JPS624140B2 - - Google Patents

Info

Publication number
JPS624140B2
JPS624140B2 JP53116384A JP11638478A JPS624140B2 JP S624140 B2 JPS624140 B2 JP S624140B2 JP 53116384 A JP53116384 A JP 53116384A JP 11638478 A JP11638478 A JP 11638478A JP S624140 B2 JPS624140 B2 JP S624140B2
Authority
JP
Japan
Prior art keywords
negative pressure
liquid
flow path
main flow
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53116384A
Other languages
Japanese (ja)
Other versions
JPS5542645A (en
Inventor
Tetsuo Nishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TORABENOORU KK
Original Assignee
TORABENOORU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TORABENOORU KK filed Critical TORABENOORU KK
Priority to JP11638478A priority Critical patent/JPS5542645A/en
Publication of JPS5542645A publication Critical patent/JPS5542645A/en
Publication of JPS624140B2 publication Critical patent/JPS624140B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は人工腎臓用透析液の脱気システムに関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a system for degassing dialysate for an artificial kidney.

人工腎臓は、半透膜で隔てられた血液側と透析
液側との間の物質移動によつて、血液中から有害
な代謝生産物および水分を除去するための透析装
置である。透析液は、血液から必須電解質が透析
によつて失われるのを防止するため、正常な血液
水分中の成分のそれにできるだけ近似した化学組
成をもつている。そのため透析液は原液と呼ばれ
る上記必須電解質を高濃度に含有する溶液を水道
水などで希釈してその場で調製され、透析器内の
その流路に連続的に供給される。
An artificial kidney is a dialysis device for removing harmful metabolic products and water from the blood by mass transfer between the blood side and the dialysate side separated by a semipermeable membrane. The dialysate has a chemical composition that approximates as closely as possible that of the components in normal blood water to prevent essential electrolytes from being lost from the blood through dialysis. Therefore, the dialysate is prepared on the spot by diluting a solution containing the above-mentioned essential electrolytes at a high concentration, called a stock solution, with tap water or the like, and is continuously supplied to the flow path within the dialyzer.

透析液は患者の体温になるべく近い温度である
ことが望ましく、そのため使用される水は、原液
との混合に先立つてあるいはその後で体温または
それより少し高温にヒータで加熱される。
It is desirable that the dialysate fluid be at a temperature as close as possible to the patient's body temperature, so the water used is heated to body temperature or slightly higher with a heater prior to or after mixing with the stock solution.

またある種のタイプの透析器、例えば中空繊維
型もしくはプレート型では、限外ロ過と称する血
液中の過剰の水分の除去に、透析器の下流で透析
液を吸引することにより透析液側に大気圧以下の
陰圧を発生せしめ、血液側との圧力差によつて水
分子を膜を通して血液側より透析液側へ移動させ
る原理を利用している。
Also, in some types of dialyzers, such as hollow fiber or plate types, the removal of excess water from the blood, called ultrafiltration, involves suctioning the dialysate downstream of the dialyzer. It uses the principle of generating negative pressure below atmospheric pressure and moving water molecules from the blood side to the dialysate side through a membrane due to the pressure difference with the blood side.

周知のように、気体の液体中への溶解度は液体
の温度に反比例し、気体の分圧に正比例する。従
つて上述の状況は、透析液またはそれを調製する
希釈水の中に溶存する空気その他の気体にとつて
その溶解度が小となる条件に合致するものであ
り、もし脱気処理しなければ、気泡となつて透析
液と共に流路を流れ、透析の効率を減ずるばかり
か、もし血液へ侵入した場合は患者の体内へ導入
され、重大な結果となる。従つて透析液またはそ
れを調製するための水は、透析器中の流路へ入る
前に脱気処理されるのが好ましい。
As is well known, the solubility of a gas in a liquid is inversely proportional to the temperature of the liquid and directly proportional to the partial pressure of the gas. Therefore, the above-mentioned situation is consistent with the condition that the solubility of air and other gases dissolved in the dialysate or the dilution water used to prepare it is low, and if no degassing treatment is performed, Not only do they become bubbles and flow through the flow path with the dialysate, reducing the efficiency of dialysis, but if they enter the bloodstream, they can be introduced into the patient's body, resulting in serious consequences. Therefore, the dialysate, or the water for its preparation, is preferably degassed before entering the flow path in the dialyzer.

