JPS6240432A - Whole solid-state electrochromic element - Google Patents

Whole solid-state electrochromic element

Info

Publication number
JPS6240432A
JPS6240432A JP18088185A JP18088185A JPS6240432A JP S6240432 A JPS6240432 A JP S6240432A JP 18088185 A JP18088185 A JP 18088185A JP 18088185 A JP18088185 A JP 18088185A JP S6240432 A JPS6240432 A JP S6240432A
Authority
JP
Japan
Prior art keywords
film
plasma
solid
state
whole solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18088185A
Other languages
Japanese (ja)
Inventor
Yasunori Taga
康訓 多賀
Tadayoshi Ito
忠義 伊藤
Masakata Hirai
正名 平井
Jiro Sakata
二郎 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP18088185A priority Critical patent/JPS6240432A/en
Publication of JPS6240432A publication Critical patent/JPS6240432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To maintain a water amount necessary to operating the EC to almost a constant value without affecting a direct effect of an atmosphere surrounding the element by coating the surface of the whole solid-state EC element with a plasma- polymerized film. CONSTITUTION:The titled element is the whole solid-state electrochromic element having a laminated part obtd. by laminating the transparent electroconductive film, the 1st film, the solid electrolyte film, the 2nd film and the electroconductive film in order, and constituted of the substance generating the electrochromism reaction which colors any one of the 1st film or the 2nd film with the oxidation and colors an another film with the reduction. The whole solid-state EC element is coated the laminated part 4 and the substrate 41 with the plasma-polymerized film 5 of an org. compd. The org. compd. of forming the plasma-polymerized film preferably comprises a methane, an acetylene, a furan, an acrylic acid and a tetrafluoroethylene. The prescribed film contg. many of a crosslinked structure and having a very small space free volume and a water permeability suitable to use for the whole solid-state EC element is obtd. by plasma-polymerizing the prescribed org. compds. The thickness of the plasma-polymerized film is preferably 10-10,000mum considering the water permeability thereof.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電圧印加により電気rヒ学的に着消色する全
固体エレクトロクロミック(以下ECと称す)素子に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an all-solid-state electrochromic (hereinafter referred to as EC) element that electrochromically changes color and fades upon application of voltage.

〔従来技術とその問題点〕[Prior art and its problems]

EC素子は、液晶と同じく非発光型の素子であるが、広
い視認性を有すること、メモリ作用を有すること、低電
圧による駆動が可能なこと9等の特徴を有し2表示用素
子としての応用が期待されている。
EC elements are non-emissive elements like liquid crystals, but they have characteristics such as wide visibility, memory function, and the ability to be driven with low voltage9, making them suitable for use as display elements. Applications are expected.

また、調光体として例えば日射量に応じて外光が可能な
ものである。
Further, as a light control body, for example, it is possible to control external light according to the amount of solar radiation.

EC素子は、溶gI型と固体型とに大別され、溶液量は
EC膜とこれに対向する電極の間に、電解液を満たした
ものである。一方、固体型は上記電解液を固体電解質に
置き換えたもので、前記溶液型の欠点、たとえば曲面構
造9反射型構造全作りにくい、破壊したときに液が飛散
する等の欠点。
EC elements are roughly classified into molten gI type and solid type, and the amount of solution is one in which an electrolytic solution is filled between an EC membrane and an electrode facing it. On the other hand, the solid type replaces the above electrolyte with a solid electrolyte, and has the drawbacks of the solution type, such as difficulty in creating a curved structure 9 reflection type structure, and liquid scattering when broken.

全克服できるものとされている。It is said that everything can be overcome.

第2図は、全固体EC素子の一般的な構造を模式的に示
す断面図である。この素子は、基板ガラス11の上に、
インジウム−錫酸化物(以下ITOと称す)からなる透
明電導膜12.酸化着色物質である酸化ニッケル(NO
)の膜13.固体電解質である五酸化タングfv (T
axes )の膜14.還元着色物質である酸化タング
ステン(W(h )  の膜15およびITO又はアル
ミニウム(Ae)からなる上部電導膜16の5層積層構
造を有する。この構造は、基板上に、各物質を真空蒸着
、スバブタリング、イオンブレーティング等の方法によ
膜形成されている。
FIG. 2 is a cross-sectional view schematically showing the general structure of an all-solid-state EC element. This element is placed on a substrate glass 11,
Transparent conductive film 12 made of indium-tin oxide (hereinafter referred to as ITO). Nickel oxide (NO
) film 13. Tang pentoxide fv (T
axes) membrane 14. It has a five-layer stacked structure including a film 15 of tungsten oxide (W(h)), which is a reduced coloring substance, and an upper conductive film 16 made of ITO or aluminum (Ae). Films are formed by methods such as swabbing and ion blating.

