JPS624071B2 - - Google Patents

Info

Publication number
JPS624071B2
JPS624071B2 JP7346280A JP7346280A JPS624071B2 JP S624071 B2 JPS624071 B2 JP S624071B2 JP 7346280 A JP7346280 A JP 7346280A JP 7346280 A JP7346280 A JP 7346280A JP S624071 B2 JPS624071 B2 JP S624071B2
Authority
JP
Japan
Prior art keywords
phenolic resin
molding material
gypsum
gypsum fibers
aminosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7346280A
Other languages
Japanese (ja)
Other versions
JPS57155A (en
Inventor
Naokatsu Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7346280A priority Critical patent/JPS57155A/en
Publication of JPS57155A publication Critical patent/JPS57155A/en
Publication of JPS624071B2 publication Critical patent/JPS624071B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はフエノール樹脂成形材料に関するも
のである。 フエノール樹脂成形材料は、熱可塑性樹脂成形
材料に比べて熱時の機械強度および物理性能に優
れた成形品を製造しうるものである。そして、近
年、金属材料からプラスチツク材料への代替によ
る軽量化、製造工程の合理化およびコストダウン
を図るために、フエノール樹脂成形材料が見直さ
れてきている。一般に、フエノール樹脂成形材料
には、補強材,充填材として木粉,パルプ等の有
機物、アスベスト,ガラス繊維,炭酸カルシウ
ム,タルク等の無機物が使用されている。これら
の材料のうち、木粉,パルプ等の有機物は、耐熱
性を要求される金属部品の代替品製造用の成形材
料には用いられず、そのような場合には、主とし
て無機物、例えばアスベストが用いられる。アス
ベストを用いた成形材料は、木粉,パルプ等の有
機物を用いた成形材料よりも著しく耐熱性に富む
成形品を製造しうるのであるが、機械的強度に富
む成形品を製造するという点で問題点があり、か
つアスベストが公害物質であるため衛生上の点で
も問題があつた。そこで、アスベストに代えて石
こう繊維を用いることが考えられ一部で実施され
ている。この方法により得られた成形材料は、機
械的強度に富む成形品を製造しうる。しかし、得
られる成形品は、耐熱性が不充分であつた。 この発明者は、石こう繊維を含む上記の成形材
料の欠点を解消するために鋭意研究した結果、石
こう繊維をアミノシランおよびエポキシシランの
少なくとも一方で処理すると、石こう繊維とフエ
ノール樹脂とのなじみがよくなつて成形品の耐熱
性が向上することを見いだしこの発明を完成し
た。 すなわち、この発明は、アミノシランおよびエ
ポキシシランの少なくとも一方で処理された石こ
う繊維を含むフエノール樹脂成形材料をその要旨
とするものである。 つぎに、この発明を詳しく説明する。 この発明では、アミノシランおよびエポキシシ
ランの少なくとも一方で処理された石こう繊維を
用いる。 ここで、石こう繊維とは、CaSO4単一結晶ホイ
スカーであり、直径1〜10μm,長さ40〜400μ
mのものである。 この石こう繊維の処理に用いるアミノシランと
しては、例えば下記の3種類のものがあげられ
る。 H2N(CH22NH(CH23Si(OCH33 H2N(CH23Si(OC2H53 また、エポキシシランとしては、例えば下記の
3種類のものがあげられる。 アミノシランおよびエポキシシランの少なくと
も一方(以下これらを「シラン処理剤」という)
による石こう繊維の処理は、通常、つぎのように
して行われる。すなわち、石こう繊維に対して5
〜10重量%(以下「%」と略す)の割合になるよ
うに溶剤(メタノール,水等)を秤量するととも
に、石こう繊維に対して1〜3%の割合になるよ
うにシラン処理剤を秤量し、このシラン処理剤を
上記の溶剤に溶解し、これを石こう繊維に均一に
噴霧することにより行われる。この場合、シラン
処理剤の量が、石こう繊維に対して1%未満にな
ると効果が極めて小さくなり、逆に3%を超えて
もそれ以上の効果の増大が望めないという傾向が
見られる。したがつて、通常、シラン処理剤の量
は、石こう繊維に対して1〜3%に選ばれるので
ある。最も好ましいのは2%である。 上記のようにしてシラン処理剤で処理された石
こう繊維(以下「シラン処理石こう繊維」と略
す)の使用量は、フエノール樹脂100重量部(以
下「部」と略す)に対して、シラン処理石こう繊
維が50〜200部になるように選ばれる。すなわ
ち、使用量が50部未満では効果が小さく、200部
を超えると成形材料の成形時の流れ性および充填
性が悪くなるからである。最も好ましいのは120
部程度である。 なお、この発明のフエノール樹脂成形材料に用
いられるフエノール樹脂としては、通常、フエノ
ール類およびアルデヒド類を酸触媒下で合成した
ノボラツク型フエノール樹脂が用いられ、成形材
料の25〜45%を占めるように配合される。 この発明のフエノール樹脂成形材料は、上記の
ようなシラン処理石こう繊維とフエノール樹脂
と、必要に応じて硬化剤(ヘキサメチレンテトラ
ミン等)、硬化助剤(水酸化カルシウム等),滑
剤,ガラス繊維等を所定の割合で配合して混合
し、加熱ロールを用い常法に従つて製造されるの
である。 以上のように、この発明のフエノール樹脂成形
材料は、シラン処理石こう繊維を含むため、機械
的強度に富み、しかも耐熱性にも富む成形品を製
造しうる優れたものである。なお、上記のシラン
処理石こう繊維とガラス繊維とを併用すると、成
形品の機械強度が一層向上するようになるのであ
る。 つぎに、実施例について比較例と併せて説明す
る。 〔実施例1〕 石こう繊維に対して10%の割合になるようにメ
タノールを秤量するとともに、石こう繊維に対し
て1%の割合になるように下記の一般式 で表わされるシラン処理剤を秤量し、このシラン
処理剤を上記のメタノールに溶解した。つぎに、
この溶液を石こう繊維に均一に噴霧してシラン処
理石こう繊維をつくつた。つぎに、得られたシラ
ン処理石こう繊維と下記の原料を下記の割合で配
合した。 フエノール樹脂 ……100部 ヘキサミン ……15〃 シラン処理石こう繊維 ……120〃 ガラス繊維 ……80〃 Ca(OH)2 ……10〃 ワツクス ……2〃 つぎに、この配合物を混合し加熱ロールを用い
常法に従つて処理し成形材料を得た。 〔実施例2〕 実施例1で用いたシラン処理剤に代えて下記の
一般式 H2N(CH22NH(CH23Si(OCH33 で表わされるシラン処理剤を用いた。それ以外は
実施例1と同様にして成形材料を得た。 〔実施例3〕 実施例1で用いたシラン処理剤に代えて下記の
一般式 H2N(CH23Si(OC2H53 で表わされるシラン処理剤を用いた。それ以外は
実施例1と同様にして成形材料を得た。 〔実施例 4〕 実施例1で用いたシラン処理剤に代えて下記の
一般式 で表わされるシラン処理剤を用いた。それ以外は
実施例1と同様にして成形材料を得た。 〔比較例〕 シラン処理石こう繊維に代えて、シラン処理剤
により処理されていない無処理石こう繊維を用い
た。それ以外は実施例1と同様にして成形材料を
得た。 以上の実施例および比較例で得られた成形材料
を通常のようにして成形し、得られた成形品につ
いて、JISの加熱後外観による耐熱温度を調べ
た。その結果は次表のとおりであつた。