本発明は構造が比較的簡単で、効率的であり、
しかも被処理液体の流量に関して融通性のある上
述の目的に使用する脱気システムを提供すること
を目的とする。
The present invention is relatively simple in structure, efficient, and
Moreover, it is an object of the present invention to provide a degassing system for the above-mentioned purpose that is flexible with respect to the flow rate of the liquid to be treated.

本発明の脱気システムは、透析器へ通ずる原液
を水で希釈した透析液、もしくは原液に混合前の
水から被処理液の主流路内に、上流から下流に向
つて陰圧制御弁、陰圧アキユムレータータンク、
該アキユムレータータンクを含む前記陰圧制御弁
ちの間の前記主流路内に陰圧を発生させるための
ポンプ、上部に分離された気体の排気手段を有す
る気体分離タンクを記載した順序に直列に配置
し、さらに該分離タンクと前記陰圧制御弁の上流
に位置する前記主流路との合流点との間を接続す
る前記主流路に並列に配置された脱気された被処
理液の還流回路を備えていることを特徴とするも
のである。
The degassing system of the present invention includes a negative pressure control valve, a negative pressure control valve, a negative pressure control valve, a negative pressure control valve, a negative pressure control valve, and a negative pressure control valve, from upstream to downstream, from the dialysate diluted with water, or water before being mixed with the stock solution, to the main flow path of the liquid to be treated. pressure accumulator tank,
A pump for generating a negative pressure in the main flow path between the negative pressure control valve including the accumulator tank, and a gas separation tank having a means for exhausting the separated gas at the upper part are arranged in series in the stated order. and a reflux circuit for deaerated liquid to be treated, which is arranged in parallel to the main flow path, and further connects the separation tank to a confluence point with the main flow path located upstream of the negative pressure control valve. It is characterized by having the following.

前記ポンプは定速で、一定した流量で運転さ
れ、該ポンプを通る被処理液の流量は、前記合流
点で還流する被処理液と合する主流路を通る新鮮
な被処理液の流量の少なくとも2倍であることが
好ましい。従つて新鮮な被処理液は、主流路内に
直列に配置された前記アキユムレータータンクお
よび気体分離タンクを少なくとも2回通過し、よ
く脱気された後透析器へ送られることとなる。
The pump is operated at a constant speed and at a constant flow rate, such that the flow rate of the liquid to be treated through the pump is at least as high as the flow rate of fresh liquid to be treated through the main channel which is combined with the liquid to be treated returning at the junction point. Preferably, it is twice as large. Therefore, the fresh liquid to be treated passes at least twice through the accumulator tank and the gas separation tank, which are arranged in series in the main flow path, and is thoroughly degassed before being sent to the dialyzer.

本発明の好ましい実施例である図面を参照して
本発明をさらに詳細に説明する。
The present invention will be described in further detail with reference to the drawings, which are preferred embodiments of the present invention.

主流路は、ヒータで暖められた被処理液を導入
する部分10と、陰圧制御弁12、アキユムレー
タータンク14、ポンプ16および分離タンク1
8とを順次直列に接続する部分11と、分離タン
クより透析器へ脱気された処理液を送る部分13
とからなる。原液は前記主流路の上流部分10
へ、ヒーターのさらに上流において混合される
か、または下流部分13で主流路に混合される。
主流路部分10から供給された被処理液は、部分
11へ入り、最初陰圧制御弁12を通過し、陰圧
アキユムレータータンク14へ入る。ポンプ16
は定速で一定量の被処理液体を吸引するから、該
アキユムレータータンク14を含む流路11の弁
12とポンプ16との間に陰圧を発生せしめる。
The main flow path includes a portion 10 into which a liquid to be treated heated by a heater is introduced, a negative pressure control valve 12, an accumulator tank 14, a pump 16, and a separation tank 1.
8 in series, and a section 13 that sends the degassed treatment liquid from the separation tank to the dialyzer.
It consists of. The stock solution is supplied to the upstream portion 10 of the main channel.
to be mixed further upstream of the heater or mixed into the main flow path in the downstream section 13.
The liquid to be treated supplied from the main flow path section 10 enters the section 11, first passes through the negative pressure control valve 12, and then enters the negative pressure accumulator tank 14. pump 16
sucks a certain amount of liquid to be treated at a constant speed, thereby generating a negative pressure between the valve 12 of the flow path 11 including the accumulator tank 14 and the pump 16.