第2図に示す構造のEC素子は、上記両型導膜12.1
6間に電位差を加えると。
The EC element having the structure shown in FIG.
If we add a potential difference between 6.

WOs  +  ’H++ xe−、: HJWOjの
式で示されるように、プロトン(H’)と電子(e−)
の二重注入・放出による反応が、WO3及びNiO膜に
おいて進行し1着色と消色を繰返すといわれている。こ
こで、プロトンはT a zOs膜14およびWO3膜
15中に含まれる水分の分解によ−て。
WOs + 'H++ xe-,: As shown by the formula HJWOj, proton (H') and electron (e-)
It is said that a reaction due to the double injection and release of ions proceeds in the WO3 and NiO films, repeating coloring and decoloring. Here, protons are generated by decomposition of water contained in the TazOs film 14 and the WO3 film 15.

供給されるものと考えられている。It is believed that this will be supplied.

つまり、全固体EC素子は、素子の外部の水分によって
その特性が影響される。すなわち低湿度雰囲気又は高温
雰囲気中に置かれた素子は、素子中の水分が減少し1着
色濃度を低下させることがある。
In other words, the characteristics of an all-solid-state EC device are affected by moisture outside the device. That is, when an element is placed in a low-humidity atmosphere or a high-temperature atmosphere, moisture in the element decreases, which may lower the color density.

特開昭60−21030には、全固体EC素子の表面に
二酸化ケイ素(8+Ot)、または窒rヒケイ素(81
@N4 )の膜をプラズマCVD等の方法により形成し
たのち、有機接着剤で素子上部にガラス板を貼シ合せて
製作したEC素子が開示されている。しかし、この素子
は、膜形成のために、素子全体を、一旦10””” 〜
10 ’ )−/L/(torr )■真空中に保持し
なければならないから、EC素子中の水分が散逸してし
まい、5iOj又は8i、N4膜形成後完全に動作不能
になることがある。
JP-A No. 60-21030 discloses that silicon dioxide (8+Ot) or nitroxysilicon (81
An EC device has been disclosed in which a film of @N4) is formed by a method such as plasma CVD, and then a glass plate is bonded to the top of the device using an organic adhesive. However, in order to form a film, the entire device is heated to 10"
10')-/L/(torr)■ Since the EC element must be kept in a vacuum, the moisture in the EC element will dissipate, and the EC element may become completely inoperable after the 5iOj, 8i, or N4 film is formed.

その上、S・07またはS・3N4等は、水分透過阻止
能力が大きいので、処理後大気中に取)出してから。
In addition, S.07 or S.3N4 has a high ability to prevent moisture permeation, so they should be taken out into the atmosphere after treatment.

動作しない素子が動作を回復する確率は高くないという
問題点がある。
There is a problem in that the probability that a malfunctioning element will recover its operation is not high.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

そこで1発明者らは、上記全固体EC素子の有する問題
点を解決するために1種4検討を進めた。
Therefore, the inventors conducted four types of studies in order to solve the problems of the above-mentioned all-solid-state EC elements.

その結果、全固体EC素子を被覆するとしても。As a result, even if it covers an all-solid-state EC element.

使用環境の変化の伝達をある程度遮ることが可能な緩衝
Mを形成することを考え、該緩衝層には。
Considering the formation of a buffer M that can block the transmission of changes in the usage environment to some extent, the buffer layer is made of:

次の性質を保有せし7めるのが望ましいとの結論に達し
た。緩衝層は、EC素子中の水分が、高温又は低湿度雰
囲気下でEC素子外へ飛散するのを妨げ、低温、多湿雰
囲気下では素子中へ水分?取り込めるように、水分の透
過に対しである程度の阻止能力を有するもので、しかも
素子の動作に伴なう変形を弾性的に吸収できるものであ
るCとが望ましいという結果を得た。そうして本発明を
為すに至った。
We have reached the conclusion that it is desirable to have the following properties: The buffer layer prevents moisture in the EC element from scattering out of the EC element under high temperature or low humidity atmospheres, and prevents moisture from entering the element under low temperature and high humidity atmospheres. The results show that it is desirable to have a material C that has a certain degree of blocking ability against moisture permeation so that moisture can be taken in, and that can elastically absorb deformation caused by the operation of the element. In this way, the present invention was accomplished.

〔問題点を解決するための手段および作用〕本発明は、
基板上に透明導電膜、第1膜、固体電解質膜、第2膜、
導電膜を順次遺崩してなる積層部を有し、第1膜と第2
膜のいずれか一方が酸化により着色、他方が還元により
青色するエレクトロクロミズム反応を呈する物質により
構成した全固体エレクトロクロミック索子でめって、該
素子の表面に有機化合物Oプラズマ蚕台膜を被覆してな
ること全特徴とする全固体エレクトロクロミック素子で
ある。
[Means and effects for solving the problems] The present invention has the following features:
A transparent conductive film, a first film, a solid electrolyte film, a second film on the substrate,
It has a laminated part formed by sequentially disintegrating conductive films, and has a first film and a second film.
One of the membranes is colored by oxidation and the other is made of a substance exhibiting an electrochromic reaction that turns blue by reduction, and the surface of the element is coated with an organic compound O plasma silica film. This is an all-solid-state electrochromic device with all the following characteristics.

