JPS6241354B2 - - Google Patents

Info

Publication number
JPS6241354B2
JPS6241354B2 JP55161948A JP16194880A JPS6241354B2 JP S6241354 B2 JPS6241354 B2 JP S6241354B2 JP 55161948 A JP55161948 A JP 55161948A JP 16194880 A JP16194880 A JP 16194880A JP S6241354 B2 JPS6241354 B2 JP S6241354B2
Authority
JP
Japan
Prior art keywords
fuel
pellet
enrichment
pellets
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55161948A
Other languages
Japanese (ja)
Other versions
JPS5786781A (en
Inventor
Kunitoshi Kurihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP55161948A priority Critical patent/JPS5786781A/en
Publication of JPS5786781A publication Critical patent/JPS5786781A/en
Publication of JPS6241354B2 publication Critical patent/JPS6241354B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は核燃料ペレツトに係り、特に内側領域
および外径側領域を互いに異なつた特性の燃料物
質によつて夫々形成した二層構造を備えた軽水炉
もしくは重水炉用の核燃料ペレツトに関する。 従来、軽水炉もしくは重水炉用の燃料ペレツト
としてはペレツト全断面を均質な燃料物質で形成
した一領域ペレツトが広く使用されているが、内
側領域の濃縮度を外径側領域より低くした多層燃
料ペレツトも考えられている。後者の形式のペレ
ツトは、ペレツト中心部の濃縮度を相対的に下げ
ることにより発生出力を押え、燃焼に伴なつて発
生する核分裂生成物質(F.P.)の量を低減し、
F.P.ガス圧力を下げることにより燃料健全性を高
めることを目的としている。しかし両者とも燃料
経済性を示す指標である燃料転換比(生成する核
分裂性物質の量/消滅する核分裂性物質の量)を
向上するための対策はほどこされていない。重水
炉および軽水炉とも転換比は0.6〜0.7であり、転
換比が1.0以上ある高速炉にくらべて燃料経済性
や省ウラン資源の面で見劣りがする。 本発明の目的は燃料ペレツトの断面方向に濃縮
度差をつけることによつて燃料経済性のすぐれた
燃料ペレツトを提供することである。 すなわち、本発明は形状断面の内側領域および
この内側領域をかこむ外径側領域を互いに核的特
性の異なる燃料物質によつて夫々形成してなる二
層構造を備えた核燃料ペレツトにおいて、前記内
側領域を形成する燃料物質の濃縮度よりも前記外
径側領域を形成する燃料物質の濃縮度をより低く
したことを特徴とする。 以下、まず本発明の原理を詳細に説明する。第
1図に示す原子炉燃料棒の構造においては、燃料
ペレツト1がひふく管2の内部に多数個積み上げ
られている。従来の燃料ペレツトでは、その水平
断面を表わす第2図に示すように、径方向濃縮度
は一様であり、一領域形式となされている。燃料
転換比に寄与の大きい 238Uの共鳴吸収断面積D
(4.0〜9.9eV)の半径方向(中心Oより外径R側
への方向)変化を第3図に示す。燃料ペレツト外
表面R近辺では、共鳴吸収の自己しやへい効果が
中心部Oにくらべて小さいため共鳴吸収断面積D
は外表面Rに近づくにつれ急激に大きくなり、そ
の差は外表面では約10%に達する。次に低エネル
ギ中性子束Φ(10eV以下)の径方向分布は第4
図のようになる。燃料外部の減速材領域で減速さ
れた中性子が燃料ペレツト内に流れ込んでくるた
め外表面で約20%盛り上つた分布をしている。ま
た第5図に示すように、燃料濃縮度E(w/v)
と転換比Cの関係は一般に濃縮度Eが低いほど転
換比が増大する傾向にある。これは 238U共鳴吸
収しやへい効果が小さく、中性子スペクトルが軟
らかい(低エネルギ中性子の割合が多い)ことが
主な原因である。 以上、従来の一領域燃料ペレツトの核的特性に
ついて一般的傾向を示したが、本発明は前記の三
つの効果、すなわち燃料ペレツト外周部では、(1)
238U共鳴吸収断面が大きく、(2)低エネルギ中性
子の割合が高くそして(3)低濃縮度燃料ほど転換比
が高いことを考慮し、燃料ペレツトの外周部の濃
縮度を低くすることにより転換比を高めるもので
ある。 第6図は燃焼に伴なう径方向出力分布の変化を
示す。燃焼とともにプルトニウムの生成割合の差
が大きくなり、出力(相対出力比P)は燃焼(燃
焼度B)とともに外周部Rで盛り上つていく。第
7図は燃焼度B(30GWd/t)の出力分布を濃
縮度E3.0w/vと天然ウラン(E0.7w/v)の燃
料ペレツトに対し示したものであるが、低濃縮度
ほど外周部Rの出力は高い。この傾向はペレツト
最外層(体積比で約2%)の相対出力比PMの濃
縮度Eおよび燃焼度Bに伴なう変化を示す第8図
および第9図によつても明らかに示されている。
239Puの出力分担割合の燃料ペレツト半径方向
(最小層LMおよび中心部O)依存性および燃焼度
B依存性を第10図および第11図に示した。
239Puの出力分担割合Ppuはほぼ 239Puの生成割合
に対応していると考えられるので、これらの図か
239Puの生成は燃料ペレツト外周部で濃縮度が
低いほど大きくなることが確認できる。 以上の説明は本発明の原理を実証するためのデ
ータを示したものである。第12図に燃料ペレツ
トの平均出力1.0で規格化した相対出力分布PR
示す。本発明において有効な内側領域と外径側領
域との間の分割点としては、出力がペレツト平均
出力レベル1.0をこえる相対的半径Φが0.8以上の
点が特に適当である。これより内側に低濃縮ウラ
ンを装荷しても本発明の効果はほとんど得られな
い。逆に、濃縮度が高く出力分担割合の大きい内
側領域の体積を大巾に減らすと、燃料ペレツト全
体で一定の出力を発生するために内側領域の濃縮
度を高めることが必要となり、中心温度の上昇や
F.P.ガス圧の増大をまねき燃料健全性の面から好
ましくない。 二層構造における前記濃縮度の関係を逆にして
ペレツト内側領域の濃縮度を外径側領域より低く
した形式の従来の燃料ペレツトでは、燃料健全性
の面からの対策を施したものであるが燃料転換比
は上記の理由から一領域燃料ペレツトよりも劣
る。また燃料ペレツトの外側を金属天然ウランで
とりまくことも考えられるが実用上再処理が困難
となる。 以下本発明を実施例について説明する。 本発明による実施例1の燃料ペレツト基本仕様
を第1表に示す。
The present invention relates to a nuclear fuel pellet, and more particularly to a nuclear fuel pellet for a light water reactor or a heavy water reactor, which has a two-layer structure in which an inner region and an outer diameter region are respectively formed of fuel materials with different characteristics. Conventionally, single-layer pellets in which the entire cross section of the pellet is made of homogeneous fuel material have been widely used as fuel pellets for light water reactors or heavy water reactors, but multi-layer fuel pellets in which the inner region is less enriched than the outer diameter region have been widely used. is also being considered. The latter type of pellet suppresses the generated output by relatively lowering the enrichment level in the center of the pellet, and reduces the amount of fission products (FP) generated during combustion.
The purpose is to improve fuel integrity by lowering FP gas pressure. However, in both cases, no measures have been taken to improve the fuel conversion ratio (amount of fissile material produced/amount of fissile material destroyed), which is an indicator of fuel economy. Both heavy water reactors and light water reactors have a conversion ratio of 0.6 to 0.7, and are inferior in terms of fuel economy and uranium resource conservation compared to fast reactors, which have a conversion ratio of 1.0 or more. An object of the present invention is to provide fuel pellets with excellent fuel economy by creating enrichment differences in the cross-sectional direction of the fuel pellets. That is, the present invention provides a nuclear fuel pellet having a two-layer structure in which an inner region of a cross-sectional shape and an outer diameter side region surrounding this inner region are formed of fuel materials having different nuclear properties. It is characterized in that the enrichment degree of the fuel material forming the outer diameter side region is lower than the enrichment degree of the fuel material forming the outer diameter side region. Hereinafter, first, the principle of the present invention will be explained in detail. In the structure of the nuclear reactor fuel rod shown in FIG. 1, a large number of fuel pellets 1 are stacked inside a tube 2. As shown in FIG. In conventional fuel pellets, the radial enrichment is uniform and is in the form of a single area, as shown in FIG. 2, which is a horizontal cross-section. Resonance absorption cross section D of 238 U, which has a large contribution to the fuel conversion ratio
