JPS6241772B2 - - Google Patents

Info

Publication number
JPS6241772B2
JPS6241772B2 JP3204284A JP3204284A JPS6241772B2 JP S6241772 B2 JPS6241772 B2 JP S6241772B2 JP 3204284 A JP3204284 A JP 3204284A JP 3204284 A JP3204284 A JP 3204284A JP S6241772 B2 JPS6241772 B2 JP S6241772B2
Authority
JP
Japan
Prior art keywords
magnetic
particles
partition
filter
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3204284A
Other languages
Japanese (ja)
Other versions
JPS60175514A (en
Inventor
Tetsuhiko Hasuda
Yoshihisa Kitora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Electric Corp filed Critical Agency of Industrial Science and Technology
Priority to JP3204284A priority Critical patent/JPS60175514A/en
Publication of JPS60175514A publication Critical patent/JPS60175514A/en
Publication of JPS6241772B2 publication Critical patent/JPS6241772B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/034Component parts; Auxiliary operations characterised by the magnetic circuit characterised by the matrix elements

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、流体中に混入している微小な強磁
性体又は常磁性体の粒子を磁力によつて分離除去
する磁気フイルタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a magnetic filter that uses magnetic force to separate and remove minute ferromagnetic or paramagnetic particles mixed in a fluid.

〔従来技術〕[Prior art]

第1図は従来の磁気フイルタの構造を示す構成
図である。
FIG. 1 is a block diagram showing the structure of a conventional magnetic filter.

図において1は継鉄2の内部に配置された環状
形の励磁コイルで中央部分にフイルタ容器3が装
着されている。フイルタ容器3の内部には強磁性
体細線で形成されたフイルタエレメント4が装着
されている。また、フイルタ容器3には流入管5
および流出管6が連通し流入管5には洗浄水流出
管7が、また流出管6には洗浄水流入管8が継が
つておりそれぞれの管には弁V5,V6,V7,V8
取りつけられている。
In the figure, reference numeral 1 denotes an annular excitation coil disposed inside a yoke 2, and a filter container 3 is attached to the center portion. A filter element 4 made of a thin ferromagnetic wire is mounted inside the filter container 3. In addition, the filter container 3 has an inflow pipe 5.
The inflow pipe 5 is connected to a wash water outflow pipe 7, and the outflow pipe 6 is connected to a wash water inflow pipe 8. Each pipe has valves V 5 , V 6 , V 7 , and V 8 . is attached.

次に作用について説明する。第1図において励
磁コイル1に通電すると、フイルタ容器3の液流
方向に平行に磁束が発生し、フイルタエレメント
4を構成している。磁性細線が磁化され、その周
囲に強い磁場勾配を形成し、所謂高勾配磁気フイ
ルタが形成される。この状態で磁性粒子を含む液
を流入管5を介して供給すれば磁気フイルタ部を
通過する間に液に含まれる磁性微粒子は、磁性細
線に捕捉され、磁性粒子を分離された液は流出管
6を経て排出される。このとき弁V5,V6のみ開
き、V7,V8は閉じている。
Next, the effect will be explained. In FIG. 1, when the excitation coil 1 is energized, a magnetic flux is generated parallel to the direction of liquid flow in the filter container 3, forming a filter element 4. The magnetic wire is magnetized and forms a strong magnetic field gradient around it, forming a so-called high gradient magnetic filter. If a liquid containing magnetic particles is supplied through the inflow pipe 5 in this state, the magnetic fine particles contained in the liquid will be captured by the magnetic wires while passing through the magnetic filter section, and the liquid from which the magnetic particles have been separated will flow through the outflow pipe. 6 and then discharged. At this time, only valves V 5 and V 6 are open, and V 7 and V 8 are closed.

