JPS624055B2 - - Google Patents

Info

Publication number
JPS624055B2
JPS624055B2 JP55076666A JP7666680A JPS624055B2 JP S624055 B2 JPS624055 B2 JP S624055B2 JP 55076666 A JP55076666 A JP 55076666A JP 7666680 A JP7666680 A JP 7666680A JP S624055 B2 JPS624055 B2 JP S624055B2
Authority
JP
Japan
Prior art keywords
compound
diisocyanate
epoxy
group
equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55076666A
Other languages
Japanese (ja)
Other versions
JPS573816A (en
Inventor
Masamichi Kaneko
Shigenori Yamaoka
Masuo Mizuno
Yukihiro Okabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP7666680A priority Critical patent/JPS573816A/en
Priority to US06/326,306 priority patent/US4401499A/en
Publication of JPS573816A publication Critical patent/JPS573816A/en
Publication of JPS624055B2 publication Critical patent/JPS624055B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐熱性,耐湿性,電気性能,接着性,
強じん性等に優れた熱硬化性樹脂組成物に関し、
特にBステージ化した状態を経て製造される積層
板や成形物等の用途に最適な熱硬化性樹脂組成物
に関するものである。 従来よりエポキシ化合物をイソシアネート化合
物と反応させると耐熱性に優れたオキサゾリドン
化合物を生成することはよく知られている。しか
しながらイソシアネート基は非常に反応性に富む
ため、常温でもエポキシ基との反応が進行し、ワ
ニスあるいはBステージ化した状態でのプリプレ
グ、成形材料等では樹脂が短時間でゲル状態に達
し、ポツトライフが極めて短かつたりあるいは吸
湿して簡単に変質する等保存安定性に欠ける欠点
があつた。この欠点を改良するためイソシアネー
ト基をあらかじめフエノールやクレゾール等のマ
スク剤と反応させ、常温で安定なウレタン化合物
に変え、硬化時に加熱によりマスク剤を解離し蒸
発除去してイソシアネート基を再生する方法が提
案されている。(例えば特公昭53−14095号公
報)。しかしこの方法では解離したマスク剤によ
り著しく作業環境が犯されるし、例えば積層体、
成形物等に用いる場合には硬化時にマスク剤が解
離するとボイド等の原因になり、とても実用に供
せられるものではない。一方イソシアネート基を
エポキシ・フエノール化合物のフエノール性水酸
基と反応させウレタン結合を生成し、硬化時及び
ウレタン結合をイソシアネート基と水酸基に解離
させ、イソシアネート基とエポキシ基との反応に
よりマスク剤であるエポキシ・フエノール化合物
も反応させる方法が提案されている(特公昭52−
13560号公報)。しかしこの方法では、せつかくマ
スクしたイソシアネート基を解離させるため最終
硬化物に遊離のイソシアネート基が残存し易く、
最終硬化物の耐湿性が著しく劣る欠点がある。従
つてプリント配線基板など高度の耐湿性が要求さ
れる電気絶縁材料の用途には不向きである。また
一般にイソシアネート基をフエノール性水酸基で
マスクしたウレタン結合は解離温度が高々130℃
で非常に低いために、例えばBステージ化したプ
リプレグを作成するに際しての乾燥工程で、せつ
かくマスクしたイソシアネート基が遊離のイソシ
アネート基に変化し易く、Bステージでの保存安
定性が非常に悪いという欠点がある。 本発明者等は鋭意研究を重ねた結果、上記の様
な従来技術の欠点をなくし、保存性に優れたBス
テージ化合物を得ることができ、かつ最終硬化物
は耐熱性、電気特性、耐湿性に優れている熱硬化
性樹脂組成物を見い出すに至つた。 本発明の熱硬化性樹脂組成物はビスフエノール
Aとエピクロルヒドリンとの反応により誘導され
る平均分子量が400〜1000であり、アルコル性水
酸基を有するエポキシ化合物と、イソシアヌレー
ト環を有しウレタン基を含まず分子内に2個以上
のイソシアネート基を有するポリイソシアネート
化合物とを用いて、まずエポキシ化合物のアルコ
ール性水酸基とポリイソシアネート化合物のイソ
シアネート基とを反応させて得られるポリエポキ
シ・ウレタン化合物に芳香族アミン化合物及び/
またはジアンジシアミドまたはポリカルボン酸無
水物を配合するものである。本発明による樹脂組
成物では、イソシアネート基がアルコール性水酸
基でマスクされたウレタン結合になつているた
め、保存性は著しく良好である。また本発明の様
にイソシアネート基をアルコール性水酸基でマス
クしたウレタン結合は、フエノール性水残基でマ
スクしたウレタン結合よりも解離温度が高いため
に、例えば積層板用のプリプレグを作成する時の
乾燥工程やBステージ化した成形材料を作成する
ときの加熱混練工程等の段階で、ウレタン結合が
解離して遊離のイソシアネート基を生じることが
ほとんどない。従つて本発明の樹脂組成物は非常
に保存性に優れたBステージ化合物となり得るの
である。また本発明の樹脂組成物は最終硬化の段
階でウレタン結合が解離し遊離のイソシアネート
基が生じても、イソシアネート基と非常に反応性
の高い芳香族アミン化合物及び/またはジシアン
ジアミドまたはポリカルボン酸無水物を含有して
いるため、最終硬化物に遊離のイソシアネート基
が残存することはない。また最終硬化の段階で
は、イソシアネート基のマスク剤となつていたア
ルコール性水酸基を有するポリエポキシ化合物も
反応するため、積層板等の成形物を成形する時に
マスク剤が揮発分として蒸発することがないの
で、ボイドもなくきれいに成形できる。これは従
来のフエノールやクレゾール等でイソシアネート
基をマスクし、硬化時マスク剤は揮発分として蒸
発除去する様な方法では到底達成できない。 本発明による熱硬化性樹脂組成物の最終硬化反
応は非常に多くの反応が起きる。例えばウレタン
結合にエポキシ基が直接付加することによるオキ
サゾリドン環の形成、あるいはエポキシ基と芳香
族アミン化合物及び/またはジシアンジアミドま
たはポリカルボン酸無水物との反応によるエポキ
シ基の開環、更にウレタン結合より解離し生成し
たイソシアネート基とエポキシ基との反応による
オキサゾリドン環の形成、あるいはイソシアネー
ト基と芳香族アミン化合物及び/またはジシアン
ジアミドとの反応による尿素結合の形成、あるい
はイソシアネート基とポリカルボン酸無水物との
反応によるイミド結合、アミド結合の形成、ある
いはイソシアネート基の重合によるウレトジオン
環、イソシアヌレート環の形成等が起つているも
のと推定される。 この様に本発明の熱硬化性樹脂組成物の最終硬
化物はオキサゾリドン環を有する部分、従来のエ
ポキシ樹脂硬化物と同様の構造を有する部分、あ
るいはこの他尿素結合、イミド結合、イソシアヌ
レート環等多くの構造を含むため、従来のエポキ
シ硬化物の優れた接着性、強じん性等の他に更に
従来のエポキシ樹脂に見られない優れた耐熱性、
電気性能等を有する成形物となり得るのである。 本発明において、エポキシ化合物はビスフエノ
ールAとエピクロルヒドリンとの反応により誘導
される平均分子量が400〜1000であるものが用い
られる。 平均分子量が400以下になるとアルコール性水
酸基の含有率が低下し、イソシアネート基のマス
ク剤としての働きが小さくなり、常温で安定なB
ステージ化合物になりにくい。 一方分子量が1000以上になると最終硬化物の架
橋密度が低下し、耐熱性が低下してしまう。もつ
とも該エポキシ化合物がポリイソシアネート化合
物のイソシアネート基を完全にマスクできる量を
配合してあれば、アルコール性水酸基を全くもた
ないクレゾールノボラツクのポリグリシジルエー
テルを併用することは差しつかえがない。 また、本発明においてイソシアヌレート環を有
し、ウレタン基を含まず2個以上のイソシアネー
ト基を有するポリイソシアネート化合とは例えば
メタンジイソシアネート,エタンー1,2−ジイ
ソシアネート,ブタンー1,1−ジイソシアネー
