JPS6241168B2 - - Google Patents

Info

Publication number
JPS6241168B2
JPS6241168B2 JP59022522A JP2252284A JPS6241168B2 JP S6241168 B2 JPS6241168 B2 JP S6241168B2 JP 59022522 A JP59022522 A JP 59022522A JP 2252284 A JP2252284 A JP 2252284A JP S6241168 B2 JPS6241168 B2 JP S6241168B2
Authority
JP
Japan
Prior art keywords
water
angstroms
surface area
pore
smectite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59022522A
Other languages
Japanese (ja)
Other versions
JPS60166217A (en
Inventor
Kenji Suzuki
Hiroshi Sakami
Kaoru Kawase
Shozo Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59022522A priority Critical patent/JPS60166217A/en
Priority to US06/691,765 priority patent/US4629713A/en
Publication of JPS60166217A publication Critical patent/JPS60166217A/en
Publication of JPS6241168B2 publication Critical patent/JPS6241168B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、20オングストローム以上の細孔径を
有する多孔質粘土材料の製造法、さらに詳しくい
えばスメクタイト型鉱物の層間に、特定の無機物
を含有させ、層間隔を20オングストローム以上に
維持させた多孔質粘土材料の製造法に関するもの
である。
Detailed Description of the Invention The present invention provides a method for producing a porous clay material having a pore diameter of 20 angstroms or more, more specifically, a method for producing a porous clay material having a pore diameter of 20 angstroms or more, and more specifically, a method for producing a porous clay material having a pore diameter of 20 angstroms or more, and more specifically, a method for producing a porous clay material having a pore size of 20 angstroms or more, and more specifically, a method for producing a porous clay material having a pore size of 20 angstroms or more. The present invention relates to a method for producing a porous clay material maintained as described above.

スメクタイト型鉱物にはモンモリロナイト、ベ
ントナイト、緑泥石、バイデライト、ヘクトライ
ト及び合成マイカがある。例えば、モンモリロナ
イトの結晶構造は、けい酸四面体層―アルミナ八
面体層―けい酸四面体層が積重なつて結合し、一
枚の結晶層を形成している。また、八面体層の中
心金属であるアルミニウムがそれより陽電荷の小
さいマグネシウムによつて一部置換されており、
そのために層が負電荷を帯びている。この負電荷
に応じたアルカリ金属イオン(主としてMa+)が
層と層との間に介在して結晶層の電荷を中和して
いる。従つてモンモリロナイトは大きなカチオン
交換能を有し、また、主としてこの交換性カチオ
ンの水和性質によつて層間に著量の水を吸収する
ので著しく大きな膨潤性を現わす。他のスメクタ
イト型鉱物もモンモリロナイトと同様の性質を有
している。そして、以上のスメクタイト型鉱物は
その層間構造を利用して触媒担体或いは吸着剤等
に使用する試みがなされている。
Smectite-type minerals include montmorillonite, bentonite, chlorite, beidellite, hectorite, and synthetic mica. For example, in the crystal structure of montmorillonite, a silicate tetrahedral layer, an alumina octahedral layer, and a silicate tetrahedral layer are stacked and bonded to form a single crystal layer. In addition, aluminum, the central metal of the octahedral layer, is partially replaced by magnesium, which has a smaller positive charge.
This gives the layer a negative charge. Alkali metal ions (mainly Ma + ) corresponding to this negative charge are interposed between the layers to neutralize the charge on the crystal layer. Montmorillonite thus has a large cation exchange capacity and, mainly due to the hydration nature of the exchangeable cations, absorbs a significant amount of water between its layers and exhibits a significantly high swelling property. Other smectite-type minerals also have properties similar to montmorillonite. Attempts have been made to use the above-mentioned smectite minerals as catalyst carriers or adsorbents by utilizing their interlayer structure.

