JPS6240173A - Vent-type sintered alkaline storage battery - Google Patents

Vent-type sintered alkaline storage battery

Info

Publication number
JPS6240173A
JPS6240173A JP60179773A JP17977385A JPS6240173A JP S6240173 A JPS6240173 A JP S6240173A JP 60179773 A JP60179773 A JP 60179773A JP 17977385 A JP17977385 A JP 17977385A JP S6240173 A JPS6240173 A JP S6240173A
Authority
JP
Japan
Prior art keywords
electrode plate
platinum
negative electrode
cadmium
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60179773A
Other languages
Japanese (ja)
Inventor
Toshio Murata
利雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP60179773A priority Critical patent/JPS6240173A/en
Publication of JPS6240173A publication Critical patent/JPS6240173A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent the hydrogen overvoltage of a negative electrode plate of cadmium from rising when floating charge is performed at a high temperature for a long period of time, by causing an alkaline electrolytic solution to contain platinum, or depositing platinum on the negative electrode plate. CONSTITUTION:An alkaline electrolytic solution is caused to contain 1X10<-5>mol/l or more of platinum in the form of a compound such as chloroplatinic acid and an ammine complex to much drop the hydrogen overvoltage of a negative electrode plate of cadmium. It is presumed that metal lic platinum is deposited on the negative electrode plate by the substitutive reaction of the metallic cadmium or nickel of the plate of cadmium and the plastinum compound and then acts as a hydrogen generation site to much drop the hydrogen overvoltage. For that reason, the hydrogen voltage can be much dropped by depositing platinum on the negative electrode plate of cadmium beforehand as well.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルカリ蓄電池、特にベント形焼結式ニッケル
ーカドミウムアルカリFA電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to alkaline storage batteries, and in particular to vented sintered nickel-cadmium alkaline FA batteries.

従来の技術 従来、非常用電源などの分野に用いられてきたベント形
焼結式ニッケルーカドミウム蓄電池の使用条件の1つと
して、定電圧浮動充電システムがある。このシステムは
次のような原理に基づ(ものである。即ち、充電状態の
ニッケルーカドミウム蓄電池を開回路状態で放置してお
くと、自己放電によって次第に容量が減少してしまうこ
とはよく知られている。この自己放電は、いわば金属の
腐食反応における局部電池機構と同様の電気化学反応で
あるので、電気防食と同様の原理によって自己放電を防
ぐことができる。即ら、正極板においては充電生成物で
あるNi OOHが還元されて放電しないような貴な電
位に保持し、−力負極板においては充電生成物であるC
dが酸化されて放電しないような卑な電位に保持すれば
よい。このことを正確に行なうには、ポテンシオスタッ
トを用いて正極板および魚種板をそれぞれ好ましい定電
位に設定すればよいのであるが、実用電池でこのような
方法を行なうのは装置が高価になるなどの欠点があるの
で、現実には別の方法がとられる。
BACKGROUND OF THE INVENTION Conventionally, one of the conditions for using vented sintered nickel-cadmium storage batteries, which have been used in fields such as emergency power sources, is a constant voltage floating charging system. This system is based on the following principle: It is well known that if a charged nickel-cadmium storage battery is left in an open circuit state, its capacity will gradually decrease due to self-discharge. Since this self-discharge is an electrochemical reaction similar to a local battery mechanism in a metal corrosion reaction, self-discharge can be prevented using the same principle as cathodic protection. The charge product Ni OOH is kept at a noble potential so that it is not discharged due to reduction, and the charge product C in the negative electrode plate is
It is sufficient to maintain the potential at a base level such that d is not oxidized and discharged. To do this accurately, it is possible to use a potentiostat to set the positive electrode plate and the fish seed plate to the desired constant potential, but the equipment is expensive to use in practical batteries. In reality, a different method is used, as there are drawbacks such as:

