えて洗浄し、分液した後同じ操
作をもう一度繰り返した。洗浄後の有機混合溶剤
溶液をメタノール6000部中に加えポリマーを析出
させ、濾別・乾燥し精製ポリマー粉末86部を得
た。精製ポリマーの対数粘度は1.09dl/gであつ
た。この精製ポリマーを実施例1と同様にして圧
縮成形して得たシート及び板はクラツクやクレー
ズもなく淡黄色透明で強靭なものであつた。 実施例 4 2,2―ビス(4′―ヒドロキシフエニル)プロ
パン67.60部、2,2―(4′―ヒドロキシ―4″―
アミノジフエニル)プロパン44.88部、イソフタ
ル酸ジクロリド51.11部及びテレフタル酸ジクロ
リド49.10部をクロロホルム1250部中でトリエチ
ルアミン102部を酸受容剤に使用し、実施例1と
同様にして反応させた。得られた反応溶液にクロ
ロホルム1000部と1,4―ジオキサン500部を加
えて混合溶液とした後、各々水2000部を加えて5
回洗浄した。分液した有機混合溶剤溶液をメタノ
ール18000部中に加えポリマーを析出させ、濾
別・乾燥し、粉末ポリマー170部(収率:96%)
を得た。 得られたポリマーの対数粘度は1.35dl/gであ
り、実施例1と同様にして圧縮成形して得たシー
ト及び板はクラツクやクレーズもなく淡黄色透明
で強靭なものであつた。 実施例 5 2,2―ビス(4′―ヒドロキシフエニル)プロ
パン61.76部、2,2―(4′―ヒドロキシ―4″―
アミノジフエニル)プロパン50.32部、イソフタ
ル酸ジクロリド54.93部及びテレフタル酸ジクロ
リド44.94部を1,4―ジオキサン1250部中でト
リエチルアミン105部を酸受容剤に使用し、実施
例1と同様にして反応させた。得られた反応溶液
を濾別し、反応中に副生し析出している塩酸トリ
エチルアミンを除去した後、塩化メチレン2000部
を加えて混合溶剤溶液とした。この混合溶剤溶液
に水2000部を加えて洗浄、分液した。混合溶剤溶
液をメタノール15000部中に加えてポリマーを析
出させ、濾別・乾燥し、粉末ポリマー169部(収
率:96%)を得た。 得られたポリマーの対数粘度は1.00dl/gであ
り、実施例1と同様にして圧縮成形して得たシー
ト及び板はクラツクやクレーズもなく淡黄色透明
で強靭なものであつた。 比較例 1 2,2―ビス(4′―ヒドロキシフエニル)プロ
パン44.77部、2,2―(4′―ヒドロキシ―4″―
アミノジフエニル)プロパン68.58部、イソフタ
ル酸ジクロリド50.69部及びテレフタル酸ジクロ
リド50.29部を塩化メチレン1250部中でトリエチ
ルアミン106部を酸受容剤に使用し、実施例1と
同様にして反応させた。得られた反応溶液に塩化
メチレン2000部を加えて希釈した後、水2000部を
加えて洗浄、分液し、同じ操作を5回繰り返し
た。洗浄後の塩化メチレン溶液をメタノール
15000部中に加えポリマーを析出させた。ポリマ
ーを濾別・乾燥し、粉末状ポリマー173部(収
率:97%)を得た。 得られたポリマーの対数粘度は1.19dl/gであ
つた。このポリマーを実施例1と同様にして圧縮
成形しシート及び板を試作した。得られたシート
及び板は淡黄褐色に着色し透明であつた。しかし
ながら試作した板は機械的に弱くなつたものも含
まれ、一部は成形中にクラツクを生じ良好な成形
物と言えないものもあつた。これらのうちで比較
的良好な成形物の曲げ強度は4.3〜10.1Kg/mm2
バラツキが大きく、強靭性に欠けるものも含まれ
ていた。 比較例 2 2,2―ビス(4′―ヒドロキシフエニル)プロ
パン45.40部、2,2―(4′―ヒドロキシ―4″―
アミノジフエニル)プロパン44.50部とトリメチ
ルベンジルアンモニウムクロリド0.50部を1.001
規定の水酸化ナトリウム水溶液804.3部に溶解し
た水溶液とイソフタル酸ジクロリド40.38部とテ
レフタル酸ジクロリド39.74部を塩化メチレン
1500部に溶解した溶液を実施例2と同様にして混
合、反応させた。次いで1規定塩酸18部を加えた
後、水1000部を加えて洗浄、分液した後、さらに
各々水2000部で2回洗浄した。洗浄後の塩化メチ
レン溶液をメタノール10000部中に加えポリマー
を析出させた。ポリマーを濾別・乾燥し、粉末状
ポリマー134部(収率:95%)を得た。 得られたポリマーの対数粘度は0.70dl/gであ
つた。このポリマーを実施例1と同様にして圧縮
成形しシート及び板を試作した。得られたシート
及び板は、透明であるが褐色に着色していた。成
形物は機械的に強靭であつた。 比較例 3 実施例3で得られた粗ポリマーを実施例1と同
様にして圧縮成形しシート及び板を試作した。得
られたシート及び板は透明であるが黄色に着色し
ていた。成形物は機械的に強靭であつた。 実施例 6〜10 実施例1〜5で作成した厚さ2〜4mmの板を、
200℃、空気中にて10日間加熱した後、外観およ
び曲げ強度を調べた。試験板は各々淡黄色に着色
していたが、形状に変化は見られなかつた。ま
た、機械的にも強靭で、曲げ強度にも変化が見ら
れなかつた。結果を表に示した。 比較例4及び5 比較例2及び3で作成した厚さ2〜4mmの板を
実施例6〜10と同様に試験した。形状の変化は見
られなかつたが、着色の度合は実施例6〜10に比
較して大きく、曲げ強度は初期値より若干の低下
が見られた。結果を表に合わせて示した。 【表】