磁性微粒子はフイルタエレメント4に堆積する
ので、次第に分離性能が低下する。このため一定
時間間隔をおいてフイルターを洗浄する必要があ
る。すなわち、励磁コイル1の通電を止めて磁場
を無くするとともに弁V5,V6を閉じ、弁V7,V8
を開き洗浄水流入管8を介して洗浄水を供給し、
フイルタエレメント3に推積した磁性微粒子を除
去し、フイルタを再生させ、再び弁V5,V6を開
き、弁V7,V8を閉じて磁性粒子を含む液を供給
する。
Since the magnetic fine particles accumulate on the filter element 4, the separation performance gradually deteriorates. For this reason, it is necessary to clean the filter at regular intervals. That is, the excitation coil 1 is de-energized to eliminate the magnetic field, valves V 5 and V 6 are closed, and valves V 7 and V 8 are closed.
and supply washing water through the washing water inflow pipe 8.
The magnetic particles accumulated in the filter element 3 are removed, the filter is regenerated, the valves V 5 and V 6 are opened again, and the valves V 7 and V 8 are closed to supply a liquid containing magnetic particles.

上記のサイクルを繰返して磁性微粒子を分離す
る。
The above cycle is repeated to separate the magnetic particles.

従来の磁気フイルタは以上のように構成されて
いるので、フイルタエレメントに推積した磁性微
粒子を除去しなければならず、励磁コイルの電流
を遮断し、弁を開閉し、洗浄液でフイルタを洗浄
しなければならない。特に、磁性粒子を含む液の
粒子濃度が高い場合にはその頻度も激しいためフ
イルタの稼動率が低下するなどの欠点があつた。
Conventional magnetic filters are constructed as described above, so in order to remove the magnetic particles accumulated in the filter element, the current of the excitation coil must be cut off, the valve should be opened and closed, and the filter should be washed with a washing liquid. There must be. In particular, when the concentration of particles in the liquid containing magnetic particles is high, this occurs frequently, resulting in drawbacks such as a decrease in the operating rate of the filter.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除
去するためになされたもので、容器を複数個の貫
通孔を有する仕切体で分離し、第1、第2の部屋
を形成し磁性細線を第1の部屋に張り、仕切体の
貫通孔に挿入し、これらの磁性細線に交差する磁
界を発生させ、磁性粒子を捕捉する手段、磁性粒
子誘導手段、及び磁性粒子離脱手段を設けること
により、磁性粒子を含む流体を連続的に磁性粒子
と磁性粒子を含まない流体とに分離できる磁気フ
イルタを提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and the container is separated by a partition having a plurality of through holes to form a first and second chamber, and a magnetic thin wire is inserted into the second chamber. 1, inserted into the through hole of the partition body, generates a magnetic field that intersects these magnetic thin wires, and is equipped with a means for capturing magnetic particles, a means for guiding magnetic particles, and a means for separating magnetic particles. It is an object of the present invention to provide a magnetic filter that can continuously separate a fluid containing particles into a fluid containing magnetic particles and a fluid containing no magnetic particles.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の一実施例を図について説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第2図はこの発明の一実施例の構成図、第3図
はフイルタ容器10の断面図である。第2図、第
3図において、10はフイルタ容器で非磁性材料
により形成されている。11は磁性粒子を含む液
体の流入管、12は浄化され、磁性粒子を含まな
い液の流出管、13は分離された磁性粒子と磁性
粒子を含む液体の一部が排出される排出管であ
る。17はフイルタ容器を、磁性粒子を含む流体
が流入し、磁性粒子を捕捉する第1の部屋15、
捕捉された磁性粒子を離脱させる第2の部屋16
に分離し、貫通孔19を持つ仕切体、18は上記
仕切体の貫通孔19を貫通し、互に平行になるよ
うにフイルタ容器に両端を固定された磁性細線、
14はフルタ容器内の液体および磁性細線18を
振動させるために、フイルタ容器10に取り付け
られた振動子である。9は発生する磁界が複数本
の磁性細線に交差し、仕切体の貫通孔に向かつて
(数学的に)単調増加させるようにこの場合は勾
配のついて磁界分布を形成するようにテーパをつ
けて配置された対向する磁極である。
FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. 3 is a sectional view of the filter container 10. In FIGS. 2 and 3, 10 is a filter container made of a non-magnetic material. 11 is an inflow pipe for liquid containing magnetic particles, 12 is an outflow pipe for purified liquid that does not contain magnetic particles, and 13 is a discharge pipe from which separated magnetic particles and a part of the liquid containing magnetic particles are discharged. . 17, a filter container, a first chamber 15 into which a fluid containing magnetic particles flows and captures the magnetic particles;
Second chamber 16 for releasing captured magnetic particles
a partition body having a through-hole 19, 18 passing through the through-hole 19 of the partition body, and having both ends fixed to the filter container so as to be parallel to each other;
14 is a vibrator attached to the filter container 10 in order to vibrate the liquid and the magnetic wire 18 in the filter container. 9 is tapered so that the generated magnetic field crosses multiple magnetic thin wires and increases monotonically (mathematically) toward the through hole of the partition, in this case forming a magnetic field distribution with a gradient. Opposed magnetic poles are arranged.