本発明にかかる全固体EC素子の構造例を第1図により
説明する。
An example of the structure of an all-solid-state EC device according to the present invention will be explained with reference to FIG.

基板41は1通常透明なガラスでできた板であり、その
形状は、平面板あるいは曲面板でろ−てもよ<、EC反
応を生ずる8に層部4を保持するとともに、全固体EC
素子の着消色表示面としての役目を有する。
The substrate 41 is usually a plate made of transparent glass, and its shape may be a flat plate or a curved plate.
It serves as a coloring/decoloring display surface of the device.

積層部4を構成する透明導電膜42は、透明で先 4e!を透過させ、第1膜43.第2模45の着消色の
状態を基板11側から観察可能とするものである。また
、第1膜43.第2膜45のいずれか一万は酸「ヒされ
ることにより着色する物質、他方が還元されるCとによ
り暗色する物質で構成される。
The transparent conductive film 42 constituting the laminated portion 4 is transparent and has a transparent conductive film 4e! is transmitted through the first membrane 43. This allows the state of coloring and decoloring of the second pattern 45 to be observed from the substrate 11 side. Further, the first film 43. One of the 10,000 parts of the second film 45 is made of a substance that becomes colored when exposed to acid, and the other part is made of a substance that becomes dark when it is reduced with carbon.

透明導電膜42を構成する材料としては、ITO。The material constituting the transparent conductive film 42 is ITO.

SnO2,等を使用することができる。第1喚、第2膜
を構成する材料としては、酸化により着色する物質とし
て、 N i O、t r02 、 Rb02等ヲ、還
元により着色する物質としてWO3,MoOx  V2
05.等を使用することができるう また。固体下解質1幀44は、前記第1嘆、第2膜の間
におって、プロトンと電子を移動させるための慣質であ
る。固体N解質嘆を構成する具体的な物質としてVx、
 Ta、05.0r203. S iOz等を使用する
ことができろう 前記第2膜O上には、電極としての導電膜46を有し、
前記透明導電膜42との間で第1膜、固体ゴ1解質膜、
第2膜に電場を印加するものである。
SnO2, etc. can be used. The materials constituting the first and second films include N i O, tr02, Rb02, etc., which are colored by oxidation, and WO3, MoOx V2, which are colored by reduction.
05. etc. can also be used. The solid bottom solute 1 44 is an inert material for transferring protons and electrons between the first membrane and the second membrane. Vx as a concrete substance constituting the solid N solution,
Ta, 05.0r203. A conductive film 46 as an electrode is provided on the second film O, which may be made of SiOz or the like,
Between the transparent conductive film 42, a first film, a solid Go1 decomposition film,
An electric field is applied to the second film.

該導電膜7I6を形成する物質としては、透明導電膜4
2と同様のものでもよいし、 A(1,Al、 Sn等
の不透明のものでも使用することができる。ITO等の
透明となる物質による場合には、透過型の全固体EC素
子、Ae等の不透明となる物質により構成した場合には
1反射型のEC素子となる。
The material for forming the conductive film 7I6 is the transparent conductive film 4.
2 may be used, or an opaque material such as A(1, Al, Sn, etc.) may be used. In the case of a transparent material such as ITO, a transmissive all-solid-state EC element, Ae, etc. If it is made of an opaque substance, it becomes a single reflection type EC element.

本発明にかかる全固体EC素子は、上記積層部4および
基板41に有機化合物のプラズマ重合膜5を被覆してな
るものである。プラズマ重合膜形成用の有機化合物とし
ては、メタン(CH4)。
The all-solid-state EC device according to the present invention is formed by coating the laminated portion 4 and the substrate 41 with a plasma polymerized film 5 of an organic compound. Methane (CH4) is used as an organic compound for forming a plasma polymerized film.