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for producing an aromatic polyester amide, and more specifically, it relates to a method for producing an aromatic polyester amide, and more particularly, it relates to a method for producing an aromatic polyester amide, and more specifically, a highly purified aromatic polyester amide without impairing heat resistance, mechanical strength, and moldability. The present invention relates to a method for producing polyesteramide. [Technical background of the invention and its problems] In recent years, with the progress of the polymer chemical industry, heat resistance,
Aromatic polyesteramides with excellent mechanical strength and electrical insulation properties have been developed, but
As a high-performance resin required in the electronic field,
The current situation is that it is not always possible to obtain something completely satisfactory. In order to obtain this high-performance resin, as a result of intensive research and development, the results were published in JP-A-57-108129, JP-A-57-108130, JP-A-56-157423, and JP-A-Sho. Publication No. 37739, Journal of Polymer Science: Polymer Chemistry Editions, Volume 20, Page 683, 1982 [Journal of Polymer Science: Polymer
Various methods have been proposed in Chemistry Edition, 20 , 683 (1982). In these proposals, the aromatic polyester amide is produced by applying a solution polymerization method or an interfacial polymerization method to terephthalic acid or isophthalic acid or a derivative thereof (A) and 2,2-(4'-hydroxy- A method for producing 4"-aminodiphenyl) propane or its derivatives (B) is disclosed. The solution polymerization method involves adding the above-mentioned raw materials (A) and (B) to a tertiary amine in a non-reactive organic solvent. In addition, the interfacial polymerization method involves reacting in the presence of an acid acceptor such as a non-reactive organic solvent solution containing the above-mentioned raw material (A) and an alkaline aqueous solution containing the above-mentioned raw material (B). Aromatic polyesteramides obtained by these manufacturing methods have good heat resistance (for example, glass transition temperature: 220°C or higher), but at the same time, the molding temperature is high, making it difficult to mold. Therefore, there has been a strong desire for a method for producing an aromatic polyester amide that has the above-mentioned various properties in a well-balanced manner.