ト,ブタン−1,2−ジイソシアネート,ブタン
1,4−ジイソシアネート,プロパン−1,3−
ジイソシアネート,トランスビニレンジイソシア
ネート,2−プテン−1,4−ジイソシアネー
ト,2−メチルブタン−1,4−ジイソシアネー
ト,ペンタン−1,5−ジイソシアネート,2,
2−ジメチルペンタン−1,5−ジイソシアネー
ト,ヘキサン−1,6−ジイソシアネート,ペプ
タン−1,7−ジイソシアネート、オクタン−
1,8−ジイソシアネート,ノナン1,9−ジイ
ソシアネート,デカン1,10−ジイソシアネー
ト,ジメチルシランジイソシアネート,ジフエニ
ルシランジイソシアネート,ω,ω′−1,3−
ジメチルベンゼンイソシアネート,ω,ω′−1
−4−ジメチルベンゼンジイソシアネート,ω,
ω′−1,3−ジメチルシクロヘキサンジイソシ
アネート,ω,ω′−1,4−ジメチルシクロヘ
キサンジイソシアネート,ω,ω′−1,4−ジ
メチルベンゼンジイソシアネート,ω,ω′−
1,4−ジメチルナフタリンジイソシアネート,
ω,ω′−1,5−ジメチルナフタリンジイソシ
アネート,シクロヘキサン−1,3−ジイソシア
ネート,シクロヘキサン−1,4−ジイソシアネ
ート,ジシクロヘキシルメタン−4,4′−ジイソ
シアネート,1,3−フエニレンジイソシアネー
ト,1,4−フエニレンジイソシアネート,2,
4−トリレンジイソシアネート,2,5−トリレ
ンジイソシアネート,2,6−トリレンジイソシ
アネート,3,5−トリレンジイソシアネート,
ジフエニルエーテル−4,4′−ジイソシアネー
ト,ジフエニルエーテル−2,4−ジイソシアネ
ート,ナフタリン−1,4−ジイソシアネート,
ナフタリン−1,5−ジイソシアネート,ビフエ
ニル−4,4′−ジイソシアネート,3,3′−ジメ
チルビフエニル−4,4′−ジイソシアネート,
2,3−ジメトキシビフエニル−4,4′−ジイソ
シアネート,ジフエニルメタン−4,4′−ジイソ
シアネート,3,3′−ジメトキシジフエニルメタ
ン−4,4′ジイソシアネート4,4′−ジメトキシ
ジフエニルメタン−3,3′−ジイソシアネート、
ジフエニルサルフアイド−4,4′−ジイソシアネ
ート,ジフエニルスルホン−4,4′−ジイソシア
ネート,ポリメチレンポリフエニルイソシアネー
ト,トリフエニルメタントリイソシアネート,ト
リフエニルイソシアネート、トリス(4−フエニ
ルイソシアネートチオフオスフエート),3,
3′,4,4′−ジフエニルメタンテトライソシアネ
ート等の三量体あるいは、五量体でイソシアヌレ
ート環を有するポイソシアネート化合物である。
また本発明に用いられる芳香族アミン化合物及
び/またはジシアンジアミドが用いられるが、芳
香族アミン化合物としては例えば、オルトフエニ
ルレンジアミン、メタフエニレンジアミン、パラ
フエニレンジアミン,ジアミレフエニエーテル、
ジアミノジフエニルスルホン,ジアミノジフエニ
ルメタン、ベンジジン,4,4′−ビス(オルトー
トルイジン),4,4′−チオジアニリン,ジアニ
シジン,メチレンビス(オルト−クロロアニリ
ン),2,4−トルエンジアミン,ビス(3,4
−ジアミノフエニル)スルホン,4−クロロ−オ
ルト−フエニレンジアミン,4−メトキシ−6−
メチル−メタ−フエニンレンジアミン,メタ−ア
ミノベンジルアミン等がある。 また本発明に用いられるポリカルボン酸無水物
には、例えば無水フタル酸,無水イタコン酸,無
水コハク酸,無水アルケニル酸,無水ドデセニル
コハク酸,無水トリカルバリル酸,無水マレイン
酸のリノレイン酸付加物,無水クロレンデイツク
酸,無水マレイン酸−ビニルエーテル共重合物,
無水マレイン酸−スチレン共重合物,無水ナジツ
ク酸,無水メチルナジツク酸,無水ヘキサヒドロ
フタル酸,無水メチルヘキサヒドロフタル酸,無
水テトラヒドロフタル酸,無水メチルテトラヒド
ロフタル酸,無水トリメリツト酸,無水ピロメリ
ツト酸,無水シクロペンタンテトラカルボン酸,
無水ベンゾフエノンテトラカルボン酸,無水ベン
ゾテトラカルボン酸,エチレングリコールビスト
リメリテイト,グリセリントリストメリテイト等
がある。 また本発明においてアルコール性水酸基を有す
るポリエポキシ化合物とポリイソシアネート化合
物との配合割合は適宜選択できるが、好ましく
は、イソシアネート基1当量に対して、エポキシ
基0.5〜5当量、アルコール性水酸基0.2〜3当量
である。イソシアネート基1当量に対してエポキ
シ基0.5当量以下だと最終硬化物にウレタン結合
が多数残存したり、遊離のイソシアネートが残存
し易くなり、耐熱性,耐湿性が低下する。またエ
ポキシ基が5当量以上になると、最終硬化物中の
オキサゾリドン環の占める割合が少なくなり、耐
熱性が低下する。一方イソシアネート基1当量に
対してアルコール性水酸基が0.2当量以下になる
と、ポリエポキシ・ウレタン化合物中に遊離のイ
ソシアネートが多数残り、保存性が低下する。ま
たアルコール性水酸基が3当量よりも多くなる
と、最終硬化物に水酸基が多数残存することにな
り、耐湿性等が低下する。また上記の様なアルコ
ール性水酸基を有するポリエポキシ化合物のアル
コール性水酸基とポリイソシアネート化合物のイ
ソシアネート基とを反応させて得られるポリエポ
キシ・ウレタン化合物と芳香族アミン化合物及
び/またはジシアンジアミドまたはポリカルボン
酸無水物との配合割合も目的に応じ適宜選択でき
るが、好ましくはエポキシ基1当量に対して、ア
ミン当量または酸無水物当量で0.1〜2当量であ
る。エポキシ基1当量に対して、アミン当量また
は酸無水物当量で0.1当量以下になると、従来の
エポキシ樹脂硬化物が有していた優れた強じん
性、接着性等が低下してくるし、また2当量以上
になると、最終硬化物中に芳香族アミン化合物及
び/またはジシアンアミドあるいはポリカルボン
酸無水物が未反応のまま残存し易くなり、耐熱
性,耐湿性,耐薬品性等が低下する。 本発明において触媒を添加するとより反応が迅
速に進行し有用である。本発明に用いられる触媒
としては通常ウレタン結合形成触媒やオキサゾリ
ドン環形成触媒として用いられているものや、あ
るいはエポキシ化合物と酸無水物または芳香族ア
ミン化合物及び/またはジシアンジアミドとの反
応の触媒として用いられているものが用いられる
が、例えばトリメチルアミン,トリエチルアミ
ン,ベンジルジメチルアミン,ジメチルアミノメ
チルフエノール,トリス(ジメチレアミノメチ
ル)フエノール,N−メチルモルホリン,N−エ
チルモルホリン等の三級アミン類,三フツ化ホウ
素−ピペリジン錯塩,三フツ化ホウ素−モノエチ
ルアミン錯塩等の三フツ化ホウ素−アミン錯塩,
セチルトリメチルアンモニウムプロマイド,セチ
ルトリメチルアンモニウムクロライド,ドデシル
トリメチルアンモニウムアイオダイド,トリメチ
ルドデシルアンモニウムアイオダイド,トリメチ
ルドデシルアンモニウムクロライド等の4級アン
モニウム塩,塩化リチウム,塩化スズ,塩化鉄,
塩化亜鉛,塩化アルミニウム等の金属ハロゲン化
物,リチウムブトキシドカリウムブトキシド,ア
ルミニウムイソプロポキシド,アルミニウムフエ
ノキシド,カルシウムエトキシド,マグネシウム
エトキシド等の金属アルコキシド,フエノキシド
化合物あるいはナフテン酸コバルト,テトラブチ
ルスズ,トリメチルスズヒドロキシド,ジメチル
塩化スズ,ジブチルチンジラウリレート等の有機
金属化合物,2−メチルイミダゾール,2−エチ
ルイミダゾール,2−フエニルイミダゾール,2
−エチル−4−メチルイミダゾール,2−フエニ
ル−4−メチルイミダゾール,1−ベンジル−2
−メチルイミダゾール,2−イソプロピルイミダ
ゾール,1−シアノエチル−2−メチルイミダゾ
ール,1−シアノエチル−2−エチル−4−メチ
ルイミダゾール,1−シアノエチル−2−イソプ
ロピルイミダゾール,1−シアノエチル−2−フ
エニルイミダゾール,2−アンデシルイミダゾー
ル,2−ヘプタデシルイミダゾール,1−シアノ
エチル−2−アンデシルイミダゾール,1−アジ
ン−2−メチルイミダゾール,1−アジン−2−
エチル−4−メチルイミダゾール,1−アジン−
2−アンデシルイミダゾールなどのイミダゾール
化合物がある。 以下の様な触媒を1種または2種以上を0.01〜
10重量部パーセント配合すると有用である。また
本樹脂組成物には必要に応じて難燃剤,顔料,染
料,補強剤等各種の添加剤,充填剤を加えて用い
ることができる。以下実施例によつて更に詳しく
本発明を説明する。 実施例 4,4′−4″−トリメチル3,3′,3″−トリイソ
シアネート2,4,6−トリフエニルイソシアヌ
レートを150gr,ビスフエノールAとエピクロル
ヒドリンとの反応から得られるジグリシジルエー
テル(平均分子量約700,エポキシ当量約340gr,