即ち、焼結式カドミウム負極板には、水素過電圧が低い
金属ニッケルが焼結体として多量に存在するために負極
板の水素過電圧は低い。それ故、充電済のベント形の焼
結式ニッケルーカドミウム蓄電池に例えば1.40■/
セル程度の定電圧を印加しておくと、負掻板の水素過電
圧が低いために、負極板の分極は極めて小さく、0極板
の電位は水素発生反応の平衡電位に(もめて近い定電位
にとどまる。その結果、正極板の電位は水素発生反応の
平衡電位を基準として+ 1.40 Vに近い値になる
That is, in the sintered cadmium negative electrode plate, a large amount of metal nickel, which has a low hydrogen overvoltage, is present as a sintered body, so the hydrogen overvoltage of the negative electrode plate is low. Therefore, for example, a charged vented sintered nickel-cadmium storage battery has a charge of 1.40μ/
When a constant voltage similar to that of a cell is applied, since the hydrogen overvoltage of the negative plate is low, the polarization of the negative plate is extremely small, and the potential of the zero plate is the constant potential that is very close to the equilibrium potential of the hydrogen generation reaction. As a result, the potential of the positive electrode plate becomes a value close to +1.40 V based on the equilibrium potential of the hydrogen generation reaction.

充電状態の正極活物質であるNiO○1」は、この電位
では放電しないので、正極板は自己放電をまぬがれる。
Since the positive electrode active material "NiO1" in a charged state does not discharge at this potential, the positive electrode plate can avoid self-discharge.

また充電状態のn種油物質であるCdの平衡電位は、水
素発生反応の平衡電位よりも約20mVfiであるから
、負極板が水素発生反応を起こしうる電位では、負極板
の自己放電は当然起こらない。
In addition, the equilibrium potential of Cd, which is an n-type oil substance in a charged state, is about 20 mVfi higher than the equilibrium potential of the hydrogen generation reaction, so self-discharge of the negative electrode plate will naturally not occur at a potential where the negative electrode plate can cause the hydrogen generation reaction. do not have.

このような原理でベント形の焼結式アルカリ蓄電池の自
己放雷が防がれる。そしてこのような目的で定電圧が印
加さ机ていると、電池には充電方向の電流が流れ込み、
またその電流は電池温度等によって変動1゛るので、印
加する電圧は浮動充電電圧と呼ばれる。
This principle prevents self-strike of vented sintered alkaline storage batteries. When a constant voltage is applied for this purpose, a current flows into the battery in the direction of charging.
Furthermore, since the current varies depending on the battery temperature, etc., the applied voltage is called a floating charging voltage.

発明が解決しようとする問題点 しかしながら、上述したような浮動充電システムを例え
ば10年以上の長期間や、あるいは例えば50℃以上の
高温下というような厳しい条件のもとで作動させると、
正極板の容量のみが減少する不都合が生ずることがある
。これは、長期間浮動充電を続けると、負極板における
水N発生反応が起こるサイトである焼結体の金属ニッケ
ルの水素発生反応に対する電極触媒活性が低下したり、
金属ニッケルの表面が水素過電圧の高い金属カドミウム
で被覆されて水素発生反応の起こるサイトが少なくなる
などの理由によって、負極板の水素過電圧が上昇するた
めである。その結果、口極板は浮動充電中に一定の電位
を維持することが不可能となり、次第に卑な電位へと分
極する。このとき一定の浮動充電電圧が印加されたまま
であるならば、正極板の電位は負極板の分極の増加とと
もに次第に卑にシフトしてしまう結果、ついにはNi 
001」の平衡電位よりも卑になり、正極板は自己放電
してしまうことになる。
Problems to be Solved by the Invention However, when a floating charging system as described above is operated for a long period of time, for example, 10 years or more, or under severe conditions, such as at a high temperature of 50 degrees Celsius or more,
A disadvantage may arise in that only the capacity of the positive electrode plate is reduced. This is because if floating charging is continued for a long period of time, the electrocatalytic activity for the hydrogen generation reaction of the metal nickel in the sintered body, which is the site where the water and N generation reaction occurs in the negative electrode plate, decreases.
This is because the hydrogen overvoltage of the negative electrode plate increases because the surface of the metal nickel is coated with metal cadmium, which has a high hydrogen overvoltage, and the number of sites where hydrogen generation reactions occur decreases. As a result, the oral plate is unable to maintain a constant potential during floating charging and becomes increasingly polarized to a less noble potential. At this time, if a constant floating charging voltage remains applied, the potential of the positive plate will gradually shift to a lower value as the polarization of the negative plate increases, and eventually the Ni
001'', and the positive electrode plate self-discharges.