When produced by the solution polymerization method, it contains tertiary amine hydrochloride as an impurity, which is produced as a by-product during the polymerization reaction, and when produced by the interfacial polymerization method, it contains a by-product during the polymerization reaction. It contains inorganic salts or dispersants used in polymerization reactions as impurities, and these impurities may cause accelerated separation or coloration of the resulting polymer during heat molding or heating. I was getting used to it. For this reason, the industry has desired the emergence of aromatic polyesteramides from which impurities have been sufficiently removed. [Object of the Invention] The object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a method for producing highly purified aromatic polyester amide without impairing heat resistance, mechanical strength, electrical insulation, etc. It is in. [Summary of the Invention] The method for producing aromatic polyesteramide of the present invention has the following general formula: (In the formula, X represents a chlorine atom or a bromine atom)
An aromatic dicarboxylic acid dihalide represented by the general formula: (In the formula, R 1 to R 4 may be the same or different, and each represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a phenyl group having 1 to 4 carbon atoms. represents an alkoxy group of
Y represents a methylene group, an alkylidene group having 2 to 6 carbon atoms, an oxygen atom, a sulfur atom, a carbonyl group or a sulfonyl group, and n is 0 or 1) and an aromatic dihydroxy compound represented by the general formula: (In the formula, R 5 to R 8 may be the same or different, and each represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a phenyl group having 1 to 4 carbon atoms. (representing an alkoxy group) to produce an aromatic polyesteramide, a halogenated hydrocarbon solvent containing a crude aromatic polyesteramide and a ketone solvent and/or an ether solvent The method is characterized in that the organic mixed solvent solution consisting of is washed with water, and then the organic mixed solvent solution phase is separated from the aqueous phase, and the aromatic polyester amide is precipitated from the organic mixed solvent solution phase. Examples of the aromatic dicarboxylic acid dihalide (A) used in the present invention include isophthalic acid dichloride, terephthalic acid dichloride, isophthalic acid dibromide, terephthalic acid dibromide, etc.
At least one selected from the group consisting of these is used. Aromatic dihydroxy compound used in the present invention
Examples of (B) include hydroquinone, resorcinol,
4,4'-dihydroxyphenylmethane, 1,1-
Bis(4'-hydroxyphenyl)ethane, 2,2
-bis(4′-hydroxyphenyl)propane,
2,2-bis(4'-hydroxyphenyl)butane, 1,1-bis(4'-hydroxyphenyl)cyclohexane, 4,4-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfide , 4,4'-dihydroxydiphenyl ketone, 4,4'-dihydroxydiphenyl sulfone,
2,2-bis(3'-bromo-4'-hydroxyphenyl)propane, 2,2-bis(3'-methyl-
4'-hydroxyphenyl)propane, and at least one selected from the group consisting of these.
Seeds are used. Examples of the aromatic hydroxyamino compound (C) used in the present invention include 2,2-(4′-hydroxy-4″-aminodiphenyl)propane, 2,2-
(3′-methyl-4′-hydroxy-4″-aminodiphenyl)propane, 2,2-(4′-hydroxy-
3″-methyl-4″-aminodiphenyl)propane,
2,2-(3′-chloro-4′-hydroxy-4″-aminodiphenyl)propane, 2,2-(4′-hydroxy-3″-chloro-4″-aminodiphenyl)propane, 2,2-(3 '-Bromo-4'-hydroxy-4''-aminodiphenyl)propane, 2,2-
(4′-hydroxy-3″-bromo-4″-aminodiphenyl)propane, 2,2-(4′-hydroxy-
3″-phenyl-4″-aminodiphenyl)propane, 2,2-(4′-hydroxy-3″-methoxy-
4″-aminodiphenyl)propane, 2,2-
(3′-bromo-4′-hydroxy-3″-bromo-
4″-aminodiphenyl)propane, etc.
At least one selected from the group consisting of these is used. The organic mixed solvent used in the present invention consists of a halogenated hydrocarbon solvent and a ketone solvent and/or an ether solvent. Examples of the halogenated hydrocarbon solvent include methylene chloride, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, tetrachloroethane, dichloroethylene, trichloroethylene, tetrachloroethylene, and various chlorinated compounds having 3 or more carbon atoms. Examples of ketone solvents include acetone, methyl ethyl ketone, cyclohexanone,
Examples include acetophenone. Examples of ether solvents include tetrahydrofuran, 1,4-
Examples include dioxane. At least one type of these solvents selected from each group is used, and a mixture of each solvent is also used. Mixed systems of these solvents include methylene chloride and cyclohexanone, chloroform and cyclohexanone, dichloroethane and cyclohexanone, methylene chloride and tetrahydrofuran, chloroform and tetrahydrofuran, dichloroethane and tetrahydrofuran, methylene chloride and 1,4-dioxane, and chloroform and 1,4-dioxane. dioxane,
Dichloroethane and 1,4-dioxane, methylene chloride and cyclohexanone and tetrahydrofuran, methylene chloride and cyclohexanone and 1,4
-Dioxane, methylene chloride and acetone and tetrahydrofuran, methylene chloride and acetone and 1,4-dioxane, chloroform and cyclohexanone and tetrahydrofuran, chloroform and cyclohexanone and 1,4-dioxane, chloroform and acetone and tetrahydrofuran, chloroform and acetone and 1,4 - Examples include dioxane. The manufacturing method of the present invention can be implemented in various ways. That is, for example, (1) a method of carrying out a polycondensation reaction in a homogeneous solution in the presence of a halogenated hydrocarbon solvent and a tertiary amine using an aromatic dicarboxylic acid dihalide as a starting material; (2) a method of carrying out a polycondensation reaction as a starting material; Using an aromatic dicarboxylic acid dihalide, a halogenated hydrocarbon solvent and optionally a third catalyst as a catalyst.