一方、第1図はスメクタイト型鉱物を水と混合
した場合の状態図を示し、aは結晶層、d1は結晶
層の厚さ(約10オングストローム)であり、この
場合層間に水を含んだ状態における層間距離d2
は、スメクタイト型鉱物と水との混合比によつて
変化し、水が多量に存在すれば最大500オングス
トローム程度の値をとり得る。しかし、スメクタ
イト型鉱物をAl3+、Ca2+などの陽イオンを含ん
だ水と混合した場合は層間の陽電荷が高まつてd2
は小さくなる。そして、陽イオン量が多くなれば
d2は遂には約10オングストロームになる。
On the other hand, Figure 1 shows the phase diagram when a smectite mineral is mixed with water, where a is the crystal layer and d 1 is the thickness of the crystal layer (approximately 10 angstroms). Interlayer distance d 2 in state
varies depending on the mixing ratio of smectite minerals and water, and can take a maximum value of about 500 angstroms if a large amount of water is present. However, when smectite minerals are mixed with water containing cations such as Al 3+ and Ca 2+ , the positive charge between the layers increases and d 2
becomes smaller. And if the amount of cations increases
d 2 ends up being about 10 angstroms.

また、従来の製造法、例えば特開昭54−5884号
及び特開昭54−16386号ではスメクタイト型鉱物
を水及び陽イオン性無機物と混合し、陽イオン性
無機物を層間の交換性カチオンとイオン交換させ
たのち加水分解させる製造法であるので、生成物
の層間距離は約10オングストローム以下である。
Furthermore, in conventional production methods, for example, JP-A-54-5884 and JP-A-54-16386, smectite-type minerals are mixed with water and cationic inorganic substances, and the cationic inorganic substances are mixed with interlayer exchangeable cations and ions. Since the production method involves exchange and then hydrolysis, the interlayer distance of the product is about 10 angstroms or less.

〓〓〓〓
しかるに以上のような層間距離の短かいスメク
タイト型鉱物を吸着剤として使用する場合などに
おいては十分な効果を得られないことがある。例
えば、これを使用してガソリン精製を行う場合な
どにおいては、ガソリン中の炭素数の小さく低分
子量の炭化水素は層間に挿入されるが、炭素数の
大きな比較的分子量の大きな炭化水素は層間に挿
入されず、したがつて十分な精製効果を挙げるこ
とができない。
〓〓〓〓
However, when a smectite mineral with a short interlayer distance as described above is used as an adsorbent, a sufficient effect may not be obtained. For example, when refining gasoline using this, low molecular weight hydrocarbons with a small number of carbon atoms in gasoline are inserted between the layers, but relatively large hydrocarbons with a large number of carbon atoms and a relatively large molecular weight are inserted between the layers. It is not inserted, and therefore a sufficient purification effect cannot be achieved.

本発明者らは、先にスメクタイト型鉱物に、水
に溶けて電荷が中性を示す水溶性高分子化合物と
陽イオン性酸化物又は陽イオン性水酸化物と水を
加え、十分に混合したのち、乾燥、焼成すること
により、20オングストローム以上の細孔径を有す
る微細多孔質粘土を得る方法を開発したが(特開
昭60−131878号公報)、さらに研究を重ねた結
果、前記の水溶性高分子化合物の代りに、水に溶
けて電荷が陰性を示す水溶性高分子化合物すなわ
ちポリアクリル酸誘導体、ポリビニルスルホン酸
誘導体、カルボキシセルロース誘導体を用い、簡
単に20オングストローム以上の細孔径を有する微
細多孔質粘土が得られることを見出し、この発明
をなすに至つた。
The present inventors first added a water-soluble polymer compound that dissolves in water and has a neutral charge, a cationic oxide or a cationic hydroxide, and water to a smectite mineral, and mixed them thoroughly. Later, a method was developed to obtain microporous clay with a pore diameter of 20 angstroms or more by drying and firing (Japanese Patent Application Laid-open No. 131878/1983), but as a result of further research, the water-soluble clay described above was developed. Instead of a polymer compound, water-soluble polymer compounds that dissolve in water and have a negative charge, such as polyacrylic acid derivatives, polyvinyl sulfonic acid derivatives, and carboxycellulose derivatives, are used to easily create micropores with a pore diameter of 20 angstroms or more. They discovered that quality clay could be obtained and came up with this invention.