This invention relates to a phenolic resin molding material. Phenol resin molding materials can produce molded products with superior mechanical strength and physical performance when heated compared to thermoplastic resin molding materials. In recent years, phenolic resin molding materials have been reviewed in order to reduce weight, rationalize manufacturing processes, and reduce costs by replacing metal materials with plastic materials. Generally, organic materials such as wood flour and pulp, and inorganic materials such as asbestos, glass fiber, calcium carbonate, and talc are used as reinforcing materials and fillers in phenolic resin molding materials. Among these materials, organic materials such as wood flour and pulp are not used as molding materials for manufacturing substitutes for metal parts that require heat resistance, and in such cases, inorganic materials such as asbestos are mainly used. used. Molding materials using asbestos can produce molded products that are significantly more heat resistant than molding materials that use organic substances such as wood flour and pulp, but they are difficult to manufacture in terms of producing molded products with high mechanical strength. There were problems, and since asbestos is a pollutant, there were also hygiene problems. Therefore, the use of gypsum fiber instead of asbestos has been considered and has been implemented in some areas. The molding material obtained by this method can produce molded articles with high mechanical strength. However, the resulting molded product had insufficient heat resistance. As a result of intensive research to eliminate the drawbacks of the above-mentioned molding materials containing gypsum fibers, the inventor found that when gypsum fibers are treated with at least one of aminosilane and epoxysilane, compatibility between the gypsum fibers and the phenolic resin becomes better. They discovered that the heat resistance of molded products can be improved and completed this invention. That is, the gist of the present invention is a phenolic resin molding material containing gypsum fibers treated with at least one of aminosilane and epoxysilane. Next, this invention will be explained in detail. In this invention, gypsum fibers treated with at least one of aminosilane and epoxysilane are used. Here, the gypsum fiber is a CaSO 4 single crystal whisker, with a diameter of 1 to 10 μm and a length of 40 to 400 μm.
It belongs to m. Examples of the aminosilane used for treating the gypsum fibers include the following three types. H 2 N (CH 2 ) 2 NH (CH 2 ) 3 Si (OCH 3 ) 3 H 2 N (CH 2 ) 3 Si (OC 2 H 5 ) 3 Also, examples of epoxy silane include the following three types. can be given. At least one of aminosilane and epoxysilane (hereinafter referred to as "silane treatment agent")
The treatment of gypsum fibers is usually carried out as follows. That is, 5 for gypsum fibers.
Weigh the solvent (methanol, water, etc.) so that the ratio is ~10% by weight (hereinafter abbreviated as "%"), and weigh the silanizing agent so that the ratio is 1~3% based on the gypsum fiber. This silane treatment agent is dissolved in the above-mentioned solvent, and this is uniformly sprayed onto the gypsum fibers. In this case, there is a tendency that when the amount of the silane treatment agent is less than 1% based on the gypsum fibers, the effect becomes extremely small, and conversely, even when the amount exceeds 3%, no further increase in the effect can be expected. Therefore, the amount of silanizing agent is usually selected to be 1 to 3% based on the gypsum fibers. Most preferred is 2%. The amount of gypsum fibers treated with a silane treatment agent as described above (hereinafter referred to as "silane treated gypsum fibers") is based on 100 parts by weight (hereinafter referred to as "parts") of phenolic resin. The fibers are chosen to be between 50 and 200 parts. That is, if the amount used is less than 50 parts, the effect will be small, and if it exceeds 200 parts, the flowability and filling properties of the molding material during molding will deteriorate. Most preferred is 120