なお図面中の矢印は液体の流れを示す。 Note that arrows in the drawings indicate the flow of liquid.

テーパのついた磁極9を対向して形成された磁
気空隙において、Z軸方向に発生する磁界はその
強さがX軸方向に増加するような勾配をもつた分
布となる。この磁気空隙にあるフイルタ容器10
内の磁性細線すなわち強磁性細線18は磁化され
る。
In the magnetic gap formed by opposing the tapered magnetic poles 9, the magnetic field generated in the Z-axis direction has a gradient distribution such that its strength increases in the X-axis direction. Filter container 10 in this magnetic gap
The magnetic wire inside, that is, the ferromagnetic wire 18 is magnetized.

流入管11を通つて流入した浄化すべき液は強
磁性体細線18の間を通過する。このとき磁界の
強さと磁気勾配の大きさに比例した磁気吸引力が
磁性粒子に作用し、強磁性体細線18に捕捉され
る。
The liquid to be purified that has flowed in through the inflow pipe 11 passes between the ferromagnetic thin wires 18 . At this time, a magnetic attraction force proportional to the strength of the magnetic field and the magnitude of the magnetic gradient acts on the magnetic particles, and the particles are captured by the ferromagnetic thin wire 18.

フイルタ容器10に固定されている振動子14
によつて強磁性体細線18が振動し、捕捉された
磁性粒子は強磁性体細線18に付着したり、それ
から離れたりする状態になる。一方、X軸方向に
増加する磁気勾配によつて磁性粒子にはX軸方向
の磁気力が作用するので強磁性体細線18上をX
軸方向に搬送されて仕切体17の穴の入口部まで
到達する。
Vibrator 14 fixed to filter container 10
As a result, the ferromagnetic thin wire 18 vibrates, and the captured magnetic particles become attached to or separated from the ferromagnetic thin wire 18. On the other hand, a magnetic force in the X-axis direction acts on the magnetic particles due to the magnetic gradient increasing in the X-axis direction, so
It is conveyed in the axial direction and reaches the entrance of the hole in the partition body 17.

第4図に示すように仕切体17の部分ではX軸
方向の磁界勾配が負となるので磁性粒子にはX軸
負の方向の磁気力が作用する。一方仕切体17の
穴においては浄化すべき液の一部がX軸方向に流
れているので流体抵抗力が磁性粒子に作用する。
この流体抵抗力を前記X軸負方向の磁気力より大
きくすることによつて磁性粒子は第2の部屋16
に送り込まれる。
As shown in FIG. 4, since the magnetic field gradient in the X-axis direction is negative in the partition 17, a magnetic force in the negative direction of the X-axis acts on the magnetic particles. On the other hand, in the hole of the partition body 17, a part of the liquid to be purified flows in the X-axis direction, so that a fluid resistance force acts on the magnetic particles.
By making this fluid resistance force larger than the magnetic force in the negative direction of the X-axis, the magnetic particles move into the second chamber 16.
sent to.

第2の部屋16では磁界の強さは小さいので、
磁気吸引力は小さく磁性粒子は磁性細線18から
容易に離脱し、排出管13を通過して排出する。
一方、磁性細線18の間を通過して磁性粒子を含
まない液は流出管12を通つて流出する。
In the second room 16, the strength of the magnetic field is small, so
The magnetic attraction force is small, and the magnetic particles easily separate from the magnetic wire 18, pass through the discharge pipe 13, and are discharged.
On the other hand, the liquid that has passed between the magnetic wires 18 and does not contain magnetic particles flows out through the outflow pipe 12.