(4.0 to 9.9 eV) in the radial direction (direction from the center O to the outer diameter R side) is shown in FIG. Near the outer surface R of the fuel pellet, the self-suppressing effect of resonance absorption is smaller than in the center O, so the resonance absorption cross section D
increases rapidly as it approaches the outer surface R, and the difference reaches about 10% at the outer surface. Next, the radial distribution of low-energy neutron flux Φ (10 eV or less) is the fourth
It will look like the figure. Neutrons that have been moderated in the moderator region outside the fuel flow into the fuel pellet, resulting in a distribution that is bulged by approximately 20% on the outer surface. In addition, as shown in Fig. 5, the fuel enrichment E (w/v)
In general, the lower the enrichment E, the higher the conversion ratio. This is mainly because the 238 U resonance absorption effect is small and the neutron spectrum is soft (the proportion of low-energy neutrons is high). The general trends of the core characteristics of conventional single-area fuel pellets have been shown above, but the present invention has the above-mentioned three effects, namely, (1)
Considering that the 238 U resonance absorption cross section is large, (2) the proportion of low-energy neutrons is high, and (3) the conversion ratio is higher for lower enrichment fuels, conversion is achieved by lowering the enrichment at the outer periphery of the fuel pellet. This increases the ratio. FIG. 6 shows changes in radial power distribution due to combustion. As the combustion progresses, the difference in the plutonium production rate increases, and the output (relative output ratio P) increases at the outer periphery R as the combustion progresses (burnup B). Figure 7 shows the power distribution at burnup B (30GWd/t) for fuel pellets of enrichment E3.0w/v and natural uranium (E0.7w/v). The output of part R is high. This tendency is also clearly shown in Figures 8 and 9, which show the changes in the relative power ratio P M of the outermost layer of pellets (approximately 2% by volume) with enrichment E and burnup B. ing.
The dependence of the power sharing ratio of 239 Pu on the fuel pellet radial direction (minimum layer L M and center O) and burnup B are shown in FIGS. 10 and 11.
Since it is considered that the output sharing ratio Ppu of 239 Pu corresponds approximately to the production ratio of 239 Pu, it can be confirmed from these figures that the production of 239 Pu increases as the enrichment level decreases at the outer periphery of the fuel pellet. The above description presents data for demonstrating the principle of the present invention. FIG. 12 shows the relative power distribution P R normalized by the average power of fuel pellets of 1.0. In the present invention, a particularly suitable dividing point between the inner region and the outer diameter region is a point where the output exceeds the average pellet output level of 1.0 and the relative radius Φ is 0.8 or more. Even if low-enriched uranium is loaded inside this region, the effect of the present invention will hardly be obtained. On the other hand, if the volume of the inner region, which is highly enriched and has a large output sharing ratio, is drastically reduced, it becomes necessary to increase the enrichment of the inner region in order to generate a constant output from the entire fuel pellet, and the center temperature decreases. Rise and
This leads to an increase in FP gas pressure, which is unfavorable from the standpoint of fuel integrity. Conventional fuel pellets have a two-layer structure in which the enrichment relationship is reversed so that the enrichment in the inner region of the pellet is lower than in the outer diameter region, but measures have been taken to ensure fuel integrity. The fuel conversion ratio is inferior to single area fuel pellets for the reasons mentioned above. It is also possible to surround the outside of the fuel pellets with metallic natural uranium, but this would be difficult to reprocess in practice. The present invention will be described below with reference to Examples. Table 1 shows the basic specifications of the fuel pellet of Example 1 according to the present invention.

