JPS6241400B2 - - Google Patents

Info

Publication number
JPS6241400B2
JPS6241400B2 JP57068048A JP6804882A JPS6241400B2 JP S6241400 B2 JPS6241400 B2 JP S6241400B2 JP 57068048 A JP57068048 A JP 57068048A JP 6804882 A JP6804882 A JP 6804882A JP S6241400 B2 JPS6241400 B2 JP S6241400B2
Authority
JP
Japan
Prior art keywords
plasma
frequency electromagnetic
wall surface
electromagnetic waves
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57068048A
Other languages
Japanese (ja)
Other versions
JPS58186200A (en
Inventor
Takashi Okazaki
Kotaro Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57068048A priority Critical patent/JPS58186200A/en
Publication of JPS58186200A publication Critical patent/JPS58186200A/en
Publication of JPS6241400B2 publication Critical patent/JPS6241400B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Description

【発明の詳細な説明】 本発明は核融合装置に係り、特に高周波電磁波
によるプラズマ加熱手段を備えた核融合装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear fusion device, and more particularly to a nuclear fusion device equipped with plasma heating means using high-frequency electromagnetic waves.

核融合装置においては、その真空容器内に発生
させたプラズマを加熱して核融合反応を起こさせ
るが、このプラズマ加熱手段の1つとして高周波
電磁波をプラズマに入射する方法が知られてい
る。入射する高周波電磁波にはその波の伝播方向
や周波数によつて数種類があり、また高周波電磁
波をプラズマに入射する場所も高周波電磁波の種
類によつてそれぞれ異なる。例えばトカマク形核
融合装置においては、トーラスの外側から電子サ
イクロトロンの正常波を入射するが、この場合の
構造を第1図に示す。
In a nuclear fusion device, plasma generated in a vacuum vessel is heated to cause a nuclear fusion reaction, and one known method for heating the plasma is to inject high-frequency electromagnetic waves into the plasma. There are several types of incident high-frequency electromagnetic waves depending on the propagation direction and frequency of the waves, and the location where the high-frequency electromagnetic waves are incident on the plasma also differs depending on the type of high-frequency electromagnetic waves. For example, in a tokamak type nuclear fusion device, the normal wave of an electron cyclotron is input from the outside of the torus, and the structure in this case is shown in FIG.

第1図において、1は通常ステンレスからなる
真空容器、2はプラズマ、3は高周波発振用導波
管、4は蓋、TCはトーラス中心軸である。すな
わち、真空容器1に取付けた導波管3より、正常
波を低磁場側から磁場に垂直な方向にプラズマ2
へ入射するようになつている。
In FIG. 1, 1 is a vacuum vessel usually made of stainless steel, 2 is a plasma, 3 is a waveguide for high frequency oscillation, 4 is a lid, and TC is the center axis of the torus. In other words, a waveguide 3 attached to a vacuum vessel 1 sends normal waves from the low magnetic field side to the plasma 2 in a direction perpendicular to the magnetic field.
It is becoming more and more incidental.

ところで、高周波電磁波によるプラズマ加熱効
率は、高周波電磁波の減衰率Kiで表わされ、第
2図に示すように、高周波電磁波のプラズマへの
入射角度に大きく依存する。第2図において、曲
線X,Y,Zはトロイダル磁場となす角度αがそ
れぞれα=65゜、75゜、85゜で高周波電磁波を入
射した場合の減衰率Kiを示す。
By the way, the plasma heating efficiency by high-frequency electromagnetic waves is expressed by the attenuation rate K i of the high-frequency electromagnetic waves, and as shown in FIG. 2, it largely depends on the angle of incidence of the high-frequency electromagnetic waves into the plasma. In FIG. 2, curves X, Y, and Z indicate the attenuation rate K i when high-frequency electromagnetic waves are incident at angles α with the toroidal magnetic field of α=65°, 75°, and 85°, respectively.

したがつて、従来の核融合装置では、プラズマ
加熱効率が最も良好となる入射角度αに高周波電
磁波の伝播方向が向くように、導波管3を設置し
ていた。しかし、高周波電磁波の放射指向性は第
3図に示すように単方向ではない。
Therefore, in the conventional nuclear fusion device, the waveguide 3 is installed so that the propagation direction of the high-frequency electromagnetic waves is directed to the incident angle α that provides the best plasma heating efficiency. However, the radiation directivity of high-frequency electromagnetic waves is not unidirectional as shown in FIG.