すなわち、この発明は、スメクタイト型鉱物に
陰イオン性水溶性高分子化合物、陽イオン性無機
物及び水を加え、十分に混合したのち、乾燥し焼
成することを特徴とする微細多孔質粘土材料の製
造法を提供するものである。
That is, the present invention is a method for producing a microporous clay material, which is characterized in that an anionic water-soluble polymer compound, a cationic inorganic substance, and water are added to a smectite mineral, thoroughly mixed, and then dried and fired. It provides law.

この発明におけるスメクタイト型鉱物は、例え
ばモンモリロナイト、ベントナイト、緑泥石、バ
イデライト、ヘクトライト、合成マイカ及び置換
せしめたこれ等の類似体の1種又は2種以上の混
合物より選択することができる。
The smectite type mineral in this invention can be selected from, for example, montmorillonite, bentonite, chlorite, beidellite, hectorite, synthetic mica and substituted analogs thereof, or a mixture of two or more thereof.

また、この発明において、スメクタイト型鉱物
の層間に介在させて少なくとも20オングストロー
ムの層間隔を生じさせるための無機物は、陽イオ
ン性酸化物、陽イオン性水酸化物である。具体的
には陽イオン性酸化物は、例えば第1りん酸アル
ミニウムを水に溶解したアルミナであり、また、
陽イオン性水酸化物は一般式が〔Al2(OH)o
Cl6-on、nは約3、mは10以下で示されるポリ
塩化アルミニウムを水に溶解し、部分的に加水分
解した水酸化アルミニウム及びAl,Cr,Bi,Fe
の各塩化物、硝酸塩、硫酸塩の水溶液を撹拌しな
がら少量ずつアルカリを加えて部分的に加水分解
した水酸化アルミニウム、水酸化クロム、水酸化
ビスマス、水酸化鉄及びZrOClを水に溶解して得
た水酸化ジルコニウム及び三核酢酸鉄の水溶液で
ある。
Further, in the present invention, the inorganic substance interposed between the layers of the smectite mineral to produce a layer spacing of at least 20 angstroms is a cationic oxide or a cationic hydroxide. Specifically, the cationic oxide is, for example, alumina prepared by dissolving monoaluminum phosphate in water, and
Cationic hydroxides have the general formula [Al 2 (OH) o
Cl 6-o ] n , where n is about 3 and m is 10 or less, polyaluminum chloride is dissolved in water and partially hydrolyzed aluminum hydroxide and Al, Cr, Bi, Fe
Add alkali little by little to an aqueous solution of each chloride, nitrate, and sulfate while stirring to dissolve partially hydrolyzed aluminum hydroxide, chromium hydroxide, bismuth hydroxide, iron hydroxide, and ZrOCl in water. This is an aqueous solution of the obtained zirconium hydroxide and trinuclear iron acetate.

この発明の製造に際しては、先ずスメクタイト
型鉱物、水、陰イオン性水溶性高分子化合物及び
陽イオン性無機物を混合する。水の量はスメクタ
イト型鉱物1gあたり0.4ml以上とする。また陰
イオン性水溶性高分子化合物の水溶液濃度は、液
を傾けてわずかに流れる程度の粘度以下で流動性
を示す範囲とする。陽イオン性無機物はスメクタ
イト型鉱物1gあたり0.05g〜1gの範囲であ
り、0.05g以下では層間隙を拡げるのに十分な大
きさの柱にならない、1g以上では空孔率が減少
する等の理由から使用することは不利である。
In the production of this invention, first, a smectite mineral, water, an anionic water-soluble polymer compound, and a cationic inorganic substance are mixed. The amount of water should be 0.4 ml or more per gram of smectite mineral. Further, the concentration of the aqueous solution of the anionic water-soluble polymer compound is set within a range that exhibits fluidity at a viscosity below that of which the solution slightly flows when tilted. The amount of cationic inorganic material is in the range of 0.05g to 1g per 1g of smectite mineral, and if it is less than 0.05g, it will not form a pillar large enough to expand the interlayer gap, and if it is more than 1g, the porosity will decrease, etc. It is disadvantageous to use it from

混合の順序はスメクタイト型鉱物と陰イオン性
水溶性高分子化合物水溶液の混合物に陽イオン性
無機物を混合する。スメクタイト型鉱物と陰イオ
ン性水溶性高分子化合物水溶液の混合後の状態は
第2図中のである。ここで螺線は陰イオン性水
溶性高分子化合物を表わしている。この状態では
陰イオン性水溶性高分子化合物の構造粘性の出現
により層間を押し拡げている。
The mixing order is such that a cationic inorganic substance is mixed into a mixture of a smectite mineral and an aqueous solution of an anionic water-soluble polymer compound. The state of the smectite mineral and the anionic water-soluble polymer compound aqueous solution after mixing is shown in FIG. Here, the spiral line represents an anionic water-soluble polymer compound. In this state, the appearance of structural viscosity of the anionic water-soluble polymer compound causes the interlayer to expand.