アセチレン(02H−)、フランc c、 u、o >
 、アクリル酸(OH,= CHCOOH)、テトラフ
ルオロエチレン(F2c=cFz )等がよく、これら
の「ヒ合物をプラズマ重合させると9通常の合成高分子
をヌピナーコーティングなどの方法で薄膜状に成形した
ものの場合等よりも架橋構造を多く含んでおり、空間自
由体積は極めて小さく、全固体EC素子に適した水分量
の透過性を有するものである。たとえば市販のポリ塩f
ヒビニルを溶媒に溶かし、これをスピナーコーティング
法で形成した膜よりも水分の透過性は1/1o’倍程度
である。
Acetylene (02H-), furan c c, u, o >
, acrylic acid (OH, = CHCOOH), tetrafluoroethylene (F2c = cFz), etc. are commonly used.If these compounds are plasma polymerized,9 ordinary synthetic polymers can be formed into a thin film by a method such as Nupinar coating. It contains more crosslinked structures than those molded into polysilicon, has an extremely small free space volume, and has moisture permeability suitable for all-solid EC devices.For example, commercially available polysalt f
The water permeability is approximately 1/10' times higher than that of a membrane formed by dissolving hibinyl in a solvent and using a spinner coating method.

該プラズマ重合膜の厚さは、水分の透過性等を考慮する
と、10〜10000 nm程度がよい。
The thickness of the plasma polymerized film is preferably about 10 to 10,000 nm in consideration of moisture permeability and the like.

iQnm未満の厚さでは水分の過通が起りやすく。If the thickness is less than iQnm, moisture will easily pass through.

10000nmi越えると水分の透過阻止能が大きくな
り過ぎる。また、110000n以上のプラズマ重合@
を作製することは、形成途上の該膜を長時間プラズマ空
間にさらすことになり、形成膜の化学組成変動を誘起し
やすく、またクラック等が発生する原因ともなるので好
ましくない。
If it exceeds 10,000 nmi, the moisture permeation blocking ability becomes too large. In addition, plasma polymerization of 110000n or more @
This is not preferable because the film in the process of being formed is exposed to a plasma space for a long time, which tends to induce changes in the chemical composition of the formed film and also causes cracks to occur.

プラズマ重合膜を形成する方法は、たとえば次のようで
ある。まず、被膜形成用の有機rヒ合物の蒸気を0.0
1〜18 (torr )程度の圧力上水すくらいに満
たした真空容器内に、高周波電源より所定の入力を与え
、容器内に、電子、ラジカル。
A method for forming a plasma polymerized film is, for example, as follows. First, the vapor of an organic r-arsenite for film formation is
A predetermined input is applied from a high frequency power source to a vacuum container filled with water at a pressure of about 1 to 18 (torr), and electrons and radicals are generated in the container.

の表面に有機化合物からなる高分子膜が生成し。A polymer film made of organic compounds is formed on the surface of the

積層部を被覆する。プラズマ重合膜生成時、積層部の温
度は1001℃程度にしか上昇せず、また。
Cover the laminate. During plasma polymerization film formation, the temperature of the laminated portion only rises to about 1001°C.

圧力も0.05 )−ル以上でプラズマCVD法の場合
のように、低圧状態に置くことがないって積層体EC素
子は、正常に所期の動作をする。また。
If the pressure is 0.05 ) -3 or higher and the stacked EC device is not placed in a low pressure state as in the plasma CVD method, it will normally operate as expected. Also.

プラズマ重合膜形成中に、積層部の水分が散逸したとし
ても、プラズマ重合膜は、適度に水分を透過するので、
素子の動作が回復する。
Even if the moisture in the laminated portion dissipates during the formation of the plasma polymerized membrane, the plasma polymerized membrane will allow a moderate amount of moisture to pass through.
The operation of the element is restored.

また、プラズマ重合膜の化学構造や物性値は。Also, what are the chemical structures and physical properties of plasma polymerized films?

一般の重合法による場合とは異なシ、定まったものとし
て特定することが困難である。Cれらは。
This is different from the case using general polymerization methods, and it is difficult to specify it as a fixed method. C these are.

有機化合物の種類や圧力等の条件によ−て異なるもつが
生成している。プラズマ重合時のガス圧力は前記したが
、0.01〜1トールの範囲がよく。
Different types of offal are produced depending on the type of organic compound and conditions such as pressure. As mentioned above, the gas pressure during plasma polymerization is preferably in the range of 0.01 to 1 Torr.

0.01)−ル未満では成膜速度が小さく、1.)−ル
以上になると得られる膜の緻密度合が低くなり不都合を
生じる。
If it is less than 0.01)-L, the film formation rate is low; ) - L or more, the density of the obtained film becomes low, resulting in inconvenience.

さらに、プラズマ重合時に、容器中に、ヘリウム、アル
ゴン等の不活性ガス、フッ素等のハロゲンガス、水素ガ
ス等を共存させてもよい。この場合、得られる嘆は架橋
度が大きくなり、ガスの混入iを変、えることによ−て
水分透過駆出能を広く調節することができる。
Furthermore, during plasma polymerization, an inert gas such as helium or argon, a halogen gas such as fluorine, hydrogen gas, or the like may coexist in the container. In this case, the resulting material has a high degree of crosslinking, and by changing the amount of gas mixed in, the water permeability and ejection ability can be adjusted over a wide range.

