JPS62413B2 - - Google Patents

Info

Publication number
JPS62413B2
JPS62413B2 JP20147582A JP20147582A JPS62413B2 JP S62413 B2 JPS62413 B2 JP S62413B2 JP 20147582 A JP20147582 A JP 20147582A JP 20147582 A JP20147582 A JP 20147582A JP S62413 B2 JPS62413 B2 JP S62413B2
Authority
JP
Japan
Prior art keywords
heat source
infrared
heater
heat
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20147582A
Other languages
Japanese (ja)
Other versions
JPS5993127A (en
Inventor
Nobuyuki Hirai
Shunichiro Mori
Takeshi Nagai
Kazushi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20147582A priority Critical patent/JPS5993127A/en
Publication of JPS5993127A publication Critical patent/JPS5993127A/en
Publication of JPS62413B2 publication Critical patent/JPS62413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D13/00Electric heating systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Surface Heating Bodies (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、暖房用、加温用、凍結防止用などに
用いられるヒータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heater used for space heating, heating, anti-freezing, and the like.

従来例の構成とその問題点 従来使用されてきた赤外線輻射ヒータには、第
1図に示すように、ほぼ垂直に立てられた凾体1
の下部に電熱ヒータ2を内蔵し、凾体1の内部に
不燃性オイル3を満したものがある。また他の従
来例として、第2図に示すように、凾体1の内面
に面状ヒータ4を配置したものがある。さらに面
状ヒータ4の代りに、紐状ヒータを分布配設した
ものもある(図示せず)。これら従来の赤外線輻
射ヒータは電熱ヒータ2に通電し、不燃性オイル
3を通して、あるいは面状ヒータ4に通電して、
凾体1の表面温度を70〜90℃に保ち、この加熱さ
れた凾体1の表面を熱源として赤外線を輻射す
る。
Structure of conventional example and its problems As shown in Fig. 1, infrared radiant heaters that have been used conventionally have a housing 1 that stands almost vertically.
There is one in which an electric heater 2 is built into the lower part of the housing, and the inside of the housing 1 is filled with nonflammable oil 3. Another conventional example is one in which a planar heater 4 is arranged on the inner surface of the housing 1, as shown in FIG. Furthermore, instead of the planar heater 4, there is also one in which string heaters are distributed in a distributed manner (not shown). In these conventional infrared radiant heaters, the electric heater 2 is energized, nonflammable oil 3 is passed through it, or the sheet heater 4 is energized.
The surface temperature of the case 1 is maintained at 70 to 90°C, and infrared rays are radiated using the heated surface of the case 1 as a heat source.

この場合凾体1の表面からは赤外線輻射のみな
らず対流によつても熱エネルギーが放散するの
で、入力エネルギーに対する輻射エネルギーの比
率(輻射効率)は40〜50%で低いという欠点があ
つた。
In this case, thermal energy is dissipated from the surface of the enclosure 1 not only by infrared radiation but also by convection, so the ratio of radiant energy to input energy (radiation efficiency) is low at 40 to 50%.

発明の目的 本発明はかかる従来の問題を解消するもので、
熱損失を低減し、赤外線輻射効率を高めるととも
に、簡単な構成により、輻射放熱と対流放熱比を
可変とした採暖用のヒータを提供せんとするもの
である。
Purpose of the invention The present invention solves such conventional problems,
It is an object of the present invention to provide a heating heater that reduces heat loss, increases infrared radiation efficiency, and has a simple configuration in which the ratio of radiant heat radiation to convective heat radiation is variable.

発明の構成 この目的を達成するために、本発明は、垂直に
近い方向に立てられた熱源体と、前記熱源体の一
方の表面に形成された赤外線輻射性材料層と、前
記赤外線輻射性材料層の表面近傍に水平に設置さ
れた複数個の薄板状突起物と、前記熱源体の他の
一方の表面に設置され、空気で満され、2個の開
口端を有する複数個の中空状空間を有し、前記中
空状空間の長さ方向と前記熱源体の水平方向とが
ほぼ一致する赤外線透過性構造物と、前記赤外線
透過性構造物の前記熱源体と反対の表面に形成さ
れた赤外線反射膜と、前記赤外線反射膜の表面に
形成された断熱層とから構成され、前記薄板状突
起物、および、前記中空状空間の長さ方向が垂直
方向にも向けられる構成としたものである。
Structure of the Invention To achieve this object, the present invention provides a heat source body erected in a nearly vertical direction, an infrared radiating material layer formed on one surface of the heat source body, and an infrared radiating material layer formed on one surface of the heat source body. a plurality of thin plate-like protrusions installed horizontally near the surface of the layer; and a plurality of hollow spaces installed on the other surface of the heat source, filled with air, and having two open ends. an infrared transmitting structure having a structure in which the length direction of the hollow space substantially coincides with the horizontal direction of the heat source body; and an infrared transmitting structure formed on a surface of the infrared transmitting structure opposite to the heat source body. It is composed of a reflective film and a heat insulating layer formed on the surface of the infrared reflective film, and the length direction of the thin plate-like protrusion and the hollow space is also oriented in a vertical direction. .