アルコール性水酸基当量薬700)を350gr,クレゾ
ールノボラツクのポリグリシジルエーテル(分子
量約1400,エポキシ当量約230,アルコール性水
酸基は有しない)を200gr,ジメチルベンジルア
ミンを1gr,MEKを700gr各々配合して濃度50%
の溶液を調整した。この溶液を70℃で10時間撹拌
し、赤外線吸収スペクトルでポリエポキシ・ウレ
タン化合物が生成していることを確認した。この
溶液に無水ヘキサヒドロフタル酸を90gr配合して
ワニスを調整した。このワニスを用いてガラスク
ロスに含浸,乾燥及びプレスを行ない、銅張積層
板を得た。この銅張積層板は第1表に示す様に耐
熱性,電気性能,耐湿性等に優れたものであつ
た。またこのプリプレグを30日間室温で放置後プ
レス成形したところ、プリプレグ作成直後に成形
したものと全く同じ良好な外観の銅張積層を得る
ことができた。しかもこの銅張積層板の性能はプ
リプレグ作成直後に成形したものと同様優れたも
のであつた。 実施例 1 2,4−トリレンジイソシアネートを100gr,
ビスフエノールAとえぷくろるヒドリンとの反応
から得られるジグリシジルエーテル(平均分子量
約950,エポキシ当量約480,アルコール性水酸基
当量約500)を580gr,2−メチルイミダゾールを
2gr及びMEKを680gr配合して、濃度50%のワニ
スを調整した。このワニスを用いて実施例と同様
の方法でガラスクロスに含浸,乾燥及びプレスを
行ない、銅張積層板を得た。この銅張積層板の性
能は第1表に示す様に著しく煮沸処理後の半田耐
熱性が劣るものであり、これは耐湿性が悪いこと
を示すものである。またこのプリプレグを1日室
温で放置後プレス成形したところ、フローが全く
なく成形できなかつた。 比較例 2 ジアミノジフエニルメタンを100gr,ビスフエ
ノールAとエピクロルヒドリンとの反応から得ら
れるジグリシジルエーテル(平均分子量約950,
エポキシ当量約480,アルコール性水酸基当量約
500)を980gr,2−メチルイミダゾールを2gr,
MEKを1100gr配合し、濃度50%のワニスを得
た。このワニスを用いて実施例と同様の方法でガ
ラスクロスに含浸,乾燥及びプレスを行ない、銅
張積層板を得た。この銅張積層板の性能は第1表
に示すように、本発明による積層板に比べ熱時の
曲げ強度、熱時の接着強度等耐熱性が著しく劣
り、電気性能も劣るものであつた。
The present invention has heat resistance, moisture resistance, electrical performance, adhesion,
Regarding thermosetting resin compositions with excellent toughness etc.
In particular, the present invention relates to a thermosetting resin composition that is suitable for use in laminates, molded products, and the like that are manufactured through a B-staged state. It has been well known that when an epoxy compound is reacted with an isocyanate compound, an oxazolidone compound having excellent heat resistance is produced. However, since isocyanate groups are highly reactive, the reaction with epoxy groups proceeds even at room temperature, and in varnishes, B-staged prepregs, molding materials, etc., the resin reaches a gel state in a short time, reducing the pot life. It had shortcomings such as a lack of storage stability, such as being extremely short and easily deteriorating due to moisture absorption. In order to improve this drawback, there is a method in which the isocyanate group is reacted with a masking agent such as phenol or cresol in advance to turn it into a urethane compound that is stable at room temperature, and during curing, the masking agent is dissociated by heating and removed by evaporation to regenerate the isocyanate group. Proposed. (For example, Japanese Patent Publication No. 53-14095). However, in this method, the working environment is seriously disturbed by the dissociated masking agent, and for example, the laminate,
When used in molded products, etc., if the masking agent dissociates during curing, it causes voids, etc., and is therefore not suitable for practical use. On the other hand, the isocyanate group is reacted with the phenolic hydroxyl group of the epoxy/phenol compound to form a urethane bond, and during curing, the urethane bond is dissociated into an isocyanate group and a hydroxyl group. A method has been proposed in which phenol compounds are also reacted (Japanese Patent Publication No. 1973-
Publication No. 13560). However, in this method, free isocyanate groups tend to remain in the final cured product because the masked isocyanate groups are dissociated.
The disadvantage is that the final cured product has significantly poor moisture resistance. Therefore, it is unsuitable for use as an electrical insulating material that requires a high degree of moisture resistance, such as printed wiring boards. Additionally, in general, urethane bonds in which isocyanate groups are masked with phenolic hydroxyl groups have a dissociation temperature of at most 130°C.