Examples include a method of carrying out a polycondensation reaction in a heterogeneous solution in the presence of an aqueous solution of a basic compound to which a class amine is added. The mixing ratio of the reaction raw materials in the present invention is as follows: aromatic dihydroxy compound (B) and aromatic hydroxyamino compound to aromatic dicarboxylic acid dihalide (A).
The total amount of (C) is in a molar ratio of 0.9 to 1.1, preferably 0.95 to 1.05. If the blending ratio of these compounds is out of the above-mentioned range, it will be difficult to obtain a high enough polymer to exhibit good mechanical strength, which is not preferable. The molar ratio of compound (C) to compound (B) is in the range of 0.1 to 10, preferably in the range of 0.2 to 5. If the blending ratio of compound (C) to compound B is less than 0.1,
The heat resistance of the polymer is poor, and if the number is more than 10, the heat resistance will improve, but the softening temperature will become high and the moldability will be poor, which is not preferable. The polymerization reaction in the present invention involves reacting an aromatic dicarboxylic acid dihalide with an aromatic dihydroxy compound and an aromatic hydroxyamino compound. The reaction conditions at this time are preferably in an inert atmosphere such as nitrogen, under stirring, usually at -20 to 50°C, preferably 0 to 30°C, for usually 0.1 to 20 hours, preferably 1 to 30°C.
It is 10 hours. In the present invention, the organic solvent solution containing aromatic polyesteramide refers to the above-mentioned polymerization reaction finished liquid itself, a solution obtained by mixing the polymerization reaction finished liquid with another organic solvent, and a solution after the aromatic polyesteramide is once separated from the polymerization reaction finished liquid. , means a solution etc. that are redissolved in an organic mixed solvent solution. That is, the organic mixed solvent consisting of a halogenated hydrocarbon solvent, a ketone solvent, and an ether solvent means that each solvent is used at an appropriate time during the entire reaction process. For example, a halogenated hydrocarbon solvent may be used as the reaction solvent, and the halogenated hydrocarbon solvent and the ketone solvent may be added to the reaction mixture after the reaction is completed. In addition, this organic mixed solvent solution does not need to be completely homogeneous; for example, when a solution polymerization method is adopted, hydrochloride of a by-produced tertiary amine may be mixed in insoluble form. When an interfacial polymerization method is adopted, a small amount of the aqueous phase may be present, or depending on the type of solvent and other conditions, a small amount of the polymer may be present in an expanded state. The blending ratio of the halogenated hydrocarbon solvent and the ketone solvent and/or ether solvent in the organic mixed solvent used in the present invention is usually 95:
Range of 5-30:70%, preferably 90:10-50:50
% range. If the blending ratio of the ketone solvent and/or ether solvent is less than 5%, the cleaning effect will be insufficient, and the ratio of the halogenated hydrocarbon solvent will increase.
If it is less than 30%, separation of the organic solvent solution phase and aqueous phase during washing with water may become insufficient, and in some cases, a portion of the polymer product may precipitate, which is not preferable.
Further, the mixing ratio of the ketone solvent and the ether solvent is arbitrary. The concentration of aromatic polyester amide in the organic solvent solution of the present invention is usually in the range of 1 to 40% by weight, preferably in the range of 5 to 30% by weight. If this concentration is less than 1% by weight, the amount of solvent used will be large, which is not economically advantageous; if it exceeds 40% by weight, the cleaning effect will be reduced due to high solution viscosity, and
It becomes difficult to separate the organic solvent solution phase and the aqueous phase. The water washing step in the production method of the present invention is a step of washing the produced organic solvent solution containing the aromatic polyesteramide with water. The temperature in this water washing step is usually below the boiling point of the organic solvent, preferably around room temperature, and the pressure is usually normal pressure. Also,
The amount of water used and the number of times of water washing are usually in the range of 10 to 500%, preferably 50 to 300% by weight, based on the organic solvent solution per cleaning operation.