全固体EC素子の透明導電脚42と導電膜46とD間l
/ic!圧全印加し、電圧を変fヒさせると固体電解W
、膜46全1ffi して、第141および第2嘆間で
プロトンと電子りやりとりが行なわれ、filllN。
Between the transparent conductive legs 42 and the conductive film 46 of the all-solid-state EC element and D
/ic! When a total pressure is applied and the voltage is changed, a solid electrolyte W
, the entire membrane 46 is 1ffi, and protons and electrons are exchanged between the 141st and 2nd membranes, fillN.

第2膜が着消色し、EC素子としてD動作をする。The second film changes color and performs D operation as an EC element.

このとき、該素子を高温、低圧力又(グ低湿度7)雰囲
気に置いた場合には、プラズマ重合膜によυ。
At this time, if the device is placed in a high temperature, low pressure or (low humidity) atmosphere, the plasma polymerized film will cause υ.

積層部からの水分散逸が適度に阻止され、一方。On the other hand, water dispersion from the laminate is moderately prevented.

高湿の雰囲気に置いた場合には、水分のる度O集積が阻
止される。その結果、雰囲気が変化しても積層部中の水
分曇がほぼ一定量となる。
If placed in a high humidity atmosphere, moisture will prevent O from accumulating. As a result, even if the atmosphere changes, the amount of moisture clouding in the laminated portion remains approximately constant.

し本発明の効果〕 全固体EC素子■表面全プラズマ重合膜により被覆しで
あるため、EC動作に必要な水分を。
[Effects of the present invention] All-solid-state EC element - The entire surface is coated with a plasma polymerized film, which eliminates moisture necessary for EC operation.

素子周囲の雰囲気に直接影響されずに、はぼ一定値に保
つことができる。それ故2本発明にかかる全H,r1体
EC紫子は1周囲雰囲気に影響されずに。
It is possible to maintain a constant value without being directly affected by the atmosphere around the element. Therefore, the all-H, r1-body EC Shiko according to the present invention is not affected by the surrounding atmosphere.

着消色の変(ヒ割合がほぼ一定の安定した動作下で行な
わせることができる。
Changes in color and fading (decolorization) can be performed under stable operation with a nearly constant rate of discoloration.

〔実施例〕〔Example〕

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

まず、実施例において使用したプラズマ重合装置の主要
部を私曲図により第5図に示す。真空容器2は、ガラヌ
製ジャー21とジャー21ニア)底全構成する金属台2
4とからなシ9両者の結合部は気体が容易に通過できな
い構造とな−でいる。
First, the main parts of the plasma polymerization apparatus used in the examples are shown in FIG. 5 in a private diagram. The vacuum container 2 consists of a jar 21 made of Galanu and a metal stand 2 that consists of the bottom of the jar 21.
The connecting portion between the two parts 4 and 9 has a structure that does not allow gas to pass through easily.

ジャー21は頂部に直径約71の突部22を有する高さ
約501m、胴部直径約30CMのガラス製底なし容器
である。
The jar 21 is a bottomless glass container with a height of about 501 m and a body diameter of about 30 cm, having a protrusion 22 with a diameter of about 71 at the top.

突部22の先端部には、 ArJ(e、LLなどのガス
導入用通路29が設けである。また、突部22の中央部
には、高周波電場印加用の電極23としての銅板が巻き
つけである。
A gas introduction passage 29 such as ArJ(e, LL, etc.) is provided at the tip of the protrusion 22. A copper plate as an electrode 23 for applying a high-frequency electric field is wound around the center of the protrusion 22. It is.

一方、金属台24は、原料ガスとしての有機fヒ合物導
入用の導入通路27と、ジャー21内の気体を排出する
ための排出通路28と、接地用端子25を有する。
On the other hand, the metal base 24 has an introduction passage 27 for introducing an organic compound as a raw material gas, an exhaust passage 28 for discharging the gas in the jar 21, and a grounding terminal 25.

さらに、金属台24の上面には、EC素子を載せ補、排
出通路28に接続した真空ポンプ(図示せず)により、
真空容器中の空気を排出する。次に。
Furthermore, an EC element is mounted on the upper surface of the metal base 24, and a vacuum pump (not shown) connected to the discharge passage 28 is used to
Evacuate the air in the vacuum container. next.

真空ポンプにより空気を排出しながら、有機rヒ合物を
導入通路27から導入せしめ、真空容器中の圧力が所定
圧力になるように調節する。
While exhausting air with a vacuum pump, an organic r-hyde compound is introduced from the introduction passage 27, and the pressure in the vacuum container is adjusted to a predetermined pressure.

不活性ガス等の他のガスを共存させて重合を行なうとき
は、ガス導入用通路29全使用する。
When polymerization is carried out in the coexistence of other gases such as inert gases, the entire gas introduction passage 29 is used.