Because of this, for example, during the drying process when creating B-staged prepregs, the masked isocyanate groups easily change into free isocyanate groups, resulting in very poor storage stability at the B-stage. There are drawbacks. As a result of extensive research, the present inventors were able to eliminate the above-mentioned drawbacks of the conventional technology and obtain a B-stage compound with excellent storage stability, and the final cured product has excellent heat resistance, electrical properties, and moisture resistance. We have now discovered a thermosetting resin composition that has excellent properties. The thermosetting resin composition of the present invention has an average molecular weight of 400 to 1000 derived from the reaction between bisphenol A and epichlorohydrin, and contains an epoxy compound having an alcoholic hydroxyl group and a urethane group having an isocyanurate ring. First, the alcoholic hydroxyl group of the epoxy compound and the isocyanate group of the polyisocyanate compound are reacted using a polyisocyanate compound having two or more isocyanate groups in the molecule. compound and/or
Alternatively, diandicyamide or polycarboxylic acid anhydride is added. In the resin composition according to the present invention, since the isocyanate group is a urethane bond masked with an alcoholic hydroxyl group, the storage stability is extremely good. Furthermore, as in the present invention, urethane bonds whose isocyanate groups are masked with alcoholic hydroxyl groups have a higher dissociation temperature than urethane bonds whose isocyanate groups are masked with phenolic water residues. Urethane bonds are almost never dissociated to produce free isocyanate groups during the heat-kneading process and the like when creating a B-staged molding material. Therefore, the resin composition of the present invention can be a B-stage compound with extremely excellent storage stability. Furthermore, even if the urethane bonds are dissociated in the final curing stage and free isocyanate groups are generated, the resin composition of the present invention is made of aromatic amine compounds and/or dicyandiamide or polycarboxylic acid anhydrides that are highly reactive with isocyanate groups. , no free isocyanate groups remain in the final cured product. In addition, at the final curing stage, the polyepoxy compound with alcoholic hydroxyl groups that was used as a masking agent for isocyanate groups also reacts, so the masking agent does not evaporate as volatile matter when molding products such as laminates. Therefore, it can be formed neatly without voids. This cannot be achieved by conventional methods in which isocyanate groups are masked with phenol, cresol, etc., and the masking agent is removed by evaporation as volatile matter during curing. A large number of reactions occur in the final curing reaction of the thermosetting resin composition according to the present invention. For example, formation of an oxazolidone ring by direct addition of an epoxy group to a urethane bond, or ring opening of an epoxy group by reaction of an epoxy group with an aromatic amine compound and/or dicyandiamide or polycarboxylic anhydride, and further dissociation from a urethane bond. The formation of an oxazolidone ring by the reaction between the isocyanate group and the epoxy group, or the formation of a urea bond by the reaction between the isocyanate group and an aromatic amine compound and/or dicyandiamide, or the reaction between the isocyanate group and a polycarboxylic acid anhydride. It is presumed that the formation of imide bonds and amide bonds, or the formation of uretdione rings and isocyanurate rings due to polymerization of isocyanate groups, etc. are occurring. As described above, the final cured product of the thermosetting resin composition of the present invention has a portion having an oxazolidone ring, a portion having a structure similar to that of a conventional cured epoxy resin, or other parts such as a urea bond, an imide bond, an isocyanurate ring, etc. Because it contains many structures, in addition to the excellent adhesion and toughness of conventional epoxy resins, it also has excellent heat resistance not found in conventional epoxy resins.