これを更に詳しく説明すれば、一般に高分子水
溶液は高分子の分子量が大きくなり、また、濃度
が高くなれば粘度が上昇して流れにくくなる。こ
れは高分子の糸まりどうしがもつれ合う、いわゆ
る“からみ合い”現象から生ずる網目構造の形成
による構造粘性の出現による。そしてゴム弾性を
示すようになる。
To explain this in more detail, in general, in an aqueous polymer solution, the molecular weight of the polymer increases, and as the concentration increases, the viscosity increases and becomes difficult to flow. This is due to the appearance of structural viscosity due to the formation of a network structure resulting from the so-called "entanglement" phenomenon in which polymer threads become entangled. Then, it begins to exhibit rubber elasticity.

この発明はこれらの陰イオン性水溶性高分子化
合物の特徴をスメクタイト型鉱物の層間に応用
し、層間距離が小さくならないようにした点に特
徴を有している。
The present invention is characterized in that the characteristics of these anionic water-soluble polymer compounds are applied to the interlayers of smectite minerals to prevent the interlayer distance from becoming small.

次に、状態にて陽イオン性無機物を挿入し
()、室温或いは150℃までの温度で乾燥したの
ち、300℃〜700℃で加熱して層間の陰イオン性水
溶性高分子化合物を焼却除去すると、層間に陽イ
オン性無機物の柱ができる()。なお、室温或
いは150℃までの温度で乾燥する操作は省略して
もよい。
Next, a cationic inorganic substance is inserted in the state (), dried at room temperature or up to 150°C, and then heated at 300°C to 700°C to incinerate and remove the anionic water-soluble polymer compound between the layers. As a result, columns of cationic inorganic substances are formed between the layers (). Note that the operation of drying at room temperature or at a temperature up to 150° C. may be omitted.

したがつてこの発明の他の特徴は、これらの陽
イオン性無機物をスメクタイト型鉱物の層間に固
〓〓〓〓
定し、次いで陰イオン性水溶性高分子化合物を焼
却除去することにより層間距離の長いスメクタイ
ト型鉱物の微細多孔質粘土材料が得られる点にあ
る。
Therefore, another feature of the present invention is to solidify these cationic inorganic substances between layers of smectite minerals.
The point is that a microporous clay material of a smectite mineral with a long interlayer distance can be obtained by incinerating and removing the anionic water-soluble polymer compound.

なお、この発明の生成物を窒素の吸脱着法で調
べた結果、第3図で示した通り20オングストロー
ム以上の細孔径を有する微細多孔質体である。ま
た、細孔径が20オングストローム以上の表面積は
最大約160m2/g、全表面積は最大約230m2/gで
ある。窒素容量は最大約0.2ml/g、比容は最大
約0.6cm3/g、空孔率は最大約0.3である。
Furthermore, as a result of examining the product of this invention by a nitrogen adsorption/desorption method, it was found to be a microporous material having a pore diameter of 20 angstroms or more, as shown in FIG. Further, the maximum surface area of pores with a diameter of 20 angstroms or more is about 160 m 2 /g, and the maximum total surface area is about 230 m 2 /g. The nitrogen capacity is a maximum of about 0.2 ml/g, the specific volume is a maximum of about 0.6 cm 3 /g, and the porosity is a maximum of about 0.3.

これらの微細多孔質粘土材料は触媒担体及び吸
着剤に有用であり、また、配向させることにより
高性能断熱材にも有用である。
These microporous clay materials are useful as catalyst supports and adsorbents and, when oriented, are also useful in high performance thermal insulation materials.

以下、この発明の実施例を示す。 Examples of this invention will be shown below.