従つて被処理液体は弁12を通過した後、内部
に溶存する気体が遊離して多数の小気泡となり、
アキユムレータータンク14へ入る。該タンク1
4はその中を流れる被処理液体の流れの線速度を
低下させ、十分な滞留時間をもつて陰圧により気
泡の発生を促し、それを分離し易い大気泡に成長
させるのに十分な断面積と高さとを有する。アキ
ユムレータータンク14の後、被処理液は成長し
た気泡を含んだまま、ポンプ16により気体分離
タンク18内へ送られる。該タンク18は、上部
にタンク内部から外部へ突出する排気管22を有
し、該排気管22の下縁と接触してこれを閉塞す
る球型のフロート24を備えている。従つて該フ
ロートが排気管22を閉塞しない高さにある間
は、ポンプ16によつて送り込まれた被処理液中
の気泡はタンク18内を浮上し、該排気管22か
ら大気中へ排出される。ここで脱気された液体
は、タンク内の隔壁26を越えて反対側へ移動
し、一部は透析器への主流路13を経て排出さ
れ、残部は還流路19を経て、合流点20におい
て主流路11へ戻る。ポンプ16のポンプ能力、
すなわち主流路の部分11を通る被処理液の流量
Q2は、この回路に流路10から新たに取り入れ
られる液の流量Q1(それは分離タンク18から
流路13を経て透析器へ送られる液の流路Q3
等しい)よりも大でなければならず、少なくとも
該流量Q1の2倍であることが好ましい。これに
よつて流路10より供給された液は、少なくとも
2回アキユムレータータンク14、ポンプ16お
よび分離タンク18よりなる脱気回路を通過する
ことになり、前記アキユムレータータンク14に
おける気泡の生長促進と相挨つて、十分に脱気さ
れた後流路13を経由して透析器へ送られる。
Therefore, after the liquid to be treated passes through the valve 12, the gas dissolved inside is liberated and becomes a large number of small bubbles.
Enter the accumulator tank 14. The tank 1
4 has a cross-sectional area that is sufficient to reduce the linear velocity of the flow of the liquid to be treated flowing through it, promote the generation of bubbles by negative pressure with sufficient residence time, and grow them into large bubbles that are easy to separate. and height. After the accumulator tank 14, the liquid to be treated is sent into the gas separation tank 18 by a pump 16 while containing the grown bubbles. The tank 18 has an exhaust pipe 22 projecting from the inside of the tank to the outside at its upper part, and is equipped with a spherical float 24 that comes into contact with the lower edge of the exhaust pipe 22 to close it off. Therefore, while the float is at a height that does not block the exhaust pipe 22, air bubbles in the liquid to be treated that are sent by the pump 16 float in the tank 18 and are discharged from the exhaust pipe 22 into the atmosphere. Ru. The degassed liquid moves to the opposite side over the partition wall 26 in the tank, a part of which is discharged via the main channel 13 to the dialyzer, and the remainder passes through the reflux channel 19 and reaches the confluence point 20. Return to the main flow path 11. pumping capacity of the pump 16;
That is, the flow rate of the liquid to be treated passing through the portion 11 of the main flow path
Q 2 must be greater than the flow rate Q 1 of the liquid freshly introduced into this circuit from the channel 10 (which is equal to the flow rate Q 3 of the liquid sent from the separation tank 18 via the channel 13 to the dialyzer). Of course, it is preferable that the flow rate is at least twice the flow rate Q1 . As a result, the liquid supplied from the flow path 10 passes through the degassing circuit consisting of the accumulator tank 14, the pump 16, and the separation tank 18 at least twice, and the air bubbles in the accumulator tank 14 are eliminated. After being sufficiently degassed to promote growth, it is sent to the dialyzer via the flow path 13.