【表】 この例はペレツト平均濃縮度を3.0w/vと
し、外側領域を体積比で10%として天然ウランを
装荷した例である。外側領域が天然ウランである
ため中性子スペクトルが軟らかく、 238Uの熱エ
ネルギ吸収断面積は約20%大きく、熱エネルギ中
性子束は2倍以上大きくなるため転換比は向上す
る。重水炉への適用例では、燃料ペレツト平均の
転換比を濃縮度3w/oの従来型燃料ペレツトに
くらべ約10%向上する。燃料ペレツトの発生する
出力の約95%を内側領域で分担しており、ペレツ
ト中心温度は約8%上昇する。F.P.放出率は約2
%増大するが、ガス圧の上昇は約0.1Kg/c.c.に留
まり問題とならない。 実施例2の燃料ペレツト基本仕様を第2表に示
す。
[Table] In this example, the average enrichment of the pellet is 3.0w/v, the outer region is set to 10% by volume, and natural uranium is loaded. Since the outer region is natural uranium, the neutron spectrum is soft, and the thermal energy absorption cross section of 238 U is approximately 20% larger, and the thermal energy neutron flux is more than twice as large, improving the conversion ratio. In an example of application to a heavy water reactor, the average conversion ratio of fuel pellets is improved by approximately 10% compared to conventional fuel pellets with an enrichment of 3 w/o. Approximately 95% of the power generated by the fuel pellet is shared by the inner region, and the temperature at the center of the pellet increases by approximately 8%. FP release rate is approximately 2
%, but the increase in gas pressure remains at about 0.1 kg/cc and does not pose a problem. Table 2 shows the basic specifications of the fuel pellets of Example 2.