この状態で、雫f’@23と金具25の間に、高周波電
源(図示せず)を接続し、真空容器中をプラズマ状態に
する。試料台26にその面を垂直にして載せたEC素子
31の表面にはプラズマ重合膜が形成される。所定時間
経過した所で、高周波電場の印加をやめ、真空容器中に
空気を導入してEC素子を取り出す。
In this state, a high frequency power source (not shown) is connected between the droplet f'@23 and the metal fitting 25 to bring the inside of the vacuum container into a plasma state. A plasma polymerized film is formed on the surface of the EC element 31, which is placed vertically on the sample stage 26. After a predetermined period of time has elapsed, the application of the high frequency electric field is stopped, air is introduced into the vacuum container, and the EC element is taken out.

実施例1 有機fヒ合物としてのメタンを真空容器中に導入し、容
器中の圧力を02トールとなるようにし。
Example 1 Methane as an organic compound was introduced into a vacuum container, and the pressure in the container was set to 0.2 Torr.

電櫃−金具間に電力50ワツト、周波数13.9ら素子
には、メタンのプラズマ重合膜が形成された。
A plasma polymerized film of methane was formed on the element at a power of 50 watts and a frequency of 13.9 between the electric box and the metal fittings.

この次に、容器内に空気を導入して、ジャーを開け、E
C素子を貼シつけた金属製枠を上下逆さまにして、再度
同条件でプラズマ重合を15分間実施した。これにより
約500OAの厚さを有する均一なプラズマ重合膜を被
覆した全固体EC素子を得た。
This is followed by introducing air into the container, opening the jar, and
The metal frame to which the C element was pasted was turned upside down, and plasma polymerization was performed again under the same conditions for 15 minutes. As a result, an all-solid-state EC device coated with a uniform plasma polymerized film having a thickness of about 500 OA was obtained.

実施例2 真空容器中に003トールのメタンを導入し。Example 2 Introduce 003 torr of methane into a vacuum vessel.

その後さらに水素を導入して、容器内圧力を0.2トー
ルとした以外は実施例1.と同じ条件でEC素子の表面
に約50OAの厚さを有するプラズマ重合膜を被覆した
全固体EC素子を得た。
Example 1 except that hydrogen was then further introduced and the pressure inside the container was set to 0.2 Torr. Under the same conditions as above, an all-solid-state EC device was obtained in which the surface of the EC device was coated with a plasma polymerized film having a thickness of about 50 OA.

実施例3 原料ガスとして、アセチレンを使用し、高周波電場の印
加時間全5分ずつとした以外は、実施例1と同条件によ
りプラズマ重合を行なった。これたより、約5000大
の厚さを有するプラズマ重合膜を被覆した全固体EC素
子を得た。
Example 3 Plasma polymerization was carried out under the same conditions as in Example 1, except that acetylene was used as the raw material gas and the high frequency electric field was applied for 5 minutes in total. As a result, an all-solid-state EC device coated with a plasma polymerized film having a thickness of about 5,000 mm was obtained.

実施例4 原料ガスとしてフラン?使用し2高清波電場の印1時間
全10分とした以外は実施例1と同条件によりプラズマ
重合を行なった。そうして約420OAの厚さを有する
プラズマ重合膜を被覆した全固体EC素子を得た。
Example 4 Furan as raw material gas? Plasma polymerization was carried out under the same conditions as in Example 1, except that the two high-frequency electric fields were used for 1 hour and 10 minutes in total. An all-solid-state EC device coated with a plasma polymerized film having a thickness of about 420 OA was thus obtained.

実施例5 原料ガスとしてアクリル酸を使用し、容器内圧力を0.
1トールとした以外は実施例1と同条件得た。
Example 5 Acrylic acid was used as the raw material gas, and the pressure inside the container was set to 0.
The same conditions as in Example 1 were obtained except that the setting was 1 torr.

実施例6 原料ガスとしてテトラフルオロエチレン?使用し、高周
波電場の印加時間を10分とした以外は実施例1と同条
件によりプラズマ重合を行ない。
Example 6 Tetrafluoroethylene as raw material gas? Plasma polymerization was carried out under the same conditions as in Example 1, except that the high-frequency electric field was applied for 10 minutes.

上記各実施例の全固体EC素子全模式的な一部断面図に
より第1図に示す。EC素子は、ガラス基板41上に、
厚さ2000AのITO膜42゜Ta2O,膜44.厚
さ1500 AONiO膜45および゛厚さ2000A
のITOIIit[46を順次真空蒸絨で積層し、積層
部としたものである。なお、積層部の大きさは3.5 
X 3.5 ffとした。各実施例の全固体EC素子は
、上記EC素子にプラズマ重合膜47を被覆したもので
ある。
FIG. 1 shows a schematic partial cross-sectional view of the all-solid-state EC device of each of the above embodiments. The EC element is placed on the glass substrate 41,
2000A thick ITO film 42° Ta2O, film 44. 1500mm thick AONiO film 45 and 2000mm thick
ITOIIit [46] were sequentially laminated by vacuum vapor deposition to form a laminated part. In addition, the size of the laminated part is 3.5
X 3.5 ff. The all-solid-state EC device of each example is one in which the above EC device is coated with a plasma polymerized film 47.