本発明のシステムは流路13から透析器へ送ら
れる脱気済の透析液の流量Q3の変動に対してそ
の効率が低下することなく対応し得る特徴を有す
る。すなわち脱気回路を構成する弁12、タンク
14、ポンプ16および分離タンク18を通る液
の流量Q2は一定であり、そして分離タンクから
透析器へ供給される液の流量Q3より大きい。従
つてその差Q2ーQ3は還流路19を通つて合流点
20で該脱気回路の上流へ戻される。従つて透析
器への液の供給量Q3が小さくなれば、還流され
る液の量はその分だけ大きくなり、流路10から
新たに取り入れられる液量Q1はそれに対応して
減少する。還流する液の合流点20は、弁12の
上流側に位置するので、主流部分11の流量Q2
は変動せず、該弁20とポンプ16との間に発生
する陰圧も変化しない。また流路部13から透析
器へ供給する液の流量Q3が大きくなれば、還流
する流量がそれだけ小さくなり、新たに取り入れ
られる液量Q1もそれに対応して大きくなる。し
かしながら弁12とポンプ16との間の陰圧およ
び流量Q2は、このシステムへ新たに入つて来る
液流量Q1および出て行く液流量Q3の変動にもか
かわらず一定に保たれるので、前述した効率のよ
い脱気処理がいつも行われることとなる。分離タ
ンク18への還流路19の取付位置は、隔壁26
に関してポルプ16からの主流路11と反対側で
ある。これにより気泡が浮上して分離された被処
理液が還流することとなり、また隔壁は透析器へ
送られる流路13から出て行く液への気泡の混入
を防止する。フロート弁24は、分離タンク18
の水位が上昇して排気管22からあふれるのを防
止する。水位が下つてフロート24が管22の下
縁から離れれば、管22から分離された気体が大
気中へ排出することを許容する。
The system of the present invention has a feature that it can cope with fluctuations in the flow rate Q 3 of the degassed dialysate sent from the flow path 13 to the dialyzer without reducing its efficiency. That is, the flow rate Q 2 of the liquid through the valve 12, the tank 14, the pump 16 and the separation tank 18 which constitute the degassing circuit is constant and is greater than the flow rate Q 3 of the liquid supplied from the separation tank to the dialyzer. Therefore, the difference Q 2 -Q 3 is returned to the upstream side of the degassing circuit at the junction 20 through the reflux path 19. Therefore, if the amount Q 3 of fluid supplied to the dialyzer becomes smaller, the amount of fluid refluxed increases accordingly, and the amount Q 1 of fluid newly taken in from the flow path 10 decreases accordingly. Since the confluence point 20 of the refluxing liquid is located upstream of the valve 12, the flow rate Q 2 of the main flow portion 11 is
does not change, and the negative pressure generated between the valve 20 and the pump 16 also does not change. Furthermore, as the flow rate Q 3 of the liquid supplied from the flow path section 13 to the dialyzer increases, the flow rate of reflux becomes smaller accordingly, and the newly taken in liquid amount Q 1 also increases correspondingly. However, since the negative pressure between the valve 12 and the pump 16 and the flow rate Q 2 remain constant despite variations in the new liquid flow rate Q 1 entering the system and the liquid flow rate leaving the system Q 3 . , the above-mentioned efficient degassing process is always performed. The mounting position of the reflux path 19 to the separation tank 18 is the partition wall 26.
This is the side opposite to the main flow path 11 from the polp 16 with respect to the main flow path 11 . As a result, air bubbles float to the surface and the separated liquid to be treated flows back, and the partition wall prevents air bubbles from being mixed into the liquid exiting from the flow path 13 sent to the dialyzer. The float valve 24 is connected to the separation tank 18
This prevents the water level from rising and overflowing from the exhaust pipe 22. As the water level falls and the float 24 moves away from the lower edge of the tube 22, it allows the gas separated from the tube 22 to escape to the atmosphere.

本発明のシステムは、慣用メータ類を適当な個
所に備えることができる。例えば圧力計22を弁
12とアキユムレータータンク14の中間で、主
流路部分11に設置し、該個所における陰圧を測
定し、監視することができる。
The system of the present invention can be equipped with conventional meters at appropriate locations. For example, a pressure gauge 22 can be installed in the main channel section 11, intermediate the valve 12 and the accumulator tank 14, in order to measure and monitor the negative pressure at this point.

以上のように本発明の脱気システムは構造が比
較的筒単であり、そのため故障の発生が少なく、
一方脱気の効率は一層向上し、しかも該効率を低
下することなく被処理液の流量の変動にも耐える
ことのできる利点を有している。
As described above, the deaeration system of the present invention has a relatively simple structure, which reduces the occurrence of failures.
On the other hand, the degassing efficiency is further improved, and it has the advantage of being able to withstand fluctuations in the flow rate of the liquid to be treated without reducing the efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の気システムの回路図である。 10,11,13は主流路、12は陰圧制御
弁、14はアキユムレータータンク、16はポン
プ、18は分離タンク、19は被処理液の還流回
路である。
The drawing is a circuit diagram of the air system of the present invention. 10, 11, and 13 are main channels, 12 is a negative pressure control valve, 14 is an accumulator tank, 16 is a pump, 18 is a separation tank, and 19 is a reflux circuit for the liquid to be treated.