なお、上記実施例では直方体のフイルタ容器を
仕切板で2つの部屋に分けたものを示したが、環
状の第1の部屋と環状の第2の部屋を設け両室の
仕切円筒体に複数個の穴を設けこの穴を貫いて強
磁性体細線を半径方向に固定したもので、中心軸
方向に磁界を形成し、その強度が半径方向に勾配
をもち、仕切円筒体の部分で急激に小さくなり、
第2の部屋では十分小さくなるように磁束分布を
構成したものであつてもよく、上記実施例と同様
の効果を奏する。
In addition, in the above embodiment, a rectangular parallelepiped filter container is divided into two chambers by a partition plate, but a first annular chamber and a second annular chamber are provided, and a plurality of filter containers are provided in the cylindrical partitioning body of both chambers. A thin ferromagnetic wire is fixed in the radial direction through the hole, and a magnetic field is formed in the direction of the central axis, and its strength has a gradient in the radial direction, becoming suddenly smaller at the part of the partition cylinder. Become,
In the second room, the magnetic flux distribution may be configured to be sufficiently small, and the same effect as in the above embodiment can be achieved.

なお、上記の例では、磁性粒子誘導手段として
磁界勾配を持つように配置された磁極を使用して
いるが、磁性細線と平行方向で仕切体17の方向
にゆつくり反対方向に強く振動させ貫性力により
粒子を仕切体17の方へ移動させても良い。
In the above example, magnetic poles arranged so as to have a magnetic field gradient are used as the magnetic particle guiding means. The particles may be moved toward the partition body 17 by force.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、磁性粒子を含
んだ流体から連続的に磁性粒子を分離でき、従来
のものに比べ、フイルタの稼動率が高く、フイル
タを洗浄するための諸設備が不要となるという効
果がある。
As described above, according to the present invention, magnetic particles can be continuously separated from a fluid containing magnetic particles, the operating rate of the filter is higher than that of conventional filters, and various equipment for cleaning the filter is not required. It has the effect of becoming.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気フイルタの構成図、第2図
はこの発明の一実施例の磁気フイルタの構成図、
第3図はこの発明の一実施例におけるフイルタ容
器の断面図、第4図は仕切体と磁界強度分布の関
係を示す説明図である。 1……励磁コイル、2……継鉄、3……フイル
タ容器、4……フイルタエレメント、5……流入
管、6……流出管、7……洗浄水流出管、8……
洗浄水流入管、9……磁極、10……フイルタ容
器、11……流入管、12……流出管、13……
排出管、14……振動子、15……第1の部屋、
16……第2の部屋、17……仕切体、18……
磁性細線、19……貫通孔。
FIG. 1 is a configuration diagram of a conventional magnetic filter, and FIG. 2 is a configuration diagram of a magnetic filter according to an embodiment of the present invention.
FIG. 3 is a sectional view of a filter container according to an embodiment of the present invention, and FIG. 4 is an explanatory diagram showing the relationship between the partition and the magnetic field strength distribution. 1...Excitation coil, 2...Yoke, 3...Filter container, 4...Filter element, 5...Inflow pipe, 6...Outflow pipe, 7...Washing water outflow pipe, 8...
Cleaning water inflow pipe, 9...magnetic pole, 10...filter container, 11...inflow pipe, 12...outflow pipe, 13...
Exhaust pipe, 14... vibrator, 15... first chamber,
16... Second room, 17... Partition body, 18...
Magnetic thin wire, 19...through hole.