この構成によつて、薄板状突起物と熱源体に囲
まれた空気は、1方の面は開放されているもの
の、熱源体からもらつた熱のために上方向に上昇
することを上部の薄板状突起物により防げられ
る。この温められた空気によつて、空気は赤外線
透過率は高いので、熱源体から放射される赤外線
は途中で吸収されることなく外部へ放出される。
また、他方、空気の熱伝導率は低いために、上方
向に上昇することを妨げられた空気は断熱材の役
目をはたすこととなり、対流による熱損失を低減
することができる。
With this configuration, although one side of the air surrounded by the thin plate-like protrusion and the heat source is open, the upper thin plate prevents the air from rising upward due to the heat received from the heat source. Prevented by protrusions. Due to this heated air, the air has a high infrared transmittance, so the infrared rays emitted from the heat source are emitted to the outside without being absorbed on the way.
On the other hand, since the thermal conductivity of air is low, the air that is prevented from rising upward serves as a heat insulator, and heat loss due to convection can be reduced.

一方、熱源体を90゜回転させ、薄板状突起物お
よび赤外線透過性構造物の中空状空間の長さ方向
とがほぼ鉛直方向を向くようにすれば、熱源体の
両面において温められた空気の上昇を阻害するも
のはなくなり対流による熱伝導がおこり、対流に
よる放熱比が増加する。
On the other hand, if the heat source body is rotated by 90 degrees so that the length direction of the thin plate-shaped protrusion and the hollow space of the infrared transparent structure are oriented almost vertically, the heated air can flow on both sides of the heat source body. There is no longer any obstacle to the rise, heat conduction occurs by convection, and the heat radiation ratio by convection increases.

このように、本発明によれば、薄板状突起物お
よび赤外線透過構造物の中空状空間の長さ方向と
が水平方向の場合、断熱性と赤外線透過性とが同
時に満され、輻射放熱率の高いヒータとなり、薄
板状突起物および赤外線透過構造物の中空状空間
の長さ方向とが鉛直方向の場合は、対流放熱率の
高いヒータとなる。
As described above, according to the present invention, when the length direction of the hollow space of the thin plate-like projection and the infrared transmitting structure is horizontal, the heat insulation property and the infrared transmittance are simultaneously satisfied, and the radiant heat dissipation rate is If the length direction of the thin plate-shaped protrusion and the hollow space of the infrared transmitting structure is vertical, the heater has a high convective heat radiation rate.

実施例の説明 以下、本発明の実施例を第3図、第4図を用い
て説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to FIGS. 3 and 4.

第3図、第4図、第5図において、基板5の一
方の表面に面状ヒータ6を配置した熱源体Aがほ
ぼ垂直の状態に立てられている。この基板5の他
の一方の表面には、赤外線輻射性材料層7を10〜
200μ塗布あるいは接着されている。この赤外線
輻射性材料層7の表面近傍に水平に高さ:LH
5〜30mm、厚さ0.05〜1.0mm、薄板状突起物8が
間隔:LP=2.5mm〜50mmで設置されている。熱源
体Aの面状ヒータ6の表面には、空気で満され、
2個の開口端を有する複数個の中空状空間9を有
し、前記中空状空間の長さ方向と熱源体Aの水平
方向とがほぼ一致するポリカーボネイト、ポリプ
ロピレンあるいはポリエチレン等により作られた
赤外線透過性構造物10を設置し、その赤外線透
過性構造物10の表面には、アルミニウム薄板等
を貼り合せるか、あるいは、アルミニウムを直接
蒸着させ、赤外線反射膜11としている。赤外線
反射膜11の表面に、ウレタン等の断熱層12を
設置している。
In FIGS. 3, 4, and 5, a heat source A having a planar heater 6 disposed on one surface of a substrate 5 is erected substantially vertically. On the other surface of this substrate 5, a layer of infrared radiating material 7 is formed.
200μ coated or glued. Thin plate-like protrusions 8 are installed horizontally near the surface of this infrared radiating material layer 7 with a height L H of 5 to 30 mm, a thickness of 0.05 to 1.0 mm, and an interval L P =2.5 mm to 50 mm. . The surface of the sheet heater 6 of the heat source A is filled with air,
An infrared transmitting material made of polycarbonate, polypropylene, polyethylene, etc., having a plurality of hollow spaces 9 having two open ends, and in which the length direction of the hollow spaces and the horizontal direction of the heat source body A substantially coincide with each other. A thin aluminum plate or the like is pasted onto the surface of the infrared transparent structure 10, or aluminum is directly vapor deposited to form an infrared reflective film 11. A heat insulating layer 12 made of urethane or the like is provided on the surface of the infrared reflective film 11.