第3図において、曲線P1,P2,P3等は導波管の
開口部の形状が方形のものの放射指向性、曲線
Q1,Q2,Q3等は同開口部の形状が円形のものの
放射指向性を示している。Dは方形の場合にはそ
の各辺の長さ寸法、円形の場合にはその直径寸法
であり、λは高周波電磁波の波長である。また
θ、φは、導波管の開口面に垂直な軸線をX軸、
この開口面内において前記方形の一方の辺と平行
な軸線をY軸、他方の辺と平行な軸線をZ軸とし
た場合に、X軸―Y軸平面において高周波電磁波
の伝播方向とX軸とのなす角度、およびX軸―Z
軸平面において高周波電磁波の伝播方向とX軸と
なす角度である。この第3図からも判るように、
高周波電磁波の放射指向性は曲線P1,Q1で示す
θ、φ=0の方向のものだけでなく、曲線P2,P3
等や曲線Q2,Q3等で示す各方向のものがあり、
これら各方向の放射指向性を有する高周波電磁波
がプラズマに入射されるが、前記第2図からも判
るように、入射角度αを良好に選定してもプラズ
マの中心近傍を外れた位置に伝播した場合には、
高周波電磁波の減衰率Ki、つまりプラズマ加熱
効率が著しく低下するため、入射した高周波電磁
波のうち、プラズマの中心近傍の加熱効率の大き
な領域(以下吸収領域という)に到達する一部の
もののみがプラズマ加熱に寄与し、残りのものは
プラズマに吸収されないで真空容器の内壁に吸収
される。したがつて、従来の核融合装置では、入
射した高周波エネルギの一部しかプラズマ加熱に
使用されず、加熱効率が低いという欠点があつ
た。
In Figure 3, curves P 1 , P 2 , P 3 etc. are the radiation directivity curves of the waveguide with a rectangular opening shape.
Q 1 , Q 2 , Q 3 , etc. indicate the radiation directivity of the same apertures with circular shapes. D is the length of each side in the case of a square, the diameter in the case of a circle, and λ is the wavelength of the high frequency electromagnetic wave. In addition, θ and φ are the axis perpendicular to the aperture surface of the waveguide,
In this opening plane, if the axis parallel to one side of the rectangle is the Y-axis, and the axis parallel to the other side is the Z-axis, then the propagation direction of the high-frequency electromagnetic wave and the X-axis in the X-axis-Y-axis plane and the angle formed by the X-axis - Z
This is the angle between the propagation direction of high-frequency electromagnetic waves and the X-axis in the axial plane. As you can see from this figure 3,
The radiation directivity of high-frequency electromagnetic waves is not only in the direction of θ and φ = 0 as shown by curves P 1 and Q 1 , but also in the direction of curves P 2 and P 3
etc., curves Q 2 , Q 3 etc. in each direction,
These high-frequency electromagnetic waves having radiation directivity in each direction are incident on the plasma, but as can be seen from Figure 2 above, even if the incident angle α is well selected, the waves propagate to a position away from the center of the plasma. in case of,
Since the attenuation rate K i of high-frequency electromagnetic waves, that is, the plasma heating efficiency, decreases significantly, only a portion of the incident high-frequency electromagnetic waves reaches the region with high heating efficiency near the center of the plasma (hereinafter referred to as the absorption region). It contributes to plasma heating, and the rest is absorbed by the inner wall of the vacuum vessel without being absorbed by the plasma. Therefore, conventional nuclear fusion devices have the disadvantage that only a portion of the incident high-frequency energy is used for plasma heating, resulting in low heating efficiency.

本発明の目的は、入射した高周波エネルギを有
効にプラズマ加熱に利用して、その加熱効率を向
上し得る核融合装置を提供することにある。
An object of the present invention is to provide a nuclear fusion device that can effectively utilize incident high-frequency energy for plasma heating to improve its heating efficiency.

