JPS6241374B2 - - Google Patents

Info

Publication number
JPS6241374B2
JPS6241374B2 JP6897379A JP6897379A JPS6241374B2 JP S6241374 B2 JPS6241374 B2 JP S6241374B2 JP 6897379 A JP6897379 A JP 6897379A JP 6897379 A JP6897379 A JP 6897379A JP S6241374 B2 JPS6241374 B2 JP S6241374B2
Authority
JP
Japan
Prior art keywords
yoke
permanent magnet
tube
electron gun
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6897379A
Other languages
Japanese (ja)
Other versions
JPS55161338A (en
Inventor
Isao Yoshimi
Masanobu Takada
Hiroshi Oki
Kyohei Fukuda
Soichi Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6897379A priority Critical patent/JPS55161338A/en
Publication of JPS55161338A publication Critical patent/JPS55161338A/en
Publication of JPS6241374B2 publication Critical patent/JPS6241374B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • H01J29/64Magnetic lenses
    • H01J29/66Magnetic lenses using electromagnetic means only

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)

Description

【発明の詳細な説明】 本発明は永久磁石を内蔵した電磁集束形陰極線
管に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic focusing cathode ray tube incorporating a permanent magnet.

陰極線管の電子銃で、電子流を細いビームに集
束するために、静電集束と電磁集束とが多く用い
られているが、解像度の点からは電磁集束の方が
良い結果が得られる。これは電磁レンズ系では、
電子ビーム集束作用をするレンズ空間において、
静電方式の場合よりも絶縁破壊の恐れが少なく、
したがつて高い陽極電圧を印加できるため、電子
ビームを構成する電子相互間の反揆の影響を低く
押えて、ビームがひろがるのを防げることが第1
の原因である。第2の原因は、レンズ作用をなす
作用空間のビーム進行方向距離を、電磁集束の場
合には静電集束の場合よりも長くすることができ
るので、収差を小さくすることができるためであ
る。しかし電磁集束方式は上記の様な長所を有す
るにもかかわらず、集束コイルや、集束コイルに
流す電流の電源が必要となつて、高価になり、外
形、重量も大きくなるなどの欠点があつたため、
一般には余り用いられていない。
Electrostatic focusing and electromagnetic focusing are often used in cathode ray tube electron guns to focus the electron stream into a narrow beam, but electromagnetic focusing provides better results in terms of resolution. This is an electromagnetic lens system,
In the lens space that focuses the electron beam,
There is less risk of dielectric breakdown than with the electrostatic method,
Therefore, since a high anode voltage can be applied, the first thing to do is to suppress the effects of repulsion between the electrons that make up the electron beam and prevent the beam from spreading.
It is the cause of The second reason is that the distance in the beam traveling direction of the working space that acts as a lens can be made longer in the case of electromagnetic focusing than in the case of electrostatic focusing, so that aberrations can be reduced. However, although the electromagnetic focusing method has the above-mentioned advantages, it has disadvantages such as requiring a focusing coil and a power source for the current flowing through the focusing coil, making it expensive, and increasing the size and weight. ,
Generally not used much.