%, and the number of washings is not particularly limited, but is preferably from 1 to 5 times in view of economical efficiency. After the washing treatment in the production method of the present invention, simply allowing the treatment solution to stand still separates the organic mixed solvent solution phase and the aqueous phase, so that both phases can be easily separated.
Then, the separated organic mixed solvent solution phase may be treated with a sufficient amount of a poor solvent to precipitate the polymer. Examples of this poor solvent include methanol, ethanol, and the like. This precipitate is filtered and dried to obtain aromatic polyesteramide. [Effects of the Invention] As detailed above, the aromatic polyester amide according to the production method of the present invention is highly refined, so it is difficult to use ordinary molding methods such as compression molding, extrusion molding, and injection molding. Moreover, good molded products without discoloration, cracks, crazes, etc. due to molding processing can be obtained. At the same time, it has excellent heat resistance, mechanical strength, electrical insulation, etc., less coloring when used at high temperatures, and extremely good mechanical strength retention properties, so it has great industrial value as a heat-resistant resin. It is. EXAMPLES Below, the present invention will be explained in more detail by presenting Examples and Comparative Examples. [Examples of the Invention] Note that the logarithmic viscosity ηinh shown in the examples was determined using the following formula by measuring a solution with a concentration of 0.5 g/dl using an Ubbelohde viscometer at 30°C using cyclohexanone as a solvent. It is something. ηinh=In(t/to)/c [where t is the flow time of the polymer solution, to is the flow time of only the solvent, and c is the concentration of the polymer (unit:
g/dl). ] In addition, all parts and ratios in the examples are based on weight. The polymerization reaction was carried out under a nitrogen atmosphere. The bending strength and bending elastic modulus of the molded product are
Measured according to ASTM D-790 method. Example 1 56.23 parts of 2,2-bis(4'-hydroxyphenyl)propane and 2,2-(4'-hydroxy-4''-
1000 parts of methylene chloride and 105 parts of triethylamine were added to 56.00 parts of (aminodiphenyl)propane and stirred to form a solution. A solution of 50.10 parts of isophthalic acid dichloride and 49.92 parts of terephthalic acid dichloride dissolved in 250 parts of methylene chloride was added dropwise to this solution over 30 minutes while stirring while maintaining the temperature at 15 to 20°C, and then at 20 to 25°C for another 10 hours. Stirring was performed. 1000 parts of methylene chloride and 900 parts of cyclohexanone were added to the obtained reaction solution to obtain a uniform mixed solvent solution. After adding 2,000 parts of water to this mixed solvent solution and washing with vigorous stirring, the layers were separated, and the organic mixed solvent solution phase was washed in the same manner four times with 2,000 parts of water each. The washed organic mixed solvent solution was added to 15,000 parts of methanol under vigorous stirring to precipitate a polymer. The polymer was filtered and dried to obtain 168 parts of powdered polymer (yield: 95%). The logarithmic viscosity of the obtained polymer was 1.27 dl/g. The infrared absorption spectrum of the polymer film has an absorption band based on amide groups at 3340 cm -1NH )
An absorption band based on the ester group was observed at 1740 cm -1 ( ν C=O ) . This polymer is molded using a pressure molding machine at a temperature of 280℃ and a pressure of 200℃.
Compression molded at Kg/ cm2 , diameter 100mm, thickness 0.5~6mm
We prototyped a disk. The obtained prototype board was pale yellow and transparent, with no cracks or crazes. In addition, molded products made from this polymer were strong and had excellent heat resistance. Examples of physical properties of molded products include bending strength of 11.5Kg/mm 2 , bending elastic modulus of 240Kg/mm 2 ,
The glass transition temperature determined by differential scanning calorimetry (DSC) was 228°C. Example 2 45.25 parts of 2,2-bis(4'-hydroxyphenyl)propane and 2,2-(4'-hydroxy-4''-
1.001 to 45.00 parts of aminodiphenyl propane and 0.50 parts of trimethylbenzylammonium chloride
803.4 parts of a specified aqueous sodium hydroxide solution was added and dissolved, and the mixture was maintained at 10°C. A solution prepared by dissolving 40.15 parts of isophthalic acid dichloride and 40.27 parts of terephthalic acid dichloride in 1500 parts of methylene chloride was immediately poured into the above aqueous solution which was kept at 10°C and stirred vigorously, and stirred for 1 hour while maintaining the temperature at 10 to 15°C. I went there. Next, 13 parts of 1N hydrochloric acid was added, and then 800 parts of cyclohexanone and 1000 parts of water were added for washing and separation, and the organic mixed solvent solution was further washed twice with 2000 parts of water each. The washed organic mixed solvent solution was added to 10,000 parts of methanol with vigorous stirring to precipitate a polymer. The polymer was filtered and dried to obtain 133 parts of powdered polymer (yield: 94%). The logarithmic viscosity of the obtained polymer was 0.74 dl/g, and the sheets and plates obtained by compression molding in the same manner as in Example 1 were pale yellow, transparent, and strong without cracks or crazes. Example 3 57.32 parts of 2,2-bis(4'-hydroxyphenyl)propane and 2,2-(4'-hydroxy-4''-
1000 parts of tetrahydrofuran and 106 parts of triethylamine were added to 55.98 parts of aminodiphenyl)propane and stirred to form a solution. While stirring and keeping this solution at 15-20℃, add isophthalic acid dichloride.