この目的を達成するため、本発明は、プラズマ
に近い位置にあつて入射された高周波電磁波を反
射する壁面、例えば真空容器の内壁面や、第1壁
を備えたものでは第1壁の内壁面の曲率を、この
壁面で反射した高周波電磁波がプラズマの中心近
傍の吸収領域に到達するように設定し、入射され
た高周波電磁波のうちプラズマに吸収されないで
前記壁面に到達したものをプラズマの吸収領域に
収束して有効にプラズマ加熱に利用するようにし
たことを特徴とする。
In order to achieve this object, the present invention is directed to a wall surface that is located close to the plasma and reflects the incident high-frequency electromagnetic waves, such as an inner wall surface of a vacuum container, or an inner wall surface of the first wall in the case of a device equipped with a first wall. The curvature of is set so that the high-frequency electromagnetic waves reflected by this wall reach the absorption region near the center of the plasma, and the part of the incident high-frequency electromagnetic waves that reaches the wall without being absorbed by the plasma is the absorption region of the plasma. It is characterized in that it converges on and is effectively used for plasma heating.

以下、本発明を図示の各実施例について詳細に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with respect to each of the illustrated embodiments.

第4図は本発明の一実施例に係るトカマク形核
融合装置の縦断面図である。この実施例が第1図
の従来例と異なる点は真空容器5の内壁面の曲率
である。前述したように、高周波電磁波の伝播方
向にはその放射指向性から単方向ではなく、40゜
〜80゜の広がりがある。そのうち、プラズマ2の
吸収領域2aに直列到達するのは、一部の高周波
電磁波6aのみで、残りの高周波電磁波6bは真
空容器5の内壁面5aに到達し、ここで一部(ス
テンレスの場合約10%)が吸収された後に反射さ
れる。そこで、本実施例では、この真空容器5の
内壁面5aで反射された高周波電磁波6bがプラ
ズマ2の吸収領域2aに到達するように、内壁面
5aの曲率を設定している。したがつて、入射さ
れた高周波電磁波の殆んど全てのものがプラズマ
2の吸収領域2aに収束されてそのエネルギが有
効にプラズマ2に吸収されるため、プラズマ加熱
効率を著しく向上することができる。
FIG. 4 is a longitudinal sectional view of a tokamak-type nuclear fusion device according to an embodiment of the present invention. This embodiment differs from the conventional example shown in FIG. 1 in the curvature of the inner wall surface of the vacuum vessel 5. As mentioned above, the propagation direction of high-frequency electromagnetic waves is not unidirectional due to its radiation directivity, but has a spread of 40° to 80°. Of these, only a part of the high-frequency electromagnetic waves 6a reaches the absorption region 2a of the plasma 2 in series, and the remaining high-frequency electromagnetic waves 6b reach the inner wall surface 5a of the vacuum container 5, where a portion (in the case of stainless steel, approximately 10%) is absorbed and then reflected. Therefore, in this embodiment, the curvature of the inner wall surface 5a is set so that the high frequency electromagnetic wave 6b reflected by the inner wall surface 5a of the vacuum vessel 5 reaches the absorption region 2a of the plasma 2. Therefore, almost all of the incident high-frequency electromagnetic waves are focused on the absorption region 2a of the plasma 2, and the energy is effectively absorbed by the plasma 2, so that the plasma heating efficiency can be significantly improved. .

第5図は本発明の他の実施例に係るトカマク形
核融合装置の縦断面図である。この実施例では、
真空容器7の内壁面7aを複数に区分し、区分さ
れた各領域毎にその曲率を、内壁面7aの各領域
で反射された高周波電磁波6bがプラズマ2の吸
収領域2aに到達するように、それぞれ設定して
いる。したがつて、真空容器7のトーラス中心軸
TC方向の寸法を増大することなく、前記実施例
と同様にプラズマ加熱効率を向上することができ
る。
FIG. 5 is a longitudinal sectional view of a tokamak-type nuclear fusion device according to another embodiment of the present invention. In this example,
The inner wall surface 7a of the vacuum container 7 is divided into a plurality of regions, and the curvature of each divided region is adjusted so that the high frequency electromagnetic waves 6b reflected at each region of the inner wall surface 7a reach the absorption region 2a of the plasma 2. Each is set. Therefore, the torus central axis of the vacuum vessel 7
The plasma heating efficiency can be improved in the same manner as in the embodiments described above without increasing the dimension in the TC direction.