This can result in a molded product with electrical performance, etc. In the present invention, the epoxy compound used has an average molecular weight of 400 to 1000, which is derived from the reaction between bisphenol A and epichlorohydrin. When the average molecular weight is less than 400, the content of alcoholic hydroxyl groups decreases, and the function of the isocyanate group as a masking agent decreases, making B stable at room temperature.
Less likely to become a stage compound. On the other hand, if the molecular weight exceeds 1000, the crosslinking density of the final cured product will decrease, resulting in a decrease in heat resistance. However, as long as the epoxy compound is blended in an amount that can completely mask the isocyanate groups of the polyisocyanate compound, there is no problem in using polyglycidyl ether of cresol novolac, which has no alcoholic hydroxyl groups, in combination. In addition, in the present invention, polyisocyanate compounds having an isocyanurate ring, not containing a urethane group, and having two or more isocyanate groups include, for example, methane diisocyanate, ethane-1,2-diisocyanate, butane-1,1-diisocyanate, and butane-1,1-diisocyanate. 1,2-diisocyanate, butane 1,4-diisocyanate, propane-1,3-
Diisocyanate, trans vinyl diisocyanate, 2-butene-1,4-diisocyanate, 2-methylbutane-1,4-diisocyanate, pentane-1,5-diisocyanate, 2,
2-dimethylpentane-1,5-diisocyanate, hexane-1,6-diisocyanate, peptane-1,7-diisocyanate, octane-
1,8-diisocyanate, nonane 1,9-diisocyanate, decane 1,10-diisocyanate, dimethylsilane diisocyanate, diphenylsilane diisocyanate, ω,ω'-1,3-
Dimethylbenzene isocyanate, ω, ω′-1
-4-dimethylbenzenediisocyanate, ω,
ω'-1,3-dimethylcyclohexane diisocyanate, ω,ω'-1,4-dimethylcyclohexane diisocyanate, ω,ω'-1,4-dimethylbenzene diisocyanate, ω,ω'-
1,4-dimethylnaphthalene diisocyanate,
ω,ω'-1,5-dimethylnaphthalene diisocyanate, cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,3-phenylene diisocyanate, 1,4 -phenylene diisocyanate, 2,
4-tolylene diisocyanate, 2,5-tolylene diisocyanate, 2,6-tolylene diisocyanate, 3,5-tolylene diisocyanate,
diphenyl ether-4,4'-diisocyanate, diphenyl ether-2,4-diisocyanate, naphthalene-1,4-diisocyanate,
naphthalene-1,5-diisocyanate, biphenyl-4,4'-diisocyanate, 3,3'-dimethylbiphenyl-4,4'-diisocyanate,
2,3-dimethoxybiphenyl-4,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, 3,3'-dimethoxydiphenylmethane-4,4'-diisocyanate 4,4'-dimethoxydiphenylmethane-3 , 3′-diisocyanate,
Diphenyl sulfide-4,4'-diisocyanate, diphenyl sulfone-4,4'-diisocyanate, polymethylene polyphenyl isocyanate, triphenylmethane triisocyanate, triphenyl isocyanate, tris(4-phenyl isocyanate thiophosphate) eight), 3,
It is a trimer such as 3',4,4'-diphenylmethanetetrisocyanate or a pentamer polyisocyanate compound having an isocyanurate ring.
Further, aromatic amine compounds and/or dicyandiamide used in the present invention are used, and examples of the aromatic amine compounds include ortho-phenyl diamine, meta-phenylene diamine, para-phenylene diamine, diamylephenyl ether,
Diaminodiphenyl sulfone, diaminodiphenylmethane, benzidine, 4,4'-bis(ortho-toluidine), 4,4'-thiodianiline, dianisidine, methylenebis(ortho-chloroaniline), 2,4-toluenediamine, bis( 3,4
-diaminophenyl)sulfone, 4-chloro-ortho-phenylenediamine, 4-methoxy-6-
Examples include methyl-meta-phenylenediamine and meta-aminobenzylamine. Further, the polycarboxylic acid anhydrides used in the present invention include, for example, phthalic anhydride, itaconic anhydride, succinic anhydride, alkenyl acid anhydride, dodecenylsuccinic anhydride, tricarballylic anhydride, linoleic acid adduct of maleic anhydride, Chlorendic acid, maleic anhydride-vinyl ether copolymer,