実施例 1 重合度200のポリアクリル酸ナトリウム0.4gを
水5mlに溶解したのち、ナトリウムモンモリロナ
イト1.00gを添加し、撹拌、混合する。混合物に
10重量パーセントのポリ塩化アルミニウム水溶液
2mlを添加し、さらに撹拌、混合したのち、50℃
の乾燥器中で1日間放置、乾燥後空気雰囲気の電
気炉で500℃、15時間焼成した。生成物の細孔
径、表面積、窒素容量、比容、空孔率を窒素吸脱
着法で調べた結果、細孔分布が最大を示す細孔径
は31オングストローム、表面積は20オングストロ
ーム以上の細孔径において157m2/g、また全表
面積は228m2/g、窒素容量は0.17ml/g、比容
は0.57cm3/g、空孔率は0.30であつた。
Example 1 After dissolving 0.4 g of sodium polyacrylate with a degree of polymerization of 200 in 5 ml of water, 1.00 g of sodium montmorillonite is added, followed by stirring and mixing. into the mixture
Add 2 ml of 10 weight percent polyaluminum chloride aqueous solution, stir and mix, and then heat to 50°C.
After drying, it was baked in an electric furnace at 500°C for 15 hours in an air atmosphere. As a result of investigating the pore size, surface area, nitrogen capacity, specific volume, and porosity of the product using the nitrogen adsorption/desorption method, the pore size with the maximum pore distribution was 31 angstroms, and the surface area was 157 m for pore sizes of 20 angstroms or more. The total surface area was 228 m 2 /g, the nitrogen capacity was 0.17 ml/g, the specific volume was 0.57 cm 3 /g, and the porosity was 0.30.

実施例 2 重合度2000のポリアクリル酸ナトリウム0.4g
を水5mlに溶解したのち、ナトリウムモンモリロ
ナイト1.00gを添加し、撹拌、混合する。混合物
に10重量パーセントのポリ塩化アルミニウム水溶
液2mlを添加し、さらに撹拌、混合したのち、50
℃の乾燥器中で1日間放置、乾燥後空気雰囲気の
電気炉で500℃、15時間焼成した。生成物の細孔
径、表面積、窒素容量、比容、空孔率を窒素吸脱
着法で調べた結果、細孔分布が最大を示す細孔径
は31オングストローム、表面積は20オングストロ
ーム以上の細孔径において157m2/g、また全表
面積は229m2/g、窒素容量は0.19ml/g、比容
は、0.59cm3/g、空孔率は0.32であつた。
Example 2 0.4g of sodium polyacrylate with a degree of polymerization of 2000
After dissolving in 5 ml of water, add 1.00 g of sodium montmorillonite and stir to mix. Add 2 ml of a 10 weight percent polyaluminum chloride aqueous solution to the mixture, stir and mix, and then
The sample was left in a dryer at 500°C for 15 hours after drying, and then baked in an electric furnace in an air atmosphere at 500°C for 15 hours. As a result of examining the pore size, surface area, nitrogen capacity, specific volume, and porosity of the product using the nitrogen adsorption/desorption method, the pore size with the maximum pore distribution was 31 angstroms, and the surface area was 157 m for pore sizes of 20 angstroms or more. The total surface area was 229 m 2 /g, the nitrogen capacity was 0.19 ml/g, the specific volume was 0.59 cm 3 /g, and the porosity was 0.32.