また、第6図および第7図の各実施例は第4図
および第5図に示した各実施例の変形例である。
すなわち、これらの各実施例では、前述のように
真空容器8,9の高周波電磁波入射ポートと反対
側の内壁面8a,9aで反射されてプラズマ2の
吸収領域2aに到達した高周波電磁波6bのう
ち、プラズマ2に吸収されないで高周波電磁波入
射ポート側の内壁面8a,9aに到達し、ここで
再度反射された高周波電磁波6bが再びプラズマ
2の吸収領域2aに到達するように、高周波電磁
波入射ポート側の内壁面8a,9aが円形に形成
されている。したがつて、前記第4図および第5
図の各実施例よりもさらにプラズマ加熱効率を向
上することができる。
The embodiments shown in FIGS. 6 and 7 are modifications of the embodiments shown in FIGS. 4 and 5.
That is, in each of these embodiments, as described above, among the high-frequency electromagnetic waves 6b that are reflected from the inner wall surfaces 8a and 9a of the vacuum vessels 8 and 9 on the opposite side to the high-frequency electromagnetic wave incident ports and reach the absorption region 2a of the plasma 2, , the high-frequency electromagnetic wave incident port side so that the high-frequency electromagnetic wave 6b that is not absorbed by the plasma 2 and reaches the inner wall surfaces 8a and 9a on the high-frequency electromagnetic wave incident port side, and is reflected again here, reaches the absorption region 2a of the plasma 2 again. The inner wall surfaces 8a, 9a are formed in a circular shape. Therefore, the above-mentioned FIGS. 4 and 5
Plasma heating efficiency can be further improved than in each of the illustrated embodiments.

前記各実施例では本発明を第1壁を有しないト
カマク形核融合装置に適用した場合について述べ
たが、本発明はこれに限らず、第8図および第9
図にそれぞれ示すような第1壁を備えたトカマク
形核融合装置や非軸対称形核融合装置、例えばヘ
リオトロン形核融合装置のほか、ステラレーター
形、ミラー形核融合装置等にも広く適用すること
ができる。すなわち、真空容器1内にブラケツト
10を介して支持された通常ステンレスからなる
内側第1壁(第8図では11、第9図では13)
および外側第1壁(第8図では12、第9図では
14)の各内壁面11a,13aおよび12a,
14aの曲率を、これらの内壁面で反射された高
周波電磁波がプラズマ2の吸収領域2aに到達す
るように、設定することにより、前記各実施例と
同様にプラズマ加熱効率を向上することができ
る。なお、第8図および第9図において、その内
側第1壁11,13および外側第1壁12,14
の各内壁面11a,13aおよび12a,14a
を、第5図のように、複数に区分し、区分された
各領域毎にその曲率を、各領域で反射された高周
波電磁波がプラズマ2の吸収領域2aに到達する
ように、それぞれ設定してもよく、このようにし
た場合にも第5図と同様な効果が得られる。ま
た、本発明は、第8図および第9図において第1
壁のブランケツト側に冷却パイプを設けたものに
も同様に適用することができる。
In each of the above embodiments, a case has been described in which the present invention is applied to a tokamak-type nuclear fusion device that does not have a first wall, but the present invention is not limited to this.
It can be widely applied to tokamak-type fusion devices and non-axisymmetric fusion devices, such as heliotron-type fusion devices, which each have a first wall as shown in the figure, as well as stellarator-type, mirror-type fusion devices, etc. be able to. That is, the inner first wall (11 in FIG. 8, 13 in FIG. 9) usually made of stainless steel is supported within the vacuum container 1 via a bracket 10.
and each inner wall surface 11a, 13a and 12a of the outer first wall (12 in FIG. 8, 14 in FIG. 9),
By setting the curvature of 14a so that the high-frequency electromagnetic waves reflected by these inner wall surfaces reach the absorption region 2a of plasma 2, plasma heating efficiency can be improved as in each of the embodiments described above. In addition, in FIG. 8 and FIG. 9, the inner first walls 11, 13 and the outer first walls 12, 14
Each inner wall surface 11a, 13a and 12a, 14a of
is divided into a plurality of regions as shown in FIG. 5, and the curvature of each divided region is set so that the high frequency electromagnetic waves reflected in each region reach the absorption region 2a of the plasma 2. Even in this case, the same effect as shown in FIG. 5 can be obtained. Further, the present invention provides the first
It can be similarly applied to those in which cooling pipes are provided on the blanket side of the wall.