Maleic anhydride-styrene copolymer, nadic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, anhydride cyclopentanetetracarboxylic acid,
Examples include benzophenonetetracarboxylic anhydride, benzotetracarboxylic anhydride, ethylene glycol bistrimelitate, and glycerin tristomellitate. Further, in the present invention, the blending ratio of the polyepoxy compound having an alcoholic hydroxyl group and the polyisocyanate compound can be appropriately selected, but preferably 0.5 to 5 equivalents of epoxy group and 0.2 to 3 equivalents of alcoholic hydroxyl group per equivalent of isocyanate group. It is equivalent. If the amount is less than 0.5 equivalent of epoxy group per equivalent of isocyanate group, many urethane bonds remain in the final cured product, or free isocyanate tends to remain, resulting in decreased heat resistance and moisture resistance. Furthermore, when the amount of epoxy groups exceeds 5 equivalents, the proportion of oxazolidone rings in the final cured product decreases, resulting in a decrease in heat resistance. On the other hand, if the amount of alcoholic hydroxyl groups is less than 0.2 equivalent per equivalent of isocyanate group, a large amount of free isocyanate will remain in the polyepoxy-urethane compound, resulting in poor storage stability. Furthermore, if the amount of alcoholic hydroxyl groups exceeds 3 equivalents, a large number of hydroxyl groups will remain in the final cured product, resulting in a decrease in moisture resistance and the like. In addition, a polyepoxy urethane compound obtained by reacting the alcoholic hydroxyl group of a polyepoxy compound having an alcoholic hydroxyl group with the isocyanate group of a polyisocyanate compound as described above and an aromatic amine compound and/or dicyandiamide or polycarboxylic acid anhydride. The blending ratio with the compound can be selected as appropriate depending on the purpose, but it is preferably 0.1 to 2 equivalents of amine equivalent or acid anhydride equivalent to 1 equivalent of epoxy group. If the amine equivalent or acid anhydride equivalent is less than 0.1 equivalent per equivalent of epoxy group, the excellent toughness and adhesive properties of conventional cured epoxy resin products will decrease, and When the amount exceeds the equivalent, the aromatic amine compound and/or dicyanamide or polycarboxylic acid anhydride tends to remain unreacted in the final cured product, resulting in a decrease in heat resistance, moisture resistance, chemical resistance, etc. In the present invention, the addition of a catalyst is useful because the reaction proceeds more rapidly. Catalysts used in the present invention include those commonly used as urethane bond-forming catalysts and oxazolidone ring-forming catalysts, or those used as catalysts for the reaction of epoxy compounds with acid anhydrides, aromatic amine compounds, and/or dicyandiamide. For example, tertiary amines such as trimethylamine, triethylamine, benzyldimethylamine, dimethylaminomethylphenol, tris(dimethylaminomethyl)phenol, N-methylmorpholine, N-ethylmorpholine, trifluoride Boron trifluoride-amine complex salts such as boron-piperidine complex salts and boron trifluoride-monoethylamine complex salts,
Quaternary ammonium salts such as cetyltrimethylammonium bromide, cetyltrimethylammonium chloride, dodecyltrimethylammonium iodide, trimethyldodecylammonium iodide, trimethyldodecylammonium chloride, lithium chloride, tin chloride, iron chloride,
Metal halides such as zinc chloride and aluminum chloride, metal alkoxides such as lithium butoxide, potassium butoxide, aluminum isopropoxide, aluminum phenoxide, calcium ethoxide, magnesium ethoxide, phenoxide compounds, or cobalt naphthenate, tetrabutyltin, trimethyltin Organometallic compounds such as hydroxide, dimethyltin chloride, dibutyltin dilaurylate, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2