【表】 ペレツト平均濃縮度、外側領域中および組成は
実施例1と同一とし、ペレツト中心に体積比で10
%の中空領域を設けたホローペレツトの例であ
る。転換比は、実施例1と同じく約10%向上す
る。内側領域の濃縮度は約10%増大し、燃料温度
は約10%上昇するが、ホローペレツトとすること
によりF.P.ガス圧は中実ペレツトの約1/2になり
問題とならない。また、燃料ペレツトひずみ量も
ホローペレツトとすることにより約2/3に低減で
き、燃料健全性は大巾に向上する。 実施例3の燃料ペレツト基本仕様を第3表に示
した。
[Table] Pellet average concentration, outer region and composition were the same as in Example 1, and 10% by volume in the center of the pellet.
This is an example of a hollow pellet with a hollow area of 50%. The conversion ratio is improved by about 10% as in Example 1. The enrichment in the inner region increases by about 10%, and the fuel temperature increases by about 10%, but by using hollow pellets, the FP gas pressure is about half that of solid pellets, so there is no problem. Furthermore, by using hollow pellets, the amount of strain in the fuel pellets can be reduced to about 2/3, and the soundness of the fuel is greatly improved. The basic specifications of the fuel pellets of Example 3 are shown in Table 3.

【表】 ペレツト平均濃縮度および領域分割は実施例1
と同一であるが、外側領域に減損ウランを使用し
た例である。中性子スペクトルの軟化がさらにす
すみ、転換比は従来型燃料ペレツトにくらべ約15
%向上する。内側領域の濃縮度が約2%高くな
り、中心温度がわずか上昇するが、実施例1で述
べたように問題とならない。また、実施例2に示
したようにホローペレツトとする対策もあり、燃
料健全性を損なうことなく高い性能を実現でき
る。 叙上のように本発明によれば、軽水炉もしくは
重水炉の核燃料の転換比を向上させ燃料経済性を
高めることができる。
[Table] Average pellet concentration and region division in Example 1
This example is the same as , but uses depleted uranium in the outer region. Further softening of the neutron spectrum results in a conversion ratio of approximately 15% compared to conventional fuel pellets.
%improves. The concentration in the inner region is about 2% higher and the center temperature increases slightly, but this is not a problem as described in Example 1. In addition, as shown in Example 2, there is also a measure to use hollow pellets, which makes it possible to achieve high performance without impairing the integrity of the fuel. As described above, according to the present invention, it is possible to improve the conversion ratio of nuclear fuel in a light water reactor or a heavy water reactor, thereby increasing fuel economy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原子炉燃料棒の要部の断面図、第2図
は第1図の−矢視図、第3図ないし第12図
は夫々核燃料ペレツトにおける燃料の各種核特性
を示す図である。 1……燃料ひふく管、2……燃料ペレツト、O
……ペレツト中心、R……ペレツト外周部、D…
238U共鳴吸収断面積(バーン)、Φ……中性子
束分布、B……燃焼度(GWd/t)、C……転換
比、E……濃縮度(w/v)、P……相対出力
比、PM……最外層相対出力、Ppu…… 239Pu出
力分担割合(相対値)、PR……相対出力分布、φ
……ペレツト半径(相対値)。
Figure 1 is a sectional view of the main part of a nuclear reactor fuel rod, Figure 2 is a view taken along the - arrow in Figure 1, and Figures 3 to 12 are diagrams showing various nuclear characteristics of fuel in nuclear fuel pellets. . 1...Fuel tube, 2...Fuel pellets, O
...Pellet center, R...Pellet outer periphery, D...
... 238 U resonance absorption cross section (burn), Φ...neutron flux distribution, B...burnup (GWd/t), C...conversion ratio, E...enrichment (w/v), P...relative Output ratio, P M ... Outermost layer relative output, Ppu... 239 Pu output sharing ratio (relative value), P R ... Relative output distribution, φ
...Pellet radius (relative value).