次に、各実施例の全固体EC素子Q着消色特性を、従来
例としての被覆のないもの(比較例1)および8i0.
を被覆(厚さ2000A)したもの(比較例2)との比
較で評価した。
Next, the coloring/decoloring characteristics of the all-solid-state EC element Q of each example are compared to the uncoated conventional example (comparative example 1) and the 8i0.
The evaluation was made in comparison with that coated with (thickness: 2000A) (Comparative Example 2).

評価条件は2周囲温度を25℃一定とし、湿度が80%
、55%、20%の三条性の雰囲気に1日ずつ、順次保
持し、保持中、±2Y、0.2Hzの交流電圧をITO
i42.46間に印加して着消色させ、このとき素子単
位面積当りの注入電荷量を求めた。結果をまとめて表に
示す。
The evaluation conditions were 2.The ambient temperature was constant at 25℃ and the humidity was 80%.
, 55%, and 20% three-stripe atmosphere for one day each. During the holding, an AC voltage of ±2Y, 0.2Hz was applied to the ITO.
The charge was applied between i42 and 46 to cause coloring and decolorization, and at this time, the amount of charge injected per unit area of the device was determined. The results are summarized in the table.

各実施例の素子を湿度55%の雰囲気に置いたとさと、
湿度80%、20%の雰囲気に置いたときとでは、注入
電荷量は、58〜2.4ミリクーロン(mC)/c−F
Aの範囲にあり、大きく変1ヒしない。しかし比較例十
では f3 r Q ?膜形成時に素子中から水分が飛
散しその後外部から補給されないため注入電荷量は著し
く小さく、従−て着色量も実際に使用し得る程度の値が
得られない。
When the elements of each example were placed in an atmosphere with a humidity of 55%,
When placed in an atmosphere with humidity of 80% and 20%, the amount of charge injected is 58 to 2.4 millicoulombs (mC)/c-F.
It is within the A range and does not change significantly. However, in Comparative Example 10, f3 r Q ? Since moisture is scattered from the device during film formation and is not replenished from the outside thereafter, the amount of injected charge is extremely small, and therefore the amount of coloring cannot be of a value that can be used in practice.

] 比較例会では湿度を55%から80%に変化させると、
注入電荷量は6.0 mQ / cdに増加するが。
] At a comparative meeting, when the humidity was changed from 55% to 80%,
Although the amount of injected charge increases to 6.0 mQ/cd.

湿度上20%に低下させると2.0 mC/dに減少す
る。つまり、除、加湿とくに除湿により着消色特性が影
響を受けることがわかる。
When the humidity is lowered to 20%, it decreases to 2.0 mC/d. In other words, it can be seen that the coloring and fading characteristics are affected by removal and humidification, especially by dehumidification.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に1本発明にかかる全固体エレクトロクロミック
素子の構造例金示す断面図、第2図は従来の全固体エレ
クトロクロミック素子のit a ’x 示す断面図、
第5図は、実施例において使用したプラズマ重合装置の
概略を示す断面図である。 2・・・真空容器、  4・・・積層部。 11、di・・・基板。 42・・・透明導電膜、43・・・第1膜。 44・・・固体電解質膜、45・・・第2嘆。 呂願人 株式会社 豊田中央研究所
FIG. 1 is a cross-sectional view showing an example of the structure of an all-solid-state electrochromic device according to the present invention, and FIG. 2 is a cross-sectional view of a conventional all-solid-state electrochromic device.
FIG. 5 is a cross-sectional view schematically showing a plasma polymerization apparatus used in Examples. 2...Vacuum container, 4...Lamination part. 11, di... board. 42...Transparent conductive film, 43...First film. 44...Solid electrolyte membrane, 45...Second complaint. Roganjin Co., Ltd. Toyota Central Research Institute

Claims (3)