さらに前記各実施例では、通常ステンレスから
なる真空容器あるいは第1壁の内壁面を直接高周
波電磁波の反射面としているが、これらの内壁面
にステンレスより反射係数の大きい材料からなる
反射膜を設ければ、ここで吸収される高周波電磁
波を少なくし、さらにプラズマ加熱効率を向上す
ることができる。なお、前記反射膜の材料とし
て、反射係数が大きいばかりでなく、導電率が高
くかつ真空中で不純物を出さないもの、例えば銀
などが好適で、これを銀メツキなどとして前記内
壁面に施こせばよい。
Further, in each of the above embodiments, the inner wall surface of the vacuum vessel or the first wall, which is usually made of stainless steel, is used as a direct reflection surface for high-frequency electromagnetic waves, but a reflective film made of a material with a higher reflection coefficient than stainless steel is provided on these inner wall surfaces. For example, it is possible to reduce the amount of high-frequency electromagnetic waves absorbed here and further improve the plasma heating efficiency. The material for the reflective film is preferably a material that not only has a large reflection coefficient but also has high conductivity and does not emit impurities in a vacuum, such as silver, which can be applied to the inner wall surface as silver plating or the like. Bye.

また、入射する高周波電磁波としては、イオン
サイクロトロン波(10MHz〜100MHz)、低域混
成波(1GHz〜2GHz)、電子サイクロトロン波
(10GHz〜100GHz)などが考えられるが、これ
らの中で波長の短かい高周波電磁波、例えば電子
サイクロトロン波などを用いるのがよい。
Incoming high-frequency electromagnetic waves include ion cyclotron waves (10 MHz to 100 MHz), low-frequency hybrid waves (1 GHz to 2 GHz), and electron cyclotron waves (10 GHz to 100 GHz). It is preferable to use high frequency electromagnetic waves, such as electron cyclotron waves.

以上説明したように、本発明によれば、プラズ
マに近い位置にあつて入射された高周波電磁波を
反射する壁面、例えば真空容器の内壁面や第1壁
の内壁面の曲率を、この壁面で反射された高周波
電磁波がプラズマの吸収領域に到達するように、
設定したので、入射された高周波電磁波のうちプ
ラズマに吸収されないで前記壁面に到達したもの
をプラズマの吸収領域に収束して有効に利用する
ことができ、その結果プラズマ加熱効率を向上す
ることが可能となる。
As explained above, according to the present invention, the curvature of the wall surface that is located close to the plasma and reflects the incident high-frequency electromagnetic waves, such as the inner wall surface of the vacuum container or the inner wall surface of the first wall, can be reflected by this wall surface. In order for the high-frequency electromagnetic waves to reach the absorption region of the plasma,
With this setting, it is possible to effectively utilize the incident high-frequency electromagnetic waves that reach the wall surface without being absorbed by the plasma by converging them in the plasma absorption region, and as a result, it is possible to improve the plasma heating efficiency. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の核融合装置におけるトーラス中
心より右側の縦断面図、第2図は高周波電磁波の
減衰率を示す特性図、第3図は高周波電磁波の放
射指向性を示す特性図、第4図〜第9図はそれぞ
れ異なる本発明の各実施例に係る核融合装置のト
ーラス中心より右側の縦断面図である。 2…プラズマ、2a…吸収領域、3…高周波発
振用導波管、5,7,8,9…真空容器、5a,
7a,8a,9a…内壁面、6a,6b…高周波
電磁波、11〜14…第1壁、11a〜14a…
内壁面。
Figure 1 is a vertical cross-sectional view of the right side of the torus center in a conventional fusion device, Figure 2 is a characteristic diagram showing the attenuation rate of high-frequency electromagnetic waves, Figure 3 is a characteristic diagram showing the radiation directivity of high-frequency electromagnetic waves, and Figure 4 is a characteristic diagram showing the radiation directivity of high-frequency electromagnetic waves. 9 to 9 are vertical cross-sectional views of the right side of the torus center of nuclear fusion devices according to different embodiments of the present invention. 2... Plasma, 2a... Absorption region, 3... Waveguide for high frequency oscillation, 5, 7, 8, 9... Vacuum container, 5a,
7a, 8a, 9a...inner wall surface, 6a, 6b...high frequency electromagnetic waves, 11-14...first wall, 11a-14a...
Inner wall surface.