Claims (1)

【特許請求の範囲】[Claims] 1 形状断面の内側領域およびこの内側領域をか
こむ外径側領域を互いに核的特性の異なる燃料物
質によつて夫々形成してなる二層構造を備えた核
燃料ペレツトにおいて、前記内側領域を形成する
燃料物質の濃縮度よりも前記外径側領域を形成す
る燃料物質の濃縮度をより低くしたことを特徴と
する前記核燃料ペレツト。
1. In a nuclear fuel pellet having a two-layer structure in which an inner region of a shaped cross section and an outer diameter side region surrounding this inner region are formed of fuel materials having mutually different nuclear properties, the fuel forming the inner region The nuclear fuel pellet characterized in that the enrichment of the fuel material forming the outer diameter side region is lower than the enrichment of the substance.
JP55161948A 1980-11-19 1980-11-19 Nuclear fuel pellet Granted JPS5786781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55161948A JPS5786781A (en) 1980-11-19 1980-11-19 Nuclear fuel pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55161948A JPS5786781A (en) 1980-11-19 1980-11-19 Nuclear fuel pellet

Publications (2)

Publication Number Publication Date
JPS5786781A JPS5786781A (en) 1982-05-29
JPS6241354B2 true JPS6241354B2 (en) 1987-09-02

Family

ID=15745082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55161948A Granted JPS5786781A (en) 1980-11-19 1980-11-19 Nuclear fuel pellet

Country Status (1)

Country Link
JP (1) JPS5786781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427179A (en) * 1990-05-22 1992-01-30 Matsushita Electric Ind Co Ltd Laser device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366836B (en) * 2013-04-01 2016-01-06 中科华核电技术研究院有限公司 Fuel ball, method for making and nuclear reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427179A (en) * 1990-05-22 1992-01-30 Matsushita Electric Ind Co Ltd Laser device

Also Published As

Publication number Publication date
JPS5786781A (en) 1982-05-29

Similar Documents

Publication Publication Date Title
US5349618A (en) BWR fuel assembly having oxide and hydride fuel
RU2639712C2 (en) Fuel assembly for nuclear reactor
JPH0536757B2 (en)
US5991354A (en) Nuclear fuel pellet
JPS6171389A (en) Fuel aggregate
JPS6241354B2 (en)
JPH03262993A (en) Fuel assembly and nuclear reactor
JPH01277798A (en) Nuclear reactor fuel assembly
JPH04357493A (en) Structure of fuel assembly
JPS6151275B2 (en)
JPH0345354B2 (en)
JPH0636047B2 (en) Fuel assembly for nuclear reactor
JP2003107183A (en) Mox fuel assembly for thermal neutron reactor
Wang et al. Preliminary study on physical characteristics of single‐pass super‐critical water‐cooled reactor core
JPH041593A (en) Fuel assembly
JPS6361990A (en) Fuel aggregate
JPH04256892A (en) Fuel for light water reactor
JPH01197693A (en) Nuclear fuel rod
JP2860615B2 (en) Fuel assembly for plutonium firing
JPH0452914B2 (en)
JPS58131588A (en) Boiling-water reactor
JPS6176982A (en) Method of arranging fuel into fuel aggregate
JPS5814080A (en) Fuel assembly
Saji et al. Control rod worth in high conversion PWR
JPS6295493A (en) Core for nuclear reactor