It is about 100%. The phenolic resin used in the phenolic resin molding material of the present invention is normally a novolak type phenolic resin synthesized from phenols and aldehydes under acid catalyst, and accounts for 25 to 45% of the molding material. It is blended. The phenolic resin molding material of the present invention comprises the above-mentioned silane-treated gypsum fibers and phenolic resin, and if necessary, a hardening agent (hexamethylenetetramine, etc.), a hardening aid (calcium hydroxide, etc.), a lubricant, glass fiber, etc. They are mixed in a predetermined ratio and manufactured using a heated roll according to a conventional method. As described above, since the phenolic resin molding material of the present invention contains silane-treated gypsum fibers, it is an excellent material that can produce molded products with high mechanical strength and high heat resistance. In addition, when the above-mentioned silane-treated gypsum fiber and glass fiber are used together, the mechanical strength of the molded product is further improved. Next, examples will be described together with comparative examples. [Example 1] Weigh methanol so that the ratio is 10% to the gypsum fibers, and use the following general formula so that the ratio is 1% to the gypsum fibers. A silanizing agent represented by was weighed and dissolved in the above methanol. next,
Silanized gypsum fibers were prepared by uniformly spraying this solution onto gypsum fibers. Next, the obtained silane-treated gypsum fibers and the following raw materials were blended in the following proportions. Phenol resin...100 parts Hexamine...15 Silanized gypsum fiber...120 Glass fiber...80 Ca(OH) 2 ...10 Wax...2 Next, this mixture is mixed and heated with a roll. A molding material was obtained by processing according to a conventional method. [Example 2] In place of the silane treatment agent used in Example 1, a silane treatment agent represented by the following general formula H 2 N (CH 2 ) 2 NH (CH 2 ) 3 Si (OCH 3 ) 3 was used. . A molding material was obtained in the same manner as in Example 1 except for the above. [Example 3] In place of the silane treatment agent used in Example 1, a silane treatment agent represented by the following general formula H 2 N (CH 2 ) 3 Si (OC 2 H 5 ) 3 was used. A molding material was obtained in the same manner as in Example 1 except for the above. [Example 4] The following general formula was used instead of the silane treatment agent used in Example 1. A silane treatment agent represented by the formula was used. A molding material was obtained in the same manner as in Example 1 except for this. [Comparative Example] In place of the silane-treated gypsum fibers, untreated gypsum fibers that were not treated with a silane treatment agent were used. A molding material was obtained in the same manner as in Example 1 except for this. The molding materials obtained in the above Examples and Comparative Examples were molded in the usual manner, and the heat resistance temperature of the molded products obtained was examined based on JIS appearance after heating. The results were as shown in the table below.