A solution prepared by dissolving 50.71 parts of terephthalic acid dichloride and 50.26 parts of tetrahydrofuran in 250 parts of tetrahydrofuran was added dropwise over 30 minutes, and the mixture was further stirred at 20 to 25°C for 15 hours. Add tetrahydrofuran to the resulting reaction solution.
After adding 1,500 parts, triethylamine hydrochloride, which was produced as a by-product and precipitated during the polymerization reaction, was filtered off to obtain a homogeneous tetrahydrofuran solution. This solution was added to 12,000 parts of methanol with vigorous stirring to precipitate a polymer. The polymer was filtered and dried to obtain 172 parts of crude polymer powder (yield: 97%). The logarithmic viscosity of the crude polymer was 1.06 dl/g. 90 parts of the obtained crude polymer powder was dissolved in chloroform.
It was dissolved in a mixed solvent of 800 parts of tetrahydrofuran and 200 parts of tetrahydrofuran, washed with 1000 parts of water, separated, and the same operation was repeated once again. The washed organic mixed solvent solution was added to 6000 parts of methanol to precipitate the polymer, which was filtered and dried to obtain 86 parts of purified polymer powder. The logarithmic viscosity of the purified polymer was 1.09 dl/g. Sheets and plates obtained by compression molding this purified polymer in the same manner as in Example 1 were pale yellow, transparent, and strong, with no cracks or crazes. Example 4 67.60 parts of 2,2-bis(4′-hydroxyphenyl)propane, 2,2-(4′-hydroxy-4″-
44.88 parts of aminodiphenyl)propane, 51.11 parts of isophthalic acid dichloride, and 49.10 parts of terephthalic acid dichloride were reacted in the same manner as in Example 1 in 1250 parts of chloroform using 102 parts of triethylamine as an acid acceptor. To the obtained reaction solution, 1000 parts of chloroform and 500 parts of 1,4-dioxane were added to make a mixed solution, and then 2000 parts of water was added to each solution to give 500 parts of 1,4-dioxane.
Washed twice. The separated organic mixed solvent solution was added to 18,000 parts of methanol to precipitate the polymer, which was filtered and dried to yield 170 parts of powdered polymer (yield: 96%).
I got it. The logarithmic viscosity of the resulting polymer was 1.35 dl/g, and the sheets and plates obtained by compression molding in the same manner as in Example 1 were pale yellow, transparent, and strong without cracks or crazes. Example 5 61.76 parts of 2,2-bis(4′-hydroxyphenyl)propane, 2,2-(4′-hydroxy-4″-
50.32 parts of aminodiphenyl)propane, 54.93 parts of isophthalic acid dichloride, and 44.94 parts of terephthalic acid dichloride were reacted in the same manner as in Example 1, using 105 parts of triethylamine as an acid acceptor in 1,250 parts of 1,4-dioxane. The obtained reaction solution was filtered to remove triethylamine hydrochloride which was produced as a by-product during the reaction and precipitated, and then 2000 parts of methylene chloride was added to prepare a mixed solvent solution. 2000 parts of water was added to this mixed solvent solution for washing and separation. The mixed solvent solution was added to 15,000 parts of methanol to precipitate the polymer, which was filtered and dried to obtain 169 parts of powdered polymer (yield: 96%). The logarithmic viscosity of the obtained polymer was 1.00 dl/g, and the sheets and plates obtained by compression molding in the same manner as in Example 1 were pale yellow, transparent, and strong without cracks or crazes. Comparative Example 1 44.77 parts of 2,2-bis(4'-hydroxyphenyl)propane, 2,2-(4'-hydroxy-4''-
68.58 parts of aminodiphenyl)propane, 50.69 parts of isophthalic acid dichloride, and 50.29 parts of terephthalic acid dichloride were reacted in the same manner as in Example 1 in 1250 parts of methylene chloride using 106 parts of triethylamine as an acid acceptor. After diluting the resulting reaction solution by adding 2000 parts of methylene chloride, 2000 parts of water was added for washing and separation, and the same operation was repeated 5 times. The methylene chloride solution after washing is dissolved in methanol.