このような不都合を防ぐために、浮動充電電圧を高く設
定しておくと、長期間高温下で使用して負極板の水素過
電圧が上昇し、負極板が卑に分極しても、正極板の電位
をNi OOHの平衡電位よりも真に保持することが可
能である。しかし、この場合には、負極板の水素過電圧
が上昇する前には、負極板の分権が極めて小さいので、
正極板の電位が必要以上に員になる。それ故、正極板か
らの酸素発生および負極板からの水素発生の速度が著し
く大きくなって、電解液量の減少速度が大きくなり、電
池への補水をVA繁に必要とする不都合が生ずる。
To prevent such inconveniences, if the floating charge voltage is set high, the hydrogen overvoltage of the negative plate will increase after long-term use at high temperatures, and even if the negative plate is polarized to the base, the potential of the positive plate will decrease. truer than the equilibrium potential of Ni OOH. However, in this case, before the hydrogen overvoltage of the negative electrode plate increases, the decentralization of the negative electrode plate is extremely small.
The potential of the positive electrode plate becomes higher than necessary. Therefore, the rate of oxygen generation from the positive electrode plate and the rate of hydrogen generation from the negative electrode plate increases significantly, and the rate of decrease in the amount of electrolyte increases, resulting in the inconvenience that water replenishment to the battery is frequently required.

以上の理由から、高温で長期間浮動充電しても負極板の
水素過電圧が上昇しないベント形焼結式アルカリ蓄電池
が望まれていた。
For the above reasons, there has been a desire for a vented sintered alkaline storage battery in which the hydrogen overvoltage of the negative electrode plate does not increase even when floating charging at high temperatures for a long period of time.

本発明は上記したような従来技術の問題点を解決するこ
とを目的とするものである。
The present invention aims to solve the problems of the prior art as described above.

問題点を解決するための手段 即ち、本発明はアルカリ″市解液に1 x 10−5m
ol/9.以上の白金を含有させたり、あるいはカドミ
ウム負極板に白金を析出させることによって、上述の目
的を達成するものである。さらにアルカリ電解液に含有
させる白金が、テトラアンミン白金(ff)イオン[P
t(NH3)4 ]”士やヘキサアンミン白金(■v)
イオン[Pt(NH3)6]4+のようなアンミン錯体
であることによって、問題の解決を−II速やかにする
ものである。
Means for solving the problem, that is, the present invention provides an alkaline solution of 1 x 10-5 m
ol/9. The above object is achieved by containing the above platinum or by depositing platinum on the cadmium negative electrode plate. Furthermore, the platinum contained in the alkaline electrolyte is tetraammineplatinum (ff) ion [P
t(NH3)4 ]”Siyahexammine platinum (■v)
The ammine complex, such as the ion [Pt(NH3)6]4+, allows -II to quickly solve the problem.

作  用 上記のアルカリN ?Fi池のアルカリ電解液に塩化白
金酸やアンミン錯体のような化合物として白金を1 x
 10−glol / 1以上含有させると、カドミウ
ム負極板の水′fA過電圧を顕著に低下させることが可
能となる。これはカドミウム負極板に含有される金属カ
ドミウムや金属ニッケルと白金化合物との置換反応によ
って、カドミウム負極板の表面に金属白金が析出する結
果、析出した金属白金が水素発生サイトとなって著しく
水素過電圧が低下するためと考えられる。アルカリ電解
液中の白金が1 X 10−’mol /λよりも低い
と、金属白金の溶解析出反応の平衡電位はネルンストの
関係式に従って著しく卑になってしまうので、カドミウ
ム負極板に析出し難くなり、その結果としてカドミウム
負極板の水素過電圧は低下し難くなる。このような原理
から、アルカリ蓄電池のアルカリ電解液に白金を含有さ
せる代りに、予めカドミウム極A極板に白金を析出さゼ
ることによっても、同様に水素過電圧が低いカドミウム
負極板が19られる。
Action of the above alkali N? Add platinum as a compound such as chloroplatinic acid or ammine complex to the alkaline electrolyte of the Fi pond.
When the content is 10-glol/1 or more, it becomes possible to significantly reduce the water'fA overvoltage of the cadmium negative electrode plate. This is because metal platinum is deposited on the surface of the cadmium negative electrode plate due to a substitution reaction between the metal cadmium or metal nickel contained in the cadmium negative electrode plate and the platinum compound. As a result, the precipitated metal platinum becomes a hydrogen generation site, resulting in a significant hydrogen overvoltage. This is thought to be due to a decrease in If the platinum content in the alkaline electrolyte is lower than 1 x 10-'mol/λ, the equilibrium potential of the dissolution precipitation reaction of metallic platinum becomes extremely base according to the Nernst relation, making it difficult to deposit on the cadmium negative electrode plate. As a result, the hydrogen overvoltage of the cadmium negative electrode plate becomes difficult to decrease. Based on this principle, instead of including platinum in the alkaline electrolyte of an alkaline storage battery, by depositing platinum on the cadmium A electrode plate in advance, a cadmium negative electrode plate with a similarly low hydrogen overvoltage can be obtained.