上記構成において、薄板状突起物8と熱源体A
により囲まれた空気は、熱源体Aからもらつた熱
のために上方向に上昇しようとするが、上部の薄
板状突起物8があるために、上昇を阻害される。
上昇を阻害された空気は、断熱材の役目をはたす
こととなり、自然対流による熱損失を低減するこ
とができる。また、この薄板状突起物は、ポリカ
ーボネイト、ポリエステル、ポリプロピレン、ポ
リエステル等の熱伝導率の低い材料で作られてい
るために、放熱フインとはなりえない。また、空
気は赤外線透過率が非常に高いので、熱源体から
放射される赤外線は途中で吸収されることなく外
部へ放出される。すなわち、輻射放熱を高め、対
流放熱をおさえたヒータとなる。
In the above configuration, the thin plate-like protrusion 8 and the heat source A
The air surrounded by the heat source A tries to rise upward due to the heat received from the heat source A, but the thin plate-like protrusion 8 at the top prevents the air from rising upward.
The air that is prevented from rising serves as a heat insulator, and can reduce heat loss due to natural convection. Further, since the thin plate-like protrusions are made of a material with low thermal conductivity such as polycarbonate, polyester, polypropylene, polyester, etc., they cannot serve as heat dissipation fins. Furthermore, since air has a very high infrared transmittance, the infrared rays emitted from the heat source are emitted to the outside without being absorbed on the way. In other words, the heater increases radiant heat dissipation and suppresses convective heat dissipation.

ここで、第4図から第5図のように、薄板状突
起物8および赤外線透過構造物10の中空状空間
9の長さ方向を水平方向から鉛直方向に90゜回転
させると、熱源体Aから熱をもらつた空気は、薄
板状突起物8に沿つて上昇するために、何の抵抗
もなく、熱交換がおこなわれる。また、赤外線透
過構造物10における中空状空間9内部の空気に
おいても同様の効果を得ることができる。すなわ
ち、この実施例において、90゜回転させるのみ
で、熱源体Aの両面において、対流放熱を行うこ
とのできるヒータとなりうる。
Here, as shown in FIGS. 4 to 5, when the length direction of the thin plate-like protrusion 8 and the hollow space 9 of the infrared transmitting structure 10 is rotated by 90 degrees from the horizontal direction to the vertical direction, the heat source A Since the air that has received heat from the air rises along the thin plate-shaped protrusion 8, heat exchange takes place without any resistance. Further, the same effect can be obtained in the air inside the hollow space 9 in the infrared transmitting structure 10. That is, in this embodiment, by simply rotating the heat source body A by 90 degrees, the heater can perform convective heat radiation on both sides of the heat source body A.

前記熱源体Aに自己制御性ヒータを用いた場合
においては、薄板状突起物8および赤外線透過構
造物10の中空状空間9の長さ方向を鉛直方向に
した場合、高出力の対流放熱ヒータとなりえる。
In the case where a self-regulating heater is used as the heat source A, if the length direction of the thin plate-shaped protrusion 8 and the hollow space 9 of the infrared transmitting structure 10 is made vertical, it becomes a high-output convection radiation heater. I can do it.

また、赤外線反射膜11は、熱源体Aから放出
される輻射エネルギーのうち、断熱材12側から
逃げる輻射エネルギーをもう一度熱源体A方向に
返える効果があり、必要のないエネルギー損失を
できるだけおさえる役割をしている。
In addition, the infrared reflective film 11 has the effect of returning the radiant energy emitted from the heat source A, which escapes from the heat insulating material 12 side, back toward the heat source A, and plays a role in suppressing unnecessary energy loss as much as possible. doing.