この様な欠点を除去するため、電磁集束に必要
な電子流通路に沿つた管軸方向磁界を、真空外囲
器外に配置した集束コイルによつて発生させる代
りに、第1、第2図に示す様に、管内に管軸方向
に隔離対向させて、軟強磁性体製で端面に電子流
通過用の孔を有する1対のヨークを配置し、この
1対のヨークの間に管軸方向に着磁した永久磁石
を挿入し、この永久磁石両端の磁極面に1対のヨ
ークをそれぞれ密着させた構造が提案された。第
1,2図はこの提案に係る永久磁石内蔵電磁集束
形インラインカラー受像管の例を示し、第1図a
はインライン3電子銃を含む面による電子銃部の
側断面図、第1図bは管軸方向から見たヨーク正
面図、第2図は管軸を含み、インライン3電子銃
の面に直交する面による電子銃部の側断面図であ
る。図中、1は真空外囲器(バルブネツク管)、
2は陰極、3は第1グリツド、4は第2グリツ
ド、5は第3グリツドボトム、6はヨーク、7は
陽極ばね、8は陽極電位にある内装導電膜、9は
永久磁石、10はガラスなどで作つた電極支持棒
である。この様な構造で十分な集束用磁界を発生
させるには、受像管として封止、排気工程終了
後、バルブネツク管の外周を囲み、1対のヨーク
の円筒部にそれぞれ対向させ極力近接させて着磁
装置の磁極を配置した状態で、磁路と鎖交する着
磁装置の導体に大電流を通電して永久磁石を着磁
させる。この場合磁路の磁気抵抗(リラクタン
ス)は小さい方が望ましいから、ヨーク6の円筒
部の管軸方向の長さは、図示の如くかなり長くす
る必要がある。しかしこの様な構造では、排気工
程で電子銃の電極、特に第1,2グリツドを誘導
加熱する際、誘導加熱装置(ボンバーダ)の誘導
加熱コイルが生ずる磁束は、第3グリツドボトム
5と結合して第3グリツドの一部をなすヨーク6
や、永久磁石9の部分にも達し、特に上記の如く
管軸方向にかなり長く抵抗の小さい閉ループをな
すヨーク6の円筒壁部分は大面積を囲み鎖交磁束
数が大きいこともあつて、この部分には大電流が
流れ高温に加熱され、永久磁石9はそれ自体断面
が磁束と鎖交して加熱されるだけでなく、前記ヨ
ーク6からの熱伝導も加わつて、高温たとえば
550℃程度に加熱される。その結果、永久磁石
(たとえばアルニコ)材の材質が変化し、磁気特
性が劣化し、排気終了後の着磁工程で、電子流を
細いビームに集束させるために必要な磁界を発生
させるのに十分な程度まで永久磁石9を磁化でき
なくなるという問題があつた。第3図に示す様
に、グリツドを誘導加熱する際、誘導加熱コイル
11のヨーク側にシヨートリング12を配置し
て、誘導磁束13がヨーク6や永久磁石9に達す
るのを抑制することはできるが、この様にする
と、第1,2グリツドを加熱するための磁束13
までシヨートリング12に吸収され、第1,2グ
リツドの加熱、排気が十分行なわれなくなるとい
う問題が生ずる。
In order to eliminate such drawbacks, instead of generating the tube axial magnetic field along the electron flow path required for electromagnetic focusing by a focusing coil placed outside the vacuum envelope, the magnetic field shown in Figs. As shown in the figure, a pair of yokes made of soft ferromagnetic material and having holes for electron flow on the end faces are placed inside the tube, isolated and facing each other in the direction of the tube axis. A structure was proposed in which a permanent magnet magnetized in the same direction is inserted and a pair of yokes are closely attached to the magnetic pole faces at both ends of the permanent magnet. Figures 1 and 2 show an example of the electromagnetic focusing type in-line color picture tube with a built-in permanent magnet according to this proposal, and Figure 1a
is a side cross-sectional view of the electron gun part in a plane including the inline 3 electron gun, Fig. 1b is a front view of the yoke seen from the tube axis direction, and Fig. 2 is a yoke including the tube axis and perpendicular to the plane of the inline 3 electron gun. FIG. 3 is a side cross-sectional view of the electron gun section; In the figure, 1 is a vacuum envelope (valve neck tube),
2 is a cathode, 3 is a first grid, 4 is a second grid, 5 is a third grid bottom, 6 is a yoke, 7 is an anode spring, 8 is an internal conductive film at an anode potential, 9 is a permanent magnet, 10 is glass, etc. This is an electrode support rod made of. In order to generate a sufficient focusing magnetic field with such a structure, after completing the sealing and evacuation process as a picture tube, surround the outer periphery of the valve neck tube and attach it as close as possible to the cylindrical portions of the pair of yokes, facing each other. With the magnetic poles of the magnetic device arranged, a large current is applied to the conductor of the magnetizing device interlinked with the magnetic path to magnetize the permanent magnet. In this case, since it is desirable that the magnetic resistance (reluctance) of the magnetic path be small, the length of the cylindrical portion of the yoke 6 in the tube axis direction needs to be considerably long as shown in the figure. However, in such a structure, when the electrodes of the electron gun, especially the first and second grids, are inductively heated during the exhaust process, the magnetic flux generated by the induction heating coil of the induction heating device (bombarder) is coupled with the third grid bottom 5. Yoke 6 forming part of the third grid
In particular, the cylindrical wall portion of the yoke 6, which is quite long in the tube axis direction and forms a closed loop with low resistance as described above, surrounds a large area and has a large number of interlinked magnetic fluxes. A large current flows through the part and heats it to a high temperature, and the permanent magnet 9 is not only heated as its cross section is interlinked with the magnetic flux, but also heat conduction from the yoke 6 is added, and the permanent magnet 9 is heated to a high temperature, e.g.
It is heated to about 550℃. As a result, the material of the permanent magnet (e.g. alnico) changes and its magnetic properties deteriorate, enough to generate the magnetic field needed to focus the electron stream into a narrow beam during the magnetization process after the evacuation. There was a problem that the permanent magnet 9 could not be magnetized to such an extent. As shown in FIG. 3, when induction heating the grid, it is possible to prevent the induced magnetic flux 13 from reaching the yoke 6 or the permanent magnet 9 by placing a shot ring 12 on the yoke side of the induction heating coil 11. , in this way, the magnetic flux 13 for heating the first and second grids
This causes a problem in that the first and second grids cannot be heated or exhausted sufficiently.