-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2
-Methylimidazole, 2-isopropylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-isopropylimidazole, 1-cyanoethyl-2-phenylimidazole, 2-andecylimidazole, 2-heptadecyl imidazole, 1-cyanoethyl-2-andecylimidazole, 1-azine-2-methylimidazole, 1-azine-2-
Ethyl-4-methylimidazole, 1-azine-
There are imidazole compounds such as 2-andecylimidazole. One or more of the following catalysts from 0.01 to
It is useful to include 10 parts by weight. Furthermore, various additives and fillers such as flame retardants, pigments, dyes, and reinforcing agents may be added to the resin composition as required. The present invention will be explained in more detail below with reference to Examples. Example 4,4'-4''-trimethyl 3,3',3''-triisocyanate 150 gr of 2,4,6-triphenyl isocyanurate, diglycidyl ether obtained from the reaction of bisphenol A and epichlorohydrin (average Molecular weight approximately 700, epoxy equivalent approximately 340gr,
350gr of alcoholic hydroxyl equivalent drug (700), 200gr of polyglycidyl ether of cresol novolak (molecular weight: approx. 1400, epoxy equivalent: approx. 230, no alcoholic hydroxyl group), 1gr of dimethylbenzylamine, and 700gr of MEK. Concentration 50%
A solution was prepared. This solution was stirred at 70°C for 10 hours, and it was confirmed by infrared absorption spectrum that a polyepoxy-urethane compound had been produced. A varnish was prepared by adding 90g of hexahydrophthalic anhydride to this solution. A glass cloth was impregnated with this varnish, dried and pressed to obtain a copper-clad laminate. As shown in Table 1, this copper-clad laminate was excellent in heat resistance, electrical performance, moisture resistance, etc. Furthermore, when this prepreg was left at room temperature for 30 days and then press-molded, it was possible to obtain a copper-clad laminate with exactly the same good appearance as that molded immediately after preparing the prepreg. Moreover, the performance of this copper-clad laminate was as excellent as that of one molded immediately after preparing the prepreg. Example 1 100 gr of 2,4-tolylene diisocyanate,
580g of diglycidyl ether (average molecular weight: about 950, epoxy equivalent: about 480, alcoholic hydroxyl equivalent: about 500) obtained from the reaction of bisphenol A and epoxyhydrin, and 2-methylimidazole.
A varnish with a concentration of 50% was prepared by blending 2gr and 680gr of MEK. Using this varnish, a glass cloth was impregnated, dried and pressed in the same manner as in the examples to obtain a copper-clad laminate. As shown in Table 1, the performance of this copper-clad laminate is that the solder heat resistance after boiling treatment is extremely poor, which indicates that the moisture resistance is poor. Further, when this prepreg was press-molded after being left at room temperature for one day, there was no flow at all and it could not be formed. Comparative Example 2 Diglycidyl ether (average molecular weight approximately 950,
Epoxy equivalent: approx. 480, alcoholic hydroxyl equivalent: approx.
500), 980gr, 2-methylimidazole, 2gr,
A varnish with a concentration of 50% was obtained by blending 1100g of MEK. Using this varnish, a glass cloth was impregnated, dried and pressed in the same manner as in the examples to obtain a copper-clad laminate. As shown in Table 1, the performance of this copper-clad laminate was significantly inferior to the laminate according to the present invention in terms of heat resistance such as bending strength when heated and adhesive strength when heated, and also inferior in electrical performance.