実施例 3 重合度5000のポリアクリル酸ナトリウム0.4g
を水5mlに溶解したのち、ナトリウムモンモリロ
ナイト1.00gを添加し、撹拌、混合する。混合物
に10重量パーセントのポリ塩化アルミニウム水溶
液2mlを添加し、さらに撹拌、混合したのち、50
℃の乾燥器中で1日間放置、乾燥後空気雰囲気の
電気炉で500℃、15時間焼成した。生成物の細孔
径、表面積、窒素容量、比容、空孔率を窒素吸脱
着法で調べた結果、細孔分布が最大を示す細孔径
は31オングストローム、表面積は20オングストロ
ーム以上の細孔径において113m2/g、また全表
面積は176m2/g、窒素容量は0.13ml/g、比容
は0.53cm3/g、空孔率は0.25であつた。
Example 3 0.4g of sodium polyacrylate with a degree of polymerization of 5000
After dissolving in 5 ml of water, add 1.00 g of sodium montmorillonite and stir to mix. Add 2 ml of a 10 weight percent polyaluminum chloride aqueous solution to the mixture, stir and mix, and then
The sample was left in a dryer at 500°C for 15 hours after drying, and then baked in an electric furnace in an air atmosphere at 500°C for 15 hours. As a result of investigating the pore size, surface area, nitrogen capacity, specific volume, and porosity of the product using the nitrogen adsorption/desorption method, the pore size with the maximum pore distribution was 31 angstroms, and the surface area was 113 m for pore diameters of 20 angstroms or more. The total surface area was 176 m 2 /g, the nitrogen capacity was 0.13 ml/g, the specific volume was 0.53 cm 3 /g, and the porosity was 0.25.

実施例 4 重合度200のポリアクリル酸ナトリウム0.4gを
水5mlに溶解したのち、ナトリウムモンモリロナ
イト1.00gを添加し、撹拌、混合する。混合物に
10重量パーセントのポリ塩化アルミニウム水溶液
5mlを添加し、さらに撹拌、混合したのち、50℃
の乾燥器中で1日間放置、乾燥後空気雰囲気の電
気炉で500℃、15時間焼成した。生成物の細孔
径、表面積、窒素容量、比容、空孔率を窒素吸脱
着法で調べた結果、細孔分布が最大を示す細孔径
は31オングストローム、表面積は20オングストロ
ーム以上の細孔径において45m2/g、また全表面
積は81m2/g、窒素容量は0.14ml/g、比容は
0.54cm3/g、空孔率は0.26であつた。
Example 4 After dissolving 0.4 g of sodium polyacrylate with a degree of polymerization of 200 in 5 ml of water, 1.00 g of sodium montmorillonite was added, followed by stirring and mixing. into the mixture
Add 5 ml of a 10 weight percent polyaluminum chloride aqueous solution, stir and mix, and then heat to 50°C.
After being left in a dryer for one day, it was baked in an electric furnace in an air atmosphere at 500°C for 15 hours. As a result of investigating the pore size, surface area, nitrogen capacity, specific volume, and porosity of the product using the nitrogen adsorption/desorption method, the pore size with the maximum pore distribution was 31 angstroms, and the surface area was 45 m for pore diameters of 20 angstroms or more. 2 /g, total surface area is 81m 2 /g, nitrogen capacity is 0.14ml/g, specific volume is
The porosity was 0.54 cm 3 /g and 0.26.

実施例 5 重合度5000のポリアクリル酸ナトリウム0.4g
を水5mlに溶解したのち、ナトリウムモンモリロ
ナイト1.00gを添加し、撹拌、混合する。混合物
に10重量パーセントのポリ塩化アルミニウム水溶
液5mlを添加し、さらに撹拌、混合したのち、50
℃の乾燥器中で1日間放置、乾燥後空気雰囲気の
電気炉で500℃、15時間焼成した。生成物の細孔
径、表面積、窒素容量、比容、空孔率を窒素吸脱
着法で調べた結果、細孔分布が最大を示す細孔径
は31オングストローム、表面積は20オングストロ
ーム以上の細孔径において38m2/g、また全表面
積は87m2/g、窒素容量は0.11ml/g、比容は
0.51m3/g、空孔率は0.22であつた。
Example 5 0.4g of sodium polyacrylate with a degree of polymerization of 5000
After dissolving in 5 ml of water, add 1.00 g of sodium montmorillonite and stir to mix. Add 5 ml of a 10 weight percent polyaluminum chloride aqueous solution to the mixture, stir and mix, and then
The sample was left in a dryer at 500°C for 15 hours after drying, and then baked in an electric furnace in an air atmosphere at 500°C for 15 hours. As a result of investigating the pore size, surface area, nitrogen capacity, specific volume, and porosity of the product by nitrogen adsorption/desorption method, the pore size with the maximum pore distribution was 31 angstroms, and the surface area was 38 m for pore diameters of 20 angstroms or more. 2 /g, total surface area is 87m 2 /g, nitrogen capacity is 0.11ml/g, specific volume is
The area was 0.51 m 3 /g, and the porosity was 0.22.