本発明は前記の如き問題のない永久磁石内蔵電
磁集束形陰極線管を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electromagnetic focusing cathode ray tube with a built-in permanent magnet that is free from the above-mentioned problems.

上記目的を達成するために本発明においては、
永久磁石を磁化させる着磁作業を行なう際、着磁
装置の磁極と真空外囲器(バルブネツク壁)をへ
だてて対向するヨーク周辺部は、放射状磁路の一
部としてリラクタンスが小さい様に、管軸方向の
長さ(又は厚さ)が大きいことは必要であるが、
円周方向に連続している必要はないことに着目
し、ヨーク周辺部にスリツトを設け、ヨーク周辺
部が誘導加熱用磁束に対し閉ループを形成せず、
ヨーク周辺部を周回する誘導電流が流れないよう
にした。
In order to achieve the above object, in the present invention,
When performing magnetization work to magnetize a permanent magnet, the area around the yoke, which faces the magnetic pole of the magnetizing device and the vacuum envelope (valve neck wall), is placed in a tube so that the reluctance is small as part of the radial magnetic path. Although it is necessary that the length (or thickness) in the axial direction be large,
Focusing on the fact that it does not need to be continuous in the circumferential direction, we created a slit around the yoke so that the yoke periphery does not form a closed loop for the magnetic flux for induction heating.
This prevents induced current from flowing around the yoke.