Claims (1)

【特許請求の範囲】[Claims] 1 透析液原液に混合前の水、または原液に混合
後の透析液からなる被処理液体から、その中に溶
存する気体を脱気するシステムにおいて、透析器
へ通ずる前記被処理液体が流れる主流路内に、上
流から下流に向かつて陰圧制御弁、陰圧アキユム
レータータンク、該アキユムレータータンクを含
む前記陰圧制御弁との間の前記主流路内に陰圧を
発生させるためのポンプ、上部に分離された気体
の排気手段を有する気体分離タンクを記載した順
序に直列に配置し、さらに該分離タンクと、前記
陰圧制御弁の上流に位置する前記主流路との合流
点との間を接続する前記主流路に並列に配置され
た脱気された被処理液の還流回路を備えているこ
とを特徴とする前記システム。
1 In a system for degassing gas dissolved in a treated liquid consisting of water before being mixed with a dialysate stock solution or dialysate after being mixed with a stock solution, a main channel through which the processed liquid flows, leading to a dialyzer. a negative pressure control valve, a negative pressure accumulator tank, and a pump for generating negative pressure in the main flow path between the negative pressure control valve including the accumulator tank from upstream to downstream; , gas separation tanks having separated gas evacuation means at the upper part are arranged in series in the stated order, and further a connection point between the separation tanks and the main flow path located upstream of the negative pressure control valve. The system further comprises a reflux circuit for a degassed liquid to be treated, which is arranged in parallel with the main flow path connecting between the main flow channels.
JP11638478A 1978-09-20 1978-09-20 Dialysis liquid deaeration system for artificial kidney Granted JPS5542645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11638478A JPS5542645A (en) 1978-09-20 1978-09-20 Dialysis liquid deaeration system for artificial kidney

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11638478A JPS5542645A (en) 1978-09-20 1978-09-20 Dialysis liquid deaeration system for artificial kidney

Publications (2)

Publication Number Publication Date
JPS5542645A JPS5542645A (en) 1980-03-26
JPS624140B2 true JPS624140B2 (en) 1987-01-28

Family

ID=14685671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11638478A Granted JPS5542645A (en) 1978-09-20 1978-09-20 Dialysis liquid deaeration system for artificial kidney

Country Status (1)

Country Link
JP (1) JPS5542645A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE451801B (en) * 1983-11-29 1987-11-02 Gambro Lundia Ab DEVICE FOR BREATHING A FLUID THROUGH A PIPE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281996A (en) * 1975-12-27 1977-07-08 Nikkiso Co Ltd Dialyzer
JPS5481696A (en) * 1977-12-10 1979-06-29 Nikkiso Co Ltd Degassing device for dialysing liquid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54165098U (en) * 1978-05-10 1979-11-19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281996A (en) * 1975-12-27 1977-07-08 Nikkiso Co Ltd Dialyzer
JPS5481696A (en) * 1977-12-10 1979-06-29 Nikkiso Co Ltd Degassing device for dialysing liquid

Also Published As

Publication number Publication date
JPS5542645A (en) 1980-03-26

Similar Documents

Publication Publication Date Title
EP0283850B1 (en) Device for the extra-corporeal oxygenation of blood and for cardiovascular assistance
CA2671010C (en) Blood treatment apparatus
US6086753A (en) System for eliminating gases in a container
US9452251B2 (en) Degassing membrane for dialysis
US3526481A (en) Blood oxygenator
IL43107A (en) Artificial lung
SE525132C2 (en) Method of operation of dialysis device
US4125468A (en) Hollow-fiber permeability apparatus
DE69934988D1 (en) METHOD AND APPARATUS FOR CARRYING OUT CONTROLLED ULTRAFILTRATION OF DIALYSIS DURING HEMODIALYSIS
DE69821415D1 (en) Device for checking the sodium concentration of a dialysate according to regulation
US4735727A (en) Dialysis equipment
JPH0657281B2 (en) Liquid degasser
CN101444648B (en) Negative pressure degassing device used in haemodialysis machine
US20210106745A1 (en) Blood-degassing apparatus and blood-treatment system
JPS6362504A (en) Method for concentrating organic component in aqueous solution containing same
JPS624140B2 (en)
GB1471936A (en) Apparatus for an method of removing substances intended for excretion in the urine from blood
EP3796956B1 (en) Extracorporeal circuit for removal of co2 from blood
JPS5911015Y2 (en) Artificial kidney dialysate deaerator
JPS607725Y2 (en) Artificial kidney dialysate deaerator
JP3261511B2 (en) Diafiltration equipment
CN217548657U (en) Concentrated solution degassing system of blood purification equipment
JPS6327720Y2 (en)
JPH059042Y2 (en)
WO2024024459A1 (en) Plasma exchanging system and method for controlling plasma exchanging system