上記のようにアルカリ蓄電池のアルカリ電解液に白金を
含有さきる場合に、含有させる白金の化合物としてはテ
トラアンミン白金(II)イオン[Pt(NH3)a 
12十やヘキサアンミン白金< rv >イオン[P 
t(N H3)13 ] ’+のようなアンミン錯体を
用いると、カドミウム負極板の水素過電圧の低下が速や
かである。これは白金のアンミン11体がアルカリ電解
液に対して高いfJ解度を有するので、アルカリ電解液
中に溶解している白金の濃度が高くなるためとにえられ
る。上記のアンミン錯体の代りに塩化白金酸を用いると
、アルカリ電解液中への)8解度が低いために、同一の
濃度を使用しても水素過電圧の低下に要する時間が良く
なる。
When platinum is added to the alkaline electrolyte of an alkaline storage battery as described above, the platinum compound to be added is tetraammineplatinum(II) ion [Pt(NH3)a
120 or hexaammine platinum <rv> ion [P
When an ammine complex such as t(NH3)13]'+ is used, the hydrogen overvoltage of the cadmium negative electrode plate decreases quickly. This can be attributed to the fact that ammine 11 of platinum has a high fJ solubility in an alkaline electrolyte, so that the concentration of platinum dissolved in the alkaline electrolyte becomes high. If chloroplatinic acid is used in place of the above ammine complex, the time required for the hydrogen overvoltage to decrease is improved even when using the same concentration, due to its lower solubility in the alkaline electrolyte.

上記のようにしてカドミウム負極板の水素過電圧が低下
すると、これを用いたアルカリ蓄電池を高温下で長期間
浮動充電してもカドミウム負極板の水素過電圧は低いま
まに維持されるので、容量低下が起こらない。また従来
のアルカリ蓄電池のうち、高温下で長期間浮動充電する
ことによってカドミウム負極板の水素過電圧が上昇した
ため正極板の容量が低下した電池でも、アルカリ電解液
に1 X 10=mol 72以上の白金を添加してや
ると、カドミウム負極板の水素過電圧が低下し、f4極
板の分極が小さくなって正極板の電位が上昇し、再び正
極板が充電されて容量を回復することが可能となる。
When the hydrogen overvoltage of the cadmium negative electrode plate is reduced as described above, even if an alkaline storage battery using this is floating-charged at high temperatures for a long period of time, the hydrogen overvoltage of the cadmium negative electrode plate remains low, so that the capacity decreases. It won't happen. Furthermore, among conventional alkaline storage batteries, even in batteries where the capacity of the positive electrode plate has decreased due to an increase in the hydrogen overvoltage of the cadmium negative electrode plate due to long-term floating charging at high temperatures, platinum of 1 x 10 = mol 72 or more is added to the alkaline electrolyte. By adding , the hydrogen overvoltage of the cadmium negative electrode plate decreases, the polarization of the f4 electrode plate becomes smaller, the potential of the positive electrode plate increases, and the positive electrode plate is charged again, making it possible to recover the capacity.

なお、アルカリ電解液中に含有された白金の一部は正極
板にも析出し1りるが、その場合にも白金は酸素過電圧
が著しく高いために、かえって正極板の充電効率を高く
するという好ましい効果を有するものである。また白金
のアンミン錯体を用いる場合に、白金がカドミウム負(
転板に析出した侵に残留する配位子のアンモニアは、最
終的に正極板において電解酸化されて窒素ガスとなり、
電池系外へ去るので、アルカリ蓄電池に何等悪影菅を及
ぼさない。
In addition, some of the platinum contained in the alkaline electrolyte is deposited on the positive electrode plate, but even in that case, platinum has a significantly high oxygen overvoltage, so it is said that it actually increases the charging efficiency of the positive electrode plate. This has favorable effects. In addition, when platinum ammine complex is used, platinum is cadmium negative (
The ammonia in the ligand that remains in the deposits deposited on the rolling plate is finally electrolytically oxidized on the positive electrode plate and becomes nitrogen gas.
Since it leaves the battery system, it does not have any negative impact on alkaline storage batteries.