第4図、第5図は本発明を実施したインライン
カラー受像管を示す図で、第4図aはインライン
3電子銃を含む面による電子銃部の側断面図、第
4図bは管軸方向から見たヨーク正面図、第5図
は管軸を含みインライン3電子銃の面に直交する
面による電子銃部の側断面図である。第1,2図
に示した従来の永久磁石内蔵電磁集束形インライ
ンカラー受像管と異なる点は、本実施例に用いる
ヨーク6aは従来のヨーク6と異なり、第4図b
や、第6図に示すヨーク6aの円筒壁面断面を斜
線を引いて示した図からわかる様に、ヨーク周辺
の管軸方向にかなりの長さを有する円筒壁面に4
個所のスリツト14を設けてあることである。こ
のスリツトによつて、従来のヨーク6では、誘導
加熱用の高周波交番磁束に対し大面積閉ループを
形成し、多量の熱を発生していた円筒壁面が、第
6図などからよくわかる様に、本発明に係るヨー
ク6aでは分断されて誘導電流が流れなくなり、
この部分はほとんど加熱されなくなり、円筒底面
部に対し、従来とは逆に熱負荷となる。したがつ
て永久磁石9はヨーク6aからの熱伝導で加熱さ
れることはなく、永久磁石9の温度は従来の様な
たとえば550℃程度もの高温にまで上昇せず、材
質劣化が生ずる恐れはなくなり、電磁集束に必要
な磁界を発生できるように、永久磁石9を十分着
磁できる。
4 and 5 are diagrams showing an in-line color picture tube embodying the present invention, in which FIG. 4a is a side sectional view of the electron gun section including the inline 3 electron gun, and FIG. 4b is a tube axis. FIG. 5 is a side sectional view of the electron gun section along a plane including the tube axis and perpendicular to the plane of the in-line 3 electron gun. The difference from the conventional electromagnetic focusing type in-line color picture tube with built-in permanent magnet shown in FIGS. 1 and 2 is that the yoke 6a used in this embodiment is different from the conventional yoke 6, and
As can be seen from the cross-section of the cylindrical wall of the yoke 6a shown in FIG. 6 with diagonal lines drawn, there are four
The slits 14 are provided at different locations. With this slit, in the conventional yoke 6, the cylindrical wall surface, which forms a large-area closed loop for the high-frequency alternating magnetic flux for induction heating and generates a large amount of heat, can be clearly seen from FIG. In the yoke 6a according to the present invention, the induced current does not flow because it is divided.
This part is hardly heated, and a heat load is applied to the bottom of the cylinder, contrary to the conventional case. Therefore, the permanent magnet 9 is not heated by heat conduction from the yoke 6a, and the temperature of the permanent magnet 9 does not rise to a high temperature of, for example, 550°C, unlike in the conventional case, and there is no risk of material deterioration. , the permanent magnet 9 can be sufficiently magnetized to generate the magnetic field necessary for electromagnetic focusing.

以上説明した様に本発明によれば、小形、軽量
で、解像度の優れた永久磁石内蔵電磁集束形陰極
線管が高い歩留で得られる効果がある。
As described above, according to the present invention, an electromagnetic focusing cathode ray tube with a built-in permanent magnet that is small, lightweight, and has excellent resolution can be obtained at a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは従来の永久磁石内蔵電磁集束形イン
ラインカラー受像管のインライン3電子銃を含む
面による電子銃部側断面図、第1図bは同受像管
のヨークの管軸方向から見た正面図、第2図は同
受像管の管軸を含みインライン3電子銃の面に直
角な面による電子銃部側断面図、第3図は同受像
管電極の排気時誘導加熱状態説明図、第4図aは
本発明を実施したインラインカラー受像管のイン
ライン3電子銃を含む面による電子銃部側断面
図、第4図bは同実施例のヨークの管軸方向から
見た正面図、第5図は同実施例の管軸を含みイン
ライン3電子銃の面に直角な面による電子銃部側
断面図、第6図は同実施例ヨークの円筒壁面断面
を斜線を引いて示した正面図である。 3…第1グリツド、4…第2グリツド、5…第
3グリツドボトム、6a…ヨーク、9…永久磁
石、11…誘導加熱コイル、12…シヨートリン
グ、13…誘導磁束、14…スリツト。
Figure 1a is a side sectional view of the electron gun section of a conventional electromagnetic focusing inline color picture tube with a built-in permanent magnet, taken from a plane including the inline 3 electron gun, and Figure 1b is a view of the picture tube's yoke viewed from the tube axis direction. 2 is a side sectional view of the electron gun section taken along a plane including the tube axis of the picture tube and perpendicular to the plane of the in-line 3 electron gun; FIG. 3 is an explanatory diagram of the induction heating state of the picture tube electrode during exhaust; FIG. 4a is a side sectional view of the electron gun section of the inline color picture tube according to the present invention, taken from a plane including the inline 3 electron gun, and FIG. 4b is a front view of the yoke of the same embodiment as seen from the tube axis direction. Fig. 5 is a side cross-sectional view of the electron gun part of the same embodiment, taken along a plane perpendicular to the plane of the inline 3 electron gun, including the tube axis, and Fig. 6 is a front view showing the cylindrical wall section of the yoke of the same embodiment with diagonal lines drawn. It is a diagram. 3...First grid, 4...Second grid, 5...Third grid bottom, 6a...Yoke, 9...Permanent magnet, 11...Induction heating coil, 12...Shot ring, 13...Induced magnetic flux, 14...Slit.