The polymer was added to 15,000 parts to precipitate the polymer. The polymer was filtered and dried to obtain 173 parts of powdered polymer (yield: 97%). The logarithmic viscosity of the obtained polymer was 1.19 dl/g. This polymer was compression molded in the same manner as in Example 1 to produce sheets and plates. The obtained sheets and plates were colored pale yellowish brown and transparent. However, some of the prototype plates were mechanically weak, and some of them developed cracks during molding and were not good molded products. Among these, the bending strength of relatively good molded products varied widely, ranging from 4.3 to 10.1 Kg/mm 2 , and some of them lacked toughness. Comparative Example 2 45.40 parts of 2,2-bis(4′-hydroxyphenyl)propane, 2,2-(4′-hydroxy-4″-
44.50 parts of aminodiphenyl)propane and 0.50 parts of trimethylbenzylammonium chloride to 1.001 parts
An aqueous solution dissolved in 804.3 parts of the specified aqueous sodium hydroxide solution, 40.38 parts of isophthalic acid dichloride, and 39.74 parts of terephthalic acid dichloride were mixed with methylene chloride.
A solution of 1,500 parts was mixed and reacted in the same manner as in Example 2. Next, 18 parts of 1N hydrochloric acid were added, and then 1000 parts of water were added to wash and separate the layers, followed by washing twice with 2000 parts of water each. The methylene chloride solution after washing was added to 10,000 parts of methanol to precipitate the polymer. The polymer was filtered and dried to obtain 134 parts of powdered polymer (yield: 95%). The logarithmic viscosity of the obtained polymer was 0.70 dl/g. This polymer was compression molded in the same manner as in Example 1 to produce sheets and plates. The obtained sheets and plates were transparent but colored brown. The molded product was mechanically strong. Comparative Example 3 The crude polymer obtained in Example 3 was compression molded in the same manner as in Example 1 to fabricate sheets and plates. The obtained sheets and plates were transparent but colored yellow. The molded product was mechanically strong. Examples 6 to 10 The plates with a thickness of 2 to 4 mm prepared in Examples 1 to 5 were
After heating at 200°C in air for 10 days, the appearance and bending strength were examined. Each test plate was colored pale yellow, but no change in shape was observed. It was also mechanically strong, with no change observed in bending strength. The results are shown in the table. Comparative Examples 4 and 5 The 2-4 mm thick plates prepared in Comparative Examples 2 and 3 were tested in the same manner as Examples 6-10. Although no change in shape was observed, the degree of coloring was greater than in Examples 6 to 10, and the bending strength was slightly lower than the initial value. The results are shown in the table. 【table】

Claims (1)

【特許請求の範囲】 1 一般式: (式中、Xは塩素原子又は臭素原子を表わす)
で示される芳香族ジカルボン酸ジハライドと、 一般式: (式中、R1〜R4は、それぞれ、同一であつて
も異なつていてもよく、水素原子、ハロゲン原
子、炭素原子数1〜4のアルキル基、フエニル基
又は炭素原子数1〜4のアルコキシ基を表わし、
Yはメチレン基、炭素原子数2〜6のアルキリデ
ン基、酸素原子、イオウ原子、カルボニル基又は
スルホニル基を表わし、nは0又は1である)で
示される芳香族ジヒドロキシ化合物及び 一般式: (式中、R5〜R8は、それぞれ、同一であつて
も異なつていてもよく、水素原子、ハロゲン原
子、炭素原子数1〜4のアルキル基、フエニル基
又は炭素原子数1〜4のアルコキシ基を表わす) で示される芳香族ヒドロキシアミノ化合物とを反
応せしめて芳香族ポリエステルアミドを製造する
に当たり、粗芳香族ポリエステルアミドを含むハ
ロゲン化炭化水素溶剤とケトン系溶剤及び/又は
エーテル系溶剤から成る有機混合溶剤溶液を水で
洗浄し、ついで、有機混合溶剤溶液相を水相と分
離して有機混合溶剤溶液相より芳香族ポリエステ
ルアミドを析出せしめることを特徴とする芳香族
ポリエステルアミドの製造方法。
[Claims] 1. General formula: (In the formula, X represents a chlorine atom or a bromine atom)
An aromatic dicarboxylic acid dihalide represented by the general formula: (In the formula, R 1 to R 4 may be the same or different, and each represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a phenyl group having 1 to 4 carbon atoms. represents an alkoxy group of