Claims (1)

【特許請求の範囲】 1 複数個の貫通孔を有する仕切体で分離して、
第1、第2の部屋を形成した容器、第1の部屋に
張られ上記仕切体の貫通孔に挿入した複数本の磁
性細線、これらの磁性細線に交差する磁界を発生
させ、磁性粒子を含む流体を第1の部屋に流入さ
せて、上記磁性細線を通過する間に、上記磁性細
線で磁性粒子を捕捉する手段、捕捉した磁性粒子
を上記磁性細線に沿つて上記仕切体の貫通孔に引
き寄せる磁性粒子誘導手段、及び第1の部屋の流
体が上記仕切体の貫通孔を通過する時に発生する
流体抵抗によつて、上記磁性粒子を上記磁性細線
から離脱させ、第2の部屋に移動させる磁性粒子
離脱手段を備えた磁気フイルタ。 2 磁性粒子誘導手段は、磁性細線を振動させる
と共に、複数本の磁性細線に交差する磁界を、仕
切体の貫通孔に向かつて単調増加させるようにし
た特許請求の範囲第1項記載の磁気フイルタ。 3 磁性細線は、仕切体の貫通孔を貫通して第1
の部屋と第2の部屋間に張られている特許請求の
範囲第1項または第2項記載の磁気フイルタ。
[Claims] 1. Separated by a partition having a plurality of through holes,
A container forming first and second chambers, a plurality of magnetic thin wires stretched in the first chamber and inserted into the through holes of the partition, generating a magnetic field that intersects these magnetic thin wires, and containing magnetic particles. Means for causing the fluid to flow into the first chamber and capturing magnetic particles by the magnetic thin wire while passing through the magnetic thin wire, and drawing the captured magnetic particles to the through hole of the partition body along the magnetic thin wire. A magnetic particle guiding means and a fluid resistance generated when the fluid in the first chamber passes through the through hole of the partition body to cause the magnetic particles to separate from the magnetic thin wire and move to the second chamber. Magnetic filter with particle separation means. 2. The magnetic filter according to claim 1, wherein the magnetic particle guiding means vibrates the magnetic thin wires and monotonically increases the magnetic field crossing the plurality of magnetic thin wires toward the through-hole of the partition. . 3 The magnetic thin wire passes through the through hole of the partition body and enters the first
3. A magnetic filter according to claim 1 or 2, which is placed between the first room and the second room.
JP3204284A 1984-02-22 1984-02-22 Magnetic filter Granted JPS60175514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3204284A JPS60175514A (en) 1984-02-22 1984-02-22 Magnetic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3204284A JPS60175514A (en) 1984-02-22 1984-02-22 Magnetic filter

Publications (2)

Publication Number Publication Date
JPS60175514A JPS60175514A (en) 1985-09-09
JPS6241772B2 true JPS6241772B2 (en) 1987-09-04

Family

ID=12347807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3204284A Granted JPS60175514A (en) 1984-02-22 1984-02-22 Magnetic filter

Country Status (1)

Country Link
JP (1) JPS60175514A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784767A (en) * 1986-03-20 1988-11-15 Director General, Agency Of Industrial Science And Technology Magnetic separator for fluids

Also Published As

Publication number Publication date
JPS60175514A (en) 1985-09-09

Similar Documents

Publication Publication Date Title
US2430157A (en) Magnetic separator for removing finely divided magnetic material from liquids
US4087358A (en) Augmenting and facilitating flushing in magnetic separation
US4217213A (en) Device for the separation of minute magnetizable particles, method and apparatus
US4472275A (en) Magnetic separator
US2329893A (en) Magnetic device for the purification of fluids
GB1578396A (en) Magnetic separator
US4363729A (en) Magnetic filter
JP2728848B2 (en) Magnetic filter
JPS5952509A (en) Magnetic separation apparatus
JPS6241772B2 (en)
JPS61153117A (en) Magnetic filter
JPS6048213B2 (en) How to regenerate an electromagnetic filter
JPS6344403B2 (en)
JPS6239004B2 (en)
JPS58143856A (en) Filter for adsorbing magnetic material
JPH0659369B2 (en) Filter device
JPH09327635A (en) Magnetic separating apparatus
JPS6159163B2 (en)
JPS60183019A (en) Magnetic filter
JPH04349908A (en) Oil purifying apparatus
JPH07275619A (en) Magnetic filter
JPS5823371Y2 (en) magnetic filter
JPS6231130Y2 (en)
SU915896A1 (en) Device for magnetic coagulation
JPS62168516A (en) Magnetic separation apparatus