また、熱源体と赤外線透過性構造物の間に、赤
外線低輻射膜を設けることにより、発熱体からの
対流放熱量はかわらず、しかも、輻射量は低減す
ることができるので、必要のないエネルギー損失
をより効果的に低減することができる。
In addition, by providing a low infrared radiation film between the heat source and the infrared transparent structure, the amount of convective heat radiation from the heating element does not change, and the amount of radiation can be reduced, eliminating unnecessary energy. Loss can be reduced more effectively.

発明の効果 以上のように本発明のヒータによれば、次の効
果が得られる。
Effects of the Invention As described above, according to the heater of the present invention, the following effects can be obtained.

(1) 薄板状突起物を水平に位置している場合、熱
源体により温められた空気が、薄板状突起物に
より上昇がさまたげられ、その結果として、対
流による放熱を少なくすることができる。
(1) When the thin plate-like protrusions are placed horizontally, the air warmed by the heat source is prevented from rising by the thin plate-like protrusions, and as a result, heat radiation due to convection can be reduced.

(2) 赤外線透過構造物の中空状空間の長さ方向が
水平の場合、熱源体により温められた空気は、
中空状空間の中部から横方向にした移動できな
いために、ほとんど、移動しにくい状態となり
断熱効果をもたらす。
(2) When the length direction of the hollow space of the infrared transmitting structure is horizontal, the air heated by the heat source is
Since it cannot be moved laterally from the center of the hollow space, it is almost difficult to move and provides a heat insulating effect.

(3) 赤外線反射膜は、熱源体から放出される輻射
エネルギーのうち、断熱材を通して逃げるエネ
ルギーを再度熱源体にもどすために、不必要な
エネルギー損失をおさえることができる。
(3) Among the radiant energy emitted from the heat source, the infrared reflective film returns the energy that escapes through the heat insulating material to the heat source, thereby suppressing unnecessary energy loss.

(4) 薄板状突起物および赤外線透過構造物の中空
状空間の長さ方向が鉛直の場合、熱源体により
温められた空気は、何ら阻害されることなしに
移動できるために、対流放熱が促進され、しか
も両面で起こる。
(4) When the length direction of the hollow space of the thin plate-like projection and the infrared transmitting structure is vertical, the air warmed by the heat source can move without any obstruction, promoting convective heat dissipation. And it happens on both sides.

(5) 方向を変えるだけで、輻射エネルギー比率の
高いヒータと、対流放熱の高いヒータの2効果
のあるヒータを選択できる。
(5) By simply changing the direction, you can select a heater with two effects: a heater with a high radiant energy ratio and a heater with a high convection heat dissipation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、従来のヒータの一部切
欠斜視図、第3図は、本発明のヒータの一実施例
を示す断面図、第4図、第5図は、本発明のヒー
タの一実施例を示す斜視図である。 5……基板、6……面状ヒータ、7……赤外線
輻射性材料、8……薄板状突起物、9……中空状
空間、10……赤外線透過構造体、11……赤外
線反射膜、12……断熱材、A……熱源体。
FIGS. 1 and 2 are partially cutaway perspective views of a conventional heater, FIG. 3 is a sectional view showing an embodiment of the heater of the present invention, and FIGS. 4 and 5 are views of the heater of the present invention. FIG. 2 is a perspective view showing one embodiment of the invention. 5... Substrate, 6... Planar heater, 7... Infrared radiating material, 8... Thin plate-like protrusion, 9... Hollow space, 10... Infrared transmitting structure, 11... Infrared reflecting film, 12...Insulating material, A...Heat source.

Claims (1)