Y represents a methylene group, an alkylidene group having 2 to 6 carbon atoms, an oxygen atom, a sulfur atom, a carbonyl group, or a sulfonyl group, and n is 0 or 1) and an aromatic dihydroxy compound represented by the general formula: (In the formula, R 5 to R 8 may be the same or different, and each represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a phenyl group having 1 to 4 carbon atoms. (representing an alkoxy group) to produce an aromatic polyesteramide, a halogenated hydrocarbon solvent containing a crude aromatic polyesteramide and a ketone solvent and/or an ether solvent The production of an aromatic polyester amide is characterized by washing an organic mixed solvent solution consisting of the following with water, then separating the organic mixed solvent solution phase from the aqueous phase to precipitate the aromatic polyester amide from the organic mixed solvent solution phase. Method.
JP6120884A 1984-03-30 1984-03-30 Production of aromatic polyester-amide Granted JPS60206829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6120884A JPS60206829A (en) 1984-03-30 1984-03-30 Production of aromatic polyester-amide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6120884A JPS60206829A (en) 1984-03-30 1984-03-30 Production of aromatic polyester-amide

Publications (2)

Publication Number Publication Date
JPS60206829A JPS60206829A (en) 1985-10-18
JPS6241970B2 true JPS6241970B2 (en) 1987-09-05

Family

ID=13164539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6120884A Granted JPS60206829A (en) 1984-03-30 1984-03-30 Production of aromatic polyester-amide

Country Status (1)

Country Link
JP (1) JPS60206829A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521770B2 (en) * 2005-06-03 2010-08-11 日本化薬株式会社 Method for producing aromatic polyamide resin varnish

Also Published As

Publication number Publication date
JPS60206829A (en) 1985-10-18

Similar Documents

Publication Publication Date Title
CN106928439A (en) A kind of low temperature resistant nontransparent HI high impact random copolymerization makrolon and its production and use
JPH01163213A (en) Carboxy functionalized polycarbonate and its production
CN111040165A (en) Polysulfonate polymer and polymerization method thereof
JPS6241970B2 (en)
EP0117556B1 (en) Heat-resisting aromatic polyestersulfone and process for preparing the same
CN114752052A (en) Sebacic acid block copolycarbonate, preparation method and application thereof
JP2595925B2 (en) Thermosetting polyarylate resin
KR20140118274A (en) Novel polysiloxane, method for preparing the same and polycarbonate-polysiloxane copolymer containing the same
JPH02138336A (en) Aromatic polyester/polyorganosiloxane block copolymer
JP2661715B2 (en) Heat resistant unsaturated polyester
JP5343227B2 (en) Phenazacillin polymer with epoxy group in side chain
Ankushrao et al. High Performance Poly (ether-amide) s Derived from 1, 1-Bis [4-(4-carboxy methylene phenoxy)-3-methyl phenyl] Cyclopentane and Aromatic Diamines
KR940007023B1 (en) Noble polyarylate resin
US4006120A (en) Thermostable polyester
JPS62297327A (en) Soluble heat-resistant polyamide-ester
KR900000379B1 (en) Process for the preparation of non - combustible poly ester
KR910005770B1 (en) Polyethylene telephthalate copolymers and preparation for the copolymers
JP2524322B2 (en) Novel polyester and method for producing the same
JP2520096B2 (en) Polycarbonate copolymer and method for producing the same
KR970006675B1 (en) Wholly aromatic polyester and method for manufacturing them
JPS63273632A (en) Linear rod-shaped polyester
JPH0552847B2 (en)
JPS6126567B2 (en)
JPS5913546B2 (en) resin composition
JPS61126129A (en) Fully aromatic polyester and manufacture