【特許請求の範囲】[Claims] (1)基板上に透明導電膜、第1膜、固体電解質膜、第
2膜、導電膜を順次積層してなる積層部を有し、第1膜
と第2膜のいずれか一方が酸化により着色、他方が還元
により着色するエレクトロクロミズム反応を呈する物質
により構成した全固体エレクトロクロミック素子であっ
て、該素子の表面に有機化合物のプラズマ重合膜を被覆
してなることを特徴とする全固体エレクトロクロミック
素子。
(1) It has a laminated part formed by sequentially laminating a transparent conductive film, a first film, a solid electrolyte film, a second film, and a conductive film on a substrate, and one of the first film and the second film is oxidized. An all-solid-state electrochromic device comprising a substance exhibiting an electrochromic reaction in which one color is colored and the other is colored by reduction, the device being characterized in that the surface of the device is coated with a plasma-polymerized film of an organic compound. chromic element.
(2)上記有機化合物はメタン、フラン、アクリル酸、
テトラフルオロエチレンのいずれかであることを特徴と
する特許請求の範囲第(1)項記載の全固体エレクトロ
クロミック素子。
(2) The above organic compounds include methane, furan, acrylic acid,
The all-solid-state electrochromic device according to claim (1), characterized in that it is any one of tetrafluoroethylene.
(3)上記有機化合物は、ヘリウム、アルゴン等の不活
性ガス、フッ素等のハロゲンガス又は水素を混入した有
機化合物であることを特徴とする特許請求の範囲第(2
)項記載の全固体エレクトロクロミック素子。
(3) The organic compound is an organic compound mixed with an inert gas such as helium or argon, a halogen gas such as fluorine, or hydrogen.
) The all-solid-state electrochromic device described in item 1.
JP18088185A 1985-08-16 1985-08-16 Whole solid-state electrochromic element Pending JPS6240432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18088185A JPS6240432A (en) 1985-08-16 1985-08-16 Whole solid-state electrochromic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18088185A JPS6240432A (en) 1985-08-16 1985-08-16 Whole solid-state electrochromic element

Publications (1)

Publication Number Publication Date
JPS6240432A true JPS6240432A (en) 1987-02-21

Family

ID=16090965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18088185A Pending JPS6240432A (en) 1985-08-16 1985-08-16 Whole solid-state electrochromic element

Country Status (1)

Country Link
JP (1) JPS6240432A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271321A (en) * 1987-04-30 1988-11-09 Hidetoshi Tsuchida Fully solid-state high-polymer type electrochromic display element
US5216536A (en) * 1991-11-26 1993-06-01 Donnelly Corporation Encapsulated electrochromic device and method for making same
WO2003007065A1 (en) * 2001-07-12 2003-01-23 Saint-Gobain Glass France Electrically controllable controllable device having variable optical and/or energetic properties
JP2015096879A (en) * 2013-11-15 2015-05-21 株式会社リコー Electrochromic device and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271321A (en) * 1987-04-30 1988-11-09 Hidetoshi Tsuchida Fully solid-state high-polymer type electrochromic display element
US5216536A (en) * 1991-11-26 1993-06-01 Donnelly Corporation Encapsulated electrochromic device and method for making same
WO2003007065A1 (en) * 2001-07-12 2003-01-23 Saint-Gobain Glass France Electrically controllable controllable device having variable optical and/or energetic properties
US7002720B2 (en) 2001-07-12 2006-02-21 Saint-Gobain Glass France Electrically controllable device having variable optical and/or energy properties
CN1308760C (en) * 2001-07-12 2007-04-04 法国圣戈班玻璃厂 Electrically controllable device having variable optical and/or energetic properties
JP2015096879A (en) * 2013-11-15 2015-05-21 株式会社リコー Electrochromic device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
AU663382B2 (en) Electrochromic structures and methods
KR100261203B1 (en) Electrochromic devices having refractive index matched structure and electrochromic device
US4009936A (en) Electrochromic display device free of liquid components
JPH11312541A (en) Solar cell
JP2000204862A (en) Laminated glass plate capable of electrically controlling reflectance
US4258984A (en) Iridium oxide based electrochromic devices
TW200406618A (en) Display panel and multilayer plates for production of this display panel
Qiu et al. Reliable information encryption and digital display applications based on multistate smart windows
JPH02199429A (en) Electrochromic assembly
US5919571A (en) Counterelectrode layer
US5652433A (en) Bistable switching device containing gadolinium hydride
JPS6240432A (en) Whole solid-state electrochromic element
KR20170142365A (en) Flexible electrochromic device having two electrodes with high quality graphene complex and method of manufacturing the same
US4266335A (en) Method of producing electrochromic display device
CN113433751A (en) Multicolor electrochromic device and preparation method thereof
TWI675929B (en) Method for preparing electrochromic ion storage membrane
JPH0618908A (en) Liquid crystal display device
US4475795A (en) Electrochromic films having improved etch resistance
KR101470612B1 (en) An electrochromic window including carbonaceous film layer and ite preparing method
Meisel et al. Large-scale electrochromic devices for smart windows and absorbers
JPH06242474A (en) Production of electrochromic element and high polymer electrolyte thin film
JPH0315829A (en) Fully solid-state type electrochromic material
JP2623595B2 (en) Electrochromic device
Zhang et al. Self-bleaching mechanism of electrochromic WO3 films
JPH10254392A (en) Liquid crystal display device