【特許請求の範囲】 1 垂直に近い方向に立てられた熱源体と、前記
熱源体の一方の表面に形成された赤外線輻射性材
料層と、前記赤外線輻射性材料層の表面近傍に水
平に設置された複数個の薄板状突起物と、前記熱
源体の他の一方の表面に設置され、空気で満さ
れ、かつ2個の開口端を有する中空状空間を複数
個有し、前記中空状空間の長さ方向と前記熱源体
の水平方向とがほぼ一致する赤外線透過性構造物
と、前記赤外線透過性構造物の前記熱源体と反対
の表面に形成された赤外線反射膜と、前記赤外線
反射膜の表面に形成された断熱層とから構成さ
れ、前記薄板状突起物および、前記中空状空間の
長さ方向が、垂直方向にも向けられるような構成
としたヒータ。 2 中空状空間の断面が、長方形であり、前記長
方形のうち1辺と、熱源体の表面とが平行あるい
はそれに近い状態に構成された特許請求の範囲第
1項記載のヒータ。 3 中空状空間の断面が、平行4辺形であり、前
記平行4辺形のうち1辺と、熱源体の表面とが、
平行あるいはそれに近い状態に構成された特許請
求の範囲第1項記載のヒータ。 4 熱源体が自己制御性面状ヒータで構成された
特許請求の範囲第1項記載のヒータ。 5 熱源体と赤外線透過性構造物の間に、赤外線
低輻射膜を設けた構成とした特許請求の範囲第1
項記載のヒータ。
[Claims] 1. A heat source erected in a nearly vertical direction, an infrared radiating material layer formed on one surface of the heat source, and horizontally installed near the surface of the infrared radiating material layer. a plurality of thin plate-shaped protrusions, and a plurality of hollow spaces installed on the other surface of the heat source body, filled with air, and having two open ends; an infrared transmissive structure whose length direction substantially coincides with the horizontal direction of the heat source; an infrared reflective film formed on a surface of the infrared transmissive structure opposite to the heat source; and an infrared reflective film. and a heat insulating layer formed on the surface of the heater, and the length direction of the thin plate-like protrusion and the hollow space are also oriented in a vertical direction. 2. The heater according to claim 1, wherein the hollow space has a rectangular cross section, and one side of the rectangle is parallel to or nearly parallel to the surface of the heat source. 3. The cross section of the hollow space is a parallelogram, and one side of the parallelogram and the surface of the heat source are
The heater according to claim 1, which is configured in a parallel or nearly parallel state. 4. The heater according to claim 1, wherein the heat source is a self-regulating sheet heater. 5 Claim 1 in which a low infrared radiation film is provided between the heat source and the infrared transparent structure
Heater as described in section.
JP20147582A 1982-11-16 1982-11-16 Heater Granted JPS5993127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20147582A JPS5993127A (en) 1982-11-16 1982-11-16 Heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20147582A JPS5993127A (en) 1982-11-16 1982-11-16 Heater

Publications (2)

Publication Number Publication Date
JPS5993127A JPS5993127A (en) 1984-05-29
JPS62413B2 true JPS62413B2 (en) 1987-01-07

Family

ID=16441690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20147582A Granted JPS5993127A (en) 1982-11-16 1982-11-16 Heater

Country Status (1)

Country Link
JP (1) JPS5993127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196703A1 (en) 2019-03-28 2020-10-01 三菱マテリアル電子化成株式会社 Zirconium nitride powder coated with alumina and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103167648B (en) * 2011-12-10 2015-12-16 江阴市霖肯科技有限公司 Far-infrared electric-heating air-conditioning heating module
CN103162395A (en) * 2011-12-10 2013-06-19 江阴市霖肯科技有限公司 Far infrared electric heating air conditioner radiating fin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196703A1 (en) 2019-03-28 2020-10-01 三菱マテリアル電子化成株式会社 Zirconium nitride powder coated with alumina and method for producing same

Also Published As

Publication number Publication date
JPS5993127A (en) 1984-05-29

Similar Documents

Publication Publication Date Title
US4468423A (en) Insulating cell element and structures composed thereof
JPS62413B2 (en)
US4292955A (en) Solar energy collector
US3088989A (en) Vzzzzzzm
US4304291A (en) Heat exchanger for a convector heater
JP3063395B2 (en) Positive characteristic thermistor heating element
JPS5931588A (en) Heater
JPH0139198B2 (en)
JPS58218786A (en) Heater
JPS6222369B2 (en)
JPS6139212Y2 (en)
JPS5929389A (en) Heater
JPS6041667Y2 (en) sheet heater
JPH055433Y2 (en)
JPS5969691A (en) Heater
JP2003021348A (en) Heat exchange pipe and heating apparatus
JP2532970Y2 (en) Warmer
JPS5811347A (en) Solar energy panel
JPS59134447A (en) Heater
KR930004357Y1 (en) Insulation panel of furnace wall
JPS6139213Y2 (en)
JPS5931587A (en) Heater
JPS6325464B2 (en)
JPS58220375A (en) Heater
JPS5946789A (en) Heater