【表】 表より明らかなように実施例の成形材料製の成
形品は、比較例のものよりも耐熱性に富んでい
る。なお、機械強度は、実施例のものも比較例の
ものも共に優れていた。
[Table] As is clear from the table, the molded products made of the molding materials of Examples have higher heat resistance than those of Comparative Examples. Note that both the examples and the comparative examples had excellent mechanical strength.

Claims (1)

【特許請求の範囲】 1 アミノシランおよびエポキシシランの少なく
とも一方で処理された石こう繊維を含むことを特
徴とするフエノール樹脂成形材料。 2 アミノシランおよびエポキシシランの少なく
とも一方で処理された石こう繊維が、アミノシラ
ンおよびエポキシシランの少なくとも一方を石こ
う繊維に対して1〜3重量%の割合になるように
秤量して所定量の溶剤に溶解し、これを石こう繊
維に均一に噴霧することにより得られたものであ
る特許請求の範囲第1項記載のフエノール樹脂成
形材料。 3 アミノシランおよびエポキシシランの少なく
とも一方で処理された石こう繊維が、フエノール
樹脂100重量部に対して50〜200重量部含まれてい
る特許請求の範囲第1項または第2項記載のフエ
ノール樹脂成形材料。 4 アミノシランおよびエポキシシランの少なく
とも一方で処理された石こう繊維と共に、ガラス
繊維が含まれている特許請求の範囲第1項ないし
第3項のいずれかに記載のフエノール樹脂成形材
料。 5 フエノール樹脂がノボラツク型フエノール樹
脂である特許請求の範囲第1項ないし第4項のい
ずれかに記載のフエノール樹脂成形材料。
[Scope of Claims] 1. A phenolic resin molding material comprising gypsum fibers treated with at least one of aminosilane and epoxysilane. 2 Gypsum fibers treated with at least one of aminosilane and epoxysilane are dissolved in a predetermined amount of solvent by weighing out at least one of aminosilane and epoxysilane so that the ratio is 1 to 3% by weight based on the gypsum fibers. The phenolic resin molding material according to claim 1, which is obtained by uniformly spraying this on gypsum fibers. 3. The phenolic resin molding material according to claim 1 or 2, wherein the gypsum fiber treated with at least one of aminosilane and epoxysilane is contained in an amount of 50 to 200 parts by weight based on 100 parts by weight of phenolic resin. . 4. The phenolic resin molding material according to any one of claims 1 to 3, which contains glass fibers as well as gypsum fibers treated with at least one of aminosilane and epoxysilane. 5. The phenolic resin molding material according to any one of claims 1 to 4, wherein the phenolic resin is a novolak type phenolic resin.
JP7346280A 1980-05-31 1980-05-31 Phenolic resin molding material Granted JPS57155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7346280A JPS57155A (en) 1980-05-31 1980-05-31 Phenolic resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7346280A JPS57155A (en) 1980-05-31 1980-05-31 Phenolic resin molding material

Publications (2)

Publication Number Publication Date
JPS57155A JPS57155A (en) 1982-01-05
JPS624071B2 true JPS624071B2 (en) 1987-01-28

Family

ID=13518941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7346280A Granted JPS57155A (en) 1980-05-31 1980-05-31 Phenolic resin molding material

Country Status (1)

Country Link
JP (1) JPS57155A (en)

Also Published As

Publication number Publication date
JPS57155A (en) 1982-01-05

Similar Documents

Publication Publication Date Title
DE69629464T2 (en) PHENOL RESIN COMPOSITIONS WITH IMPROVED IMPACT RESISTANCE
US4657951A (en) Fibrous material-based friction member
KR920005675B1 (en) Glassfiber rainforced vinylchloride polymer products and process for their preparation
DE60015872T2 (en) Condensation-crosslinkable silsesquioxane resin composition and process for its preparation and crosslinking
EP0162562B1 (en) Preparation of foundry moulds and cores
JPH0735466B2 (en) Improved phenolic resin molding material
DE2512581A1 (en) REPRODUCTION PRODUCTS FROM POLYSILOXANES AND POLYPHENOLS
US6133403A (en) Reactive diluents for acid curable phenolic compositions
JPH0233725B2 (en)
JPS6230210B2 (en)
US4210562A (en) Cellulose-containing phenolic resin-based binder
JPS624071B2 (en)
JPS6043471B2 (en) Process for producing phenol formaldehyde resol tire cord immersion liquid without contamination and its products
AU718352B2 (en) Reactive diluents for acid curable phenolic compositions
JPH0445147A (en) Phenolic resin composition
JPS5935926B2 (en) resin composition
JPH0311306B2 (en)
JP2001131253A (en) Method for manufacturing water-soluble phenolic resin
JPS61138622A (en) Fiber-reinforced composite material, and cured product produced therefrom
US2163264A (en) Condensation products from formaldehyde and urea
JPS6346099B2 (en)
JPH07216195A (en) Urea resin molding material
SU859386A1 (en) Method of producing phenolformaldehyde binder
US2831821A (en) Molding powders containing butenyl-phenol-formaldehyde condensation products
JPS6317287B2 (en)