Claims (1)

【特許請求の範囲】 1 真空容器内のプラズマに高周波電磁波を入射
し、これを加熱して核融合反応を起こさせる核融
合装置において、前記プラズマに近い位置にあつ
て前記高周波電磁波を反射する壁面の曲率を、こ
の壁面で反射された前記高周波電磁波が前記プラ
ズマの中心近傍の吸収領域に到達するように設定
したことを特徴とする核融合装置。 2 特許請求の範囲第1項において、前記壁面は
前記真空容器の内壁面であることを特徴とする核
融合装置。 3 特許請求の範囲第1項において、前記真空容
器内のプラズマに近い位置に第1壁を備えてお
り、前記壁面はこの第1壁の内壁面であることを
特徴とする核融合装置。 4 特許請求の範囲第1項において、前記壁面に
反射係数の大きい反射膜を設けたことを特徴とす
る核融合装置。
[Scope of Claims] 1. In a nuclear fusion device that injects high-frequency electromagnetic waves into plasma in a vacuum container and heats it to cause a nuclear fusion reaction, a wall surface that is located close to the plasma and reflects the high-frequency electromagnetic waves. A fusion device characterized in that the curvature of the wall surface is set such that the high frequency electromagnetic wave reflected by the wall surface reaches an absorption region near the center of the plasma. 2. The nuclear fusion device according to claim 1, wherein the wall surface is an inner wall surface of the vacuum vessel. 3. The nuclear fusion device according to claim 1, comprising a first wall in the vacuum container at a position close to the plasma, and the wall surface is an inner wall surface of the first wall. 4. The nuclear fusion device according to claim 1, characterized in that a reflective film with a large reflection coefficient is provided on the wall surface.
JP57068048A 1982-04-24 1982-04-24 Nuclear fusion reactor Granted JPS58186200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57068048A JPS58186200A (en) 1982-04-24 1982-04-24 Nuclear fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57068048A JPS58186200A (en) 1982-04-24 1982-04-24 Nuclear fusion reactor

Publications (2)

Publication Number Publication Date
JPS58186200A JPS58186200A (en) 1983-10-31
JPS6241400B2 true JPS6241400B2 (en) 1987-09-02

Family

ID=13362506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57068048A Granted JPS58186200A (en) 1982-04-24 1982-04-24 Nuclear fusion reactor

Country Status (1)

Country Link
JP (1) JPS58186200A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302938A (en) * 1987-06-03 1988-12-09 Denki Kogyo Kk Processing equipment by high frequency plasma
JPH0754744B2 (en) * 1990-09-26 1995-06-07 財団法人ファインセラミックスセンター Microwave heating device and microwave heating method
JPH0754745B2 (en) * 1990-11-30 1995-06-07 財団法人ファインセラミックスセンター Microwave heating device

Also Published As

Publication number Publication date
JPS58186200A (en) 1983-10-31

Similar Documents

Publication Publication Date Title
JP2000048946A (en) Microwave oven
US5995057A (en) Dual mode horn reflector antenna
US6265702B1 (en) Electromagnetic exposure chamber with a focal region
JPH04502061A (en) Antenna that produces a millimeter wave beam with a Gaussian distribution
JPS6241400B2 (en)
JPS62143392A (en) Radio frequency heater
JPH04192240A (en) Gyrotron device
JPH04262601A (en) Microwave joint device
Jun et al. Design of the ECRH/ECCD launcher system for HL-2A tokamak
US3209360A (en) Antenna beam-shaping apparatus
Kim et al. Design of a steerable launcher for the ECH system on KSTAR
US7535428B2 (en) Flat-aperture waveguide sidewall-emitting twist-reflector antenna
Motley et al. Mode converter for electron cyclotron resonance heating of toroidal plasmas
JPH08330065A (en) Microwave thawing/heating device
Bae et al. Particle-in-cell simulation of power coupling of the grill of the KSTAR 5.0-GHz LHCD launcher
JPH0551173B2 (en)
JP3144883B2 (en) Mode converter
JP2001135473A (en) Millimeter-wave heating device
US20010035407A1 (en) Electromagnetic exposure chamber with a focal region
Ohnuma Review on resonance cone fields
Ajioka On the conceptual utility of current flow lines in waveguides
JPS59214200A (en) Plasma heater
JPH0538522Y2 (en)
JP2007123073A (en) High-frequency heating device
JPS61121288A (en) High frequency heater