【表】【table】

【表】 以上の実施例及び比較例から明らかの様に、本
発明による熱硬化性樹脂組成物は常温で非常に安
定な耐熱ワニスあるいはプリプレグ,成形材料等
のBステージ化合物を得ることができ、かつ硬化
物は従来のエポキシ硬化物の優れた接着性,強じ
ん性等の他に、更に従来のエポキシ樹脂には見ら
れない優れた耐熱性,電気性能,耐湿性等を有し
ていることから、銅張積層板を始めとする各種の
電気絶縁材料、注型品,構造材料,各種成形材
料,含浸用,被覆用,接着用等の樹脂として巾広
い用途に非常に有用である。
[Table] As is clear from the above Examples and Comparative Examples, the thermosetting resin composition according to the present invention can provide B-stage compounds such as heat-resistant varnishes, prepregs, and molding materials that are extremely stable at room temperature. In addition to the excellent adhesion and toughness of conventional epoxy cured products, the cured product also has excellent heat resistance, electrical performance, moisture resistance, etc. not found in conventional epoxy resins. Therefore, it is extremely useful in a wide range of applications as a resin for various electrical insulating materials including copper-clad laminates, cast products, structural materials, various molding materials, impregnation, coating, adhesives, etc.

Claims (1)

【特許請求の範囲】 1 ビスフエノールAとエピクロルヒドリンとの
反応により誘導される平均分子量が400〜1000で
ありアルコール性水酸基を有するエポキシ化合物
と、イソシアヌレート環を有し、ウレタン基を含
まず分子内に2個以上のイソシアネート基を有す
るポリイソシアネート化合物とを用いて、まずエ
ポキシ化合物のアルコール性水酸基とポリイソシ
アネート化合物のイソシアネート基とを反応させ
て得られるポリエポキシ・ウレタン化合物に芳香
族アミン化合物及び/またはジシアンジアミドま
たはポリカルボン酸無水物を配合することを特徴
とする熱硬化性樹脂組成物。 2 エポキシ化合物とポリイソシアネート化合物
との配合割合が、イソシアネート基1当量に対し
て、エポキシ基0.5〜5当量、アルコール性水酸
基0.2〜3当量である特許請求の範囲第1項記載
の熱硬化性樹脂組成物。 3 ポリエポキシ、ウレタン化合物と芳香族アミ
ン化合物及び/またはジシアンジアミドまたはポ
リカルボン酸無水物との配合割合がエポキシ基1
当量に対して、アミン及び/またはジアミド当量
または酸無水物当量で0.1〜2当量である特許請
求の範囲第1項及び第2項記載の熱硬化性樹脂組
成物。
[Scope of Claims] 1. An epoxy compound having an average molecular weight of 400 to 1000 and having an alcoholic hydroxyl group, which is derived from the reaction between bisphenol A and epichlorohydrin, and an epoxy compound having an isocyanurate ring and containing no urethane group in the molecule. An aromatic amine compound and/or an aromatic amine compound and/or a polyepoxy urethane compound obtained by first reacting the alcoholic hydroxyl group of an epoxy compound with the isocyanate group of a polyisocyanate compound using a polyisocyanate compound having two or more isocyanate groups. Or a thermosetting resin composition characterized by blending dicyandiamide or polycarboxylic acid anhydride. 2. The thermosetting resin according to claim 1, wherein the blending ratio of the epoxy compound and the polyisocyanate compound is 0.5 to 5 equivalents of epoxy group and 0.2 to 3 equivalents of alcoholic hydroxyl group per equivalent of isocyanate group. Composition. 3 The blending ratio of polyepoxy, urethane compound and aromatic amine compound and/or dicyandiamide or polycarboxylic acid anhydride is 1 epoxy group
The thermosetting resin composition according to Claims 1 and 2, which has an amine and/or diamide equivalent or acid anhydride equivalent of 0.1 to 2 equivalents based on the equivalent.
JP7666680A 1980-06-09 1980-06-09 Thermosetting resin composition Granted JPS573816A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7666680A JPS573816A (en) 1980-06-09 1980-06-09 Thermosetting resin composition
US06/326,306 US4401499A (en) 1980-06-09 1981-12-01 Crosslinked resin of epoxy compound and isocyanate and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7666680A JPS573816A (en) 1980-06-09 1980-06-09 Thermosetting resin composition

Publications (2)

Publication Number Publication Date
JPS573816A JPS573816A (en) 1982-01-09
JPS624055B2 true JPS624055B2 (en) 1987-01-28

Family

ID=13611729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7666680A Granted JPS573816A (en) 1980-06-09 1980-06-09 Thermosetting resin composition

Country Status (1)

Country Link
JP (1) JPS573816A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222471A (en) * 1992-09-18 1993-06-29 Kohler Co. Emission control system for an internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514300A (en) * 1974-06-29 1976-01-14 Asahi Denka Kogyo Kk
JPS5146158A (en) * 1974-10-17 1976-04-20 Matsushita Electric Ind Co Ltd NENPIKEI
JPS5386735A (en) * 1972-12-22 1978-07-31 Ppg Industries Inc Method of producing resin for electrodeposition
JPS5426000A (en) * 1977-07-28 1979-02-27 Mitsubishi Chem Ind Ltd Epoxy resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386735A (en) * 1972-12-22 1978-07-31 Ppg Industries Inc Method of producing resin for electrodeposition
JPS514300A (en) * 1974-06-29 1976-01-14 Asahi Denka Kogyo Kk
JPS5146158A (en) * 1974-10-17 1976-04-20 Matsushita Electric Ind Co Ltd NENPIKEI
JPS5426000A (en) * 1977-07-28 1979-02-27 Mitsubishi Chem Ind Ltd Epoxy resin composition

Also Published As

Publication number Publication date
JPS573816A (en) 1982-01-09

Similar Documents

Publication Publication Date Title
US4564651A (en) Method for the manufacture of reaction resin molding materials
US3979477A (en) Composition of epoxide resins, polycarboxylic acid anhydrides and polyester-dicarboxylic acids
US4401499A (en) Crosslinked resin of epoxy compound and isocyanate and process for producing same
US4070416A (en) Novel thermosetting resin and a process for producing same
CA1120219A (en) Process for producing electric windings
US4100118A (en) Thermosetting resin composition
US4212960A (en) Epoxy resin composition
JPH0134526B2 (en)
US4142034A (en) Epoxy resin compositions containing an amine-cyanic acid ester combination curing agent
US4056579A (en) Novel thermosetting resin composition and cured product therefrom
CA1152531A (en) Curable epoxide resin mixtures
JP3046905B2 (en) Pre-preg for electrical insulation
JPH0656961A (en) Epoxy resin composition
EP0353103A2 (en) Low viscosity epoxy resin compositions
JPH0519567B2 (en)
JPS624055B2 (en)
JPS641490B2 (en)
US4636556A (en) Heat-hardening reaction resin mixture for impregnating insulation of electrical equipment and for the manufacture of molding materials with and without inserts
US3716598A (en) Hardenable epoxy resin compositions
US3728306A (en) Composition comprising an epoxy resin with an organostannoic acid-carboxylic acid anhydride reaction product
JPS638967B2 (en)
JPS5898326A (en) Production of crosslinked resin
JPH0135007B2 (en)
JPS5962620A (en) Curing of epoxy resin
US4307213A (en) Curable epoxy resin compositions