実施例 次に本発明を実施例に基づいて説明する。Example Next, the present invention will be explained based on examples.

実施例1 先ず本発明の効果を確かめるために、従来品として大ぎ
さが120mm x12on+m x  1.Ommの
焼結式水酸化ニッケル極板10枚を正極とし、同じ大き
さの焼結式水酸化カドミウム極板10枚を負極とし、厚
さ0.2mmのポリプロピレン製不n イli 2枚と
その11■にセロファン1枚を介在させたセパレータを
用い、比fi 1,220(20℃>KO+−1水溶液
をアルカリff1l液とする公称容…60A hのベン
ト形アルカリ蓄電池を製作した。また本発明品へとして
、上記した従来品におけるアルカリ電解液の代りに、1
0−’mol/見以上の種以上濃度のテトラアンミン白
金(II)イオンを含有させた比重1.220 (20
℃>KOH水溶液をアルカリ電解液とし、他の構成を上
記従来品と同じにしたベント形アルカリM’FI池を製
作した。さらに本発明品Bとして、上記従来品における
焼結式水酸化カドミウム極板の代りに、1X10−2m
ol/iの白金を含有するヘキサアンミン白金(IV 
)イオン水溶液に焼結式水酸化カドミウム極板を浸漬し
、次いで1%の水素化ホウ素ナトリウム(Na BHa
 )水溶液を加えて焼結式水酸化カドミウム極板に白金
を析出さ♂、これを水で洗條し、乾燥したものを負極板
として用い、他の構成を上記従来品と同じにしたベント
形アルカリM電池を製作した。
Example 1 First, in order to confirm the effect of the present invention, a conventional product with dimensions of 120 mm x 12 on + m x 1. Ten Omm sintered nickel hydroxide electrode plates were used as positive electrodes, ten sintered cadmium hydroxide electrode plates of the same size were used as negative electrodes, and two 0.2 mm thick polypropylene non-container plates were used. A vented alkaline storage battery with a nominal capacity of 60A h was fabricated using a separator with one sheet of cellophane interposed between 11 and 11cm, and a ratio of fi 1,220 (20℃>KO+-1 aqueous solution was used as an alkaline ff1l solution.Also, the present invention As for the product, instead of the alkaline electrolyte in the conventional product mentioned above, 1
Specific gravity 1.220 (20
℃> A vented alkaline M'FI pond was manufactured using KOH aqueous solution as the alkaline electrolyte and having the other configurations the same as the conventional product. Furthermore, as product B of the present invention, instead of the sintered cadmium hydroxide electrode plate in the conventional product,
Hexaammineplatinum (IV
) A sintered cadmium hydroxide electrode plate was immersed in an aqueous ion solution, and then 1% sodium borohydride (Na BHa
) Platinum is deposited on a sintered cadmium hydroxide electrode plate by adding an aqueous solution♂, which is then washed with water and dried to be used as the negative electrode plate, with other configurations being the same as the conventional product above. I made an alkaline M battery.

次に上記のようにして製作したアルカリ蓄電池を20℃
にて10時間率の電流で16時間充電した後、50℃に
て1.40V/lルの定電圧浮動充電を1年間行なった
後、20℃にて1時間率の電流で放電した。このとき得
られた放電容量を第1図に示す。
Next, the alkaline storage battery produced as described above was heated to 20°C.
After charging for 16 hours at a current rate of 10 hours at 50° C., constant voltage floating charging at 1.40 V/l at 50° C. was performed for one year, and then discharging at a current rate of 1 hour at 20° C. The discharge capacity obtained at this time is shown in FIG.