実施例 6 重合度200のポリアクリル酸ナトリウム0.4gを
水5mlに溶解したのち、合成マイカ1.00gを添加
〓〓〓〓
し、撹拌、混合する。混合物に10重量パーセント
のポリ塩化アルミニウム2mlを添加し、さらに撹
拌、混合したのち、50℃の乾燥器中で1日間放
置、乾燥後空気雰囲気の電気炉で500℃、15時間
焼成した。生成物の細孔径、表面積、窒素容量、
比容、空孔率を窒素吸脱着法で調べた結果、細孔
分布が最大を示す細孔径は30オングストローム、
表面積は20オングストローム以上の細孔径におい
て55m2/g、また全表面積は79m2/g、窒素容量
は0.24ml/g、比容は0.64cm3/g、空孔率は0.38
であつた。
Example 6 After dissolving 0.4 g of sodium polyacrylate with a degree of polymerization of 200 in 5 ml of water, 1.00 g of synthetic mica was added.
and stir to mix. 2 ml of 10% by weight polyaluminum chloride was added to the mixture, which was further stirred and mixed, and then left in a dryer at 50°C for one day. After drying, it was fired at 500°C in an electric furnace in an air atmosphere for 15 hours. Product pore size, surface area, nitrogen capacity,
As a result of investigating the specific volume and porosity using nitrogen adsorption/desorption method, the pore diameter showing the maximum pore distribution was 30 angstroms.
The surface area is 55 m 2 /g for pore sizes of 20 angstroms or more, the total surface area is 79 m 2 /g, the nitrogen capacity is 0.24 ml/g, the specific volume is 0.64 cm 3 /g, and the porosity is 0.38.
It was hot.

実施例 7 重合度5000のポリアクリル酸ナトリウム0.4g
を水5mlに溶解したのち、合成マイカ1.00gを添
加し、撹拌、混合する。混合物に10重量パーセン
トのポリ塩化アルミニウム2mlを添加し、さらに
撹拌、混合したのち、50℃の乾燥器中で1日間放
置、乾燥後空気雰囲気の電気炉で500℃、15時間
焼成した。生成物の細孔径、表面積、窒素容量、
比容、空孔率を窒素吸脱着法で調べた結果、細孔
分布が最大を示す細孔径は30オングストローム、
表面積は20オングストローム以上の細孔径におい
て62m2/g、また全表面積は82m2/g、窒素容量
は0.18ml/g、比容は0.58cm2/g、空孔率は0.31
であつた。
Example 7 0.4g of sodium polyacrylate with a degree of polymerization of 5000
After dissolving in 5 ml of water, add 1.00 g of synthetic mica and stir to mix. 2 ml of 10% by weight polyaluminum chloride was added to the mixture, which was further stirred and mixed, and then left in a dryer at 50°C for one day. After drying, it was fired at 500°C in an electric furnace in an air atmosphere for 15 hours. Product pore size, surface area, nitrogen capacity,
As a result of investigating the specific volume and porosity using nitrogen adsorption/desorption method, the pore diameter showing the maximum pore distribution was 30 angstroms.
The surface area is 62 m 2 /g for pore diameters of 20 angstroms or more, the total surface area is 82 m 2 /g, the nitrogen capacity is 0.18 ml/g, the specific volume is 0.58 cm 2 /g, and the porosity is 0.31.
It was hot.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスメクタイト型鉱物の層間に水を含ん
で膨潤している状態を示したものである。第2図
はスメクタイト型鉱物の層間に陰イオン性水溶性
高分子化合物及び陽イオン性無機物を挿入して行
う製造法の細孔生成過程を示したものである。第
3図は本発明の微細多孔質粘土材料の窒素脱着法
による細孔分布曲線である。 〓〓〓〓
Figure 1 shows a state in which a smectite mineral is swollen and contains water between its layers. FIG. 2 shows the pore generation process in a manufacturing method in which an anionic water-soluble polymer compound and a cationic inorganic substance are inserted between the layers of a smectite mineral. FIG. 3 is a pore distribution curve of the microporous clay material of the present invention obtained by the nitrogen desorption method. 〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 スメクタイト型鉱物に、陰イオン性水溶性高
分子化合物、陽イオン性無機物及び水を加え、十
分に混合したのち、乾燥し焼成することを特徴と
する微細多孔質粘土材料の製造法。
1. A method for producing a microporous clay material, which comprises adding an anionic water-soluble polymer compound, a cationic inorganic substance, and water to a smectite mineral, thoroughly mixing the mixture, and then drying and firing the mixture.
JP59022522A 1984-01-20 1984-02-08 Production of microporous clay material Granted JPS60166217A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59022522A JPS60166217A (en) 1984-02-08 1984-02-08 Production of microporous clay material
US06/691,765 US4629713A (en) 1984-01-20 1985-01-16 Finely porous clay formed preponderantly of spectite type mineral and method for manufacture of said clay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59022522A JPS60166217A (en) 1984-02-08 1984-02-08 Production of microporous clay material