Claims (1)

【特許請求の範囲】[Claims] 1 陰極から放出された電子流を制御する複数個
の電極と、軟強磁性体製で端面に電子流通過用の
孔を有し管軸方向に隔離対向させて設けられた1
対のヨークと、この1対のヨーク間に電子流通路
に沿つた管軸方向磁界を発生させるために挿入さ
れた永久磁石とを備えた電磁集束形陰極線管にお
いて、前記ヨークの周辺部にスリツトを設けたこ
とを特徴とする電磁集束形陰極線管。
1. A plurality of electrodes that control the electron flow emitted from the cathode, and a 1.
In an electromagnetic focusing cathode ray tube comprising a pair of yokes and a permanent magnet inserted between the pair of yokes to generate a magnetic field in the tube axis direction along an electron flow path, a slit is provided at the periphery of the yoke. An electromagnetic focusing cathode ray tube characterized by being provided with.
JP6897379A 1979-06-04 1979-06-04 Electromagnetic focussing type cathode-ray tube Granted JPS55161338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6897379A JPS55161338A (en) 1979-06-04 1979-06-04 Electromagnetic focussing type cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6897379A JPS55161338A (en) 1979-06-04 1979-06-04 Electromagnetic focussing type cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS55161338A JPS55161338A (en) 1980-12-15
JPS6241374B2 true JPS6241374B2 (en) 1987-09-02

Family

ID=13389114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6897379A Granted JPS55161338A (en) 1979-06-04 1979-06-04 Electromagnetic focussing type cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS55161338A (en)

Also Published As

Publication number Publication date
JPS55161338A (en) 1980-12-15

Similar Documents

Publication Publication Date Title
US2717323A (en) Electron beam centering apparatus
CN108807119B (en) Compact bias magnet
JPH07192674A (en) Magnetic field immersion type electron gun
JP2628648B2 (en) Cathode ray tube
US4310776A (en) Cathode-ray tube
GB1462463A (en) Magnetic structure for focusing of linear beams
US2718606A (en) Combination electromagnet-permanent magnet focusing devices
JPS6241374B2 (en)
US4310780A (en) Magnetic focusing structure for three in-line gun type color picture tubes
US3283200A (en) High frequency electron discharge device having improved permanent magnetic focusing
US2707246A (en) Combination focusing-ion trap structures for cathode-ray tubes
JPH03192636A (en) Picture tube device
US2785330A (en) Internal pole piece arrangement for a magnetically-focused cathode ray tube
JPH02204946A (en) Cathode-ray tube for video projector
US2915662A (en) Centering arrangement and method for beams of cathode ray tubes
JPS6048858B2 (en) cathode ray tube electron gun
JPS6161218B2 (en)
US4473773A (en) In-line type electromagnetic focusing cathode-ray tube
GB1270691A (en) Microwave tube apparatus
US2259994A (en) Electron microscope
GB748946A (en) Improvements in or relating to travelling wave apparatus
JPH0720832Y2 (en) Focus magnet
JPH0131257B2 (en)
JPS62290048A (en) Forcus magnet
JPS6310862B2 (en)