Publications (2)

Publication Number Publication Date
JPS60166217A JPS60166217A (en) 1985-08-29
JPS6241168B2 true JPS6241168B2 (en) 1987-09-01

Family

ID=12085107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59022522A Granted JPS60166217A (en) 1984-01-20 1984-02-08 Production of microporous clay material

Country Status (1)

Country Link
JP (1) JPS60166217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684020A (en) * 2018-02-08 2020-09-18 毕克化学有限公司 Layered process for layered silicates

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4753908A (en) * 1985-12-10 1988-06-28 Agency Of Industrial Science Method for production of microporous separating material from smectite type mineral
JPS6366111A (en) * 1986-09-05 1988-03-24 Shiseido Co Ltd Cosmetic blended with spherical organic complex clay mineral
JPS6351310A (en) * 1986-08-20 1988-03-04 Shiseido Co Ltd Cosmetic compounded with spherical clay mineral
ATE486654T1 (en) * 2006-11-13 2010-11-15 Albemarle Netherlands Bv METHOD FOR PRODUCING AN FCC CATALYST

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131878A (en) * 1983-12-20 1985-07-13 工業技術院長 Manufacture of microporous clay material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131878A (en) * 1983-12-20 1985-07-13 工業技術院長 Manufacture of microporous clay material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684020A (en) * 2018-02-08 2020-09-18 毕克化学有限公司 Layered process for layered silicates
CN111684020B (en) * 2018-02-08 2021-12-07 毕克化学有限公司 Layered process for layered silicates

Also Published As

Publication number Publication date
JPS60166217A (en) 1985-08-29

Similar Documents

Publication Publication Date Title
Yamanaka et al. High surface area solids obtained by intercalation of iron oxide pillars in montmorillonite
US4629713A (en) Finely porous clay formed preponderantly of spectite type mineral and method for manufacture of said clay
Barshad The nature of lattice expansion and its relation to hydration in montmorillonite and vermiculite
US4656153A (en) Active carbon containing a dispersion of a metal component and method for making same
BRPI0714936A2 (en) agglomerated zeolitic adsorbents, process for obtaining adsorbents, para-xylene recovery process, processes for separating sugars, polyhydric alcohols, substituted toluene isomers, and growths
JPS63112413A (en) Crosslinked clay having improved thermal stability
US4665045A (en) Pillared and delaminated clays containing chromium
JPH0751443B2 (en) Thermostable W-type zeolite, production method and use method thereof
JP2507903B2 (en) Process for producing inter-layer cross-linked clay with arbitrary layer spacing
JPS6241168B2 (en)
JP3391155B2 (en) Method for manufacturing porous body
JPS6212172B2 (en)
JP2021007944A (en) Binderless zeolite adsorbent and method for producing binderless zeolite adsorbent
JPS6246489B2 (en)
JPS6246490B2 (en)
JPH0576754A (en) Composite forming adsorbent and production thereof
JPS6243926B2 (en)
JPS6241167B2 (en)
JPS6250407B2 (en)
JPS6328842B2 (en)
JPS6250406B2 (en)
KR100352108B1 (en) Process for Preparing Porous Pillared Clays
JPS6246491B2 (en)
JP2949215B2 (en) Porous body utilizing intercalation of layered compound and method for producing the same
KR20010103389A (en) Organic and Inorganic Complex Porous Products

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term