該第1図から、アルカリ電解液中の白金濃度が1X 1
0−”mal /見以上の本発明品Aは公称容量60A
h以上を保持していることがわかる。また予め白金を析
出させたカドミウム負極板を有し、アルカリTi解液に
白金が含有されていない本発明品Bも公称容量の60△
h以上の放電容量を保持していることもわかる。なお、
本発明品△におけるテトラアンミン白金(I[>イオン
の代りにヘキサアンミン白金(IV )イオンを用いて
も同様の結果が得られた。
From FIG. 1, it can be seen that the platinum concentration in the alkaline electrolyte is 1X 1
Product A of the present invention with a diameter of 0-”mal/mm or more has a nominal capacity of 60A.
It can be seen that h or more is maintained. In addition, product B of the present invention, which has a cadmium negative electrode plate on which platinum has been deposited in advance and does not contain platinum in the alkaline Ti solution, also has a nominal capacity of 60△
It can also be seen that the discharge capacity is greater than h. In addition,
Similar results were obtained when hexaammineplatinum (IV) ions were used in place of the tetraammineplatinum (I[> ions) in the product Δ of the present invention.

実施例2 実施例1における従来品ど同じ電池を11個製作し、2
0°Cにて10時間率の電流で1G時間充電した後、5
0℃にて1.40 V/セルの定電圧浮動充電を1年間
行なった。その後、同一条件で浮動充電を続11しなが
ら、5gの電池のアルカリ電解液にはヘキサアンミン白
金(Iv)イオンを1x10−3mol 7文添加しく
以下、このヘキサアンミン白金(IV )イオンを添加
した電池を電池Cという)、他の5周の1目池のアルカ
リ゛市解液には塩化白金酸を1XiO””m01/文添
加した(以下、この塩化白金酸を添加した電池を電池り
という)。また残りの1個の電池は何も添加uずく以下
、この無添加の電池を電池Eという)に20℃にて1時
間率の電流で放電して容量を調べた。また白金化合物を
添加した電池CおよびDは1ケ月毎に20℃にて1時間
率の電流で放電して容量を調べ、白金化合物添加復の容
量回復の速さを調べた。その結果を第2図に示す。
Example 2 Eleven batteries identical to the conventional products in Example 1 were manufactured, and 2
After charging for 1G hours at a current rate of 10 hours at 0°C, 5
Constant voltage floating charging at 1.40 V/cell was performed at 0° C. for one year. Thereafter, while floating charging was continued under the same conditions for 11 days, 1 x 10-3 mol of hexammineplatinum (IV) ions were added to the alkaline electrolyte of the 5 g battery. The battery is referred to as Battery C), and 1XiO"" m01/m of chloroplatinic acid was added to the alkaline solution in the first pond of the other 5 cycles (hereinafter, the battery to which this chloroplatinic acid was added is referred to as a battery). ). The capacity of the remaining battery was examined by discharging it at a current rate of 1 hour at 20° C. (this battery containing no additives was referred to as Battery E). Batteries C and D to which the platinum compound had been added were discharged at a current rate of 1 hour at 20° C. every month to examine their capacity, and the speed of capacity recovery after the addition of the platinum compound was examined. The results are shown in FIG.

該第2図から、塩化白金酸を添加した電池りよりも白金
のアンミン錯体を添加した電池Cの方が容量の回復が速
いことがわかる。
From FIG. 2, it can be seen that the capacity recovery of battery C to which a platinum ammine complex was added was faster than that of the battery to which chloroplatinic acid was added.

発明の効果 以上のように本発明によれば、高温下で長期間浮動充電
するベント形焼結式アルカリ蓄電池の容量減少を防ぐこ
とができる。また容量減少した電池の容量回復が速やか
にできる。
Effects of the Invention As described above, according to the present invention, it is possible to prevent a decrease in the capacity of a vented sintered alkaline storage battery that is subjected to floating charging at high temperatures for a long period of time. In addition, the capacity of a battery whose capacity has decreased can be quickly restored.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるベン1〜形焼結式アルカリ蓄電池
および従来のこの種アルカリ蓄電池を高温下で長期間浮
初充電した後の放電容、吊を比較して示す特性図、第2
図は高温下で長期間浮動充電して容量が低下した電池に
本発明を適用した場合の容量回復特性を本発明を適用し
なかった場合と比較して示す特性図である。 弄 1  図
Fig. 1 is a characteristic diagram showing a comparison of the discharge capacity and life of a Ben 1-type sintered alkaline storage battery according to the present invention and a conventional alkaline storage battery of this type after being floated for a long period of time under high temperature.
The figure is a characteristic diagram showing the capacity recovery characteristics when the present invention is applied to a battery whose capacity has decreased due to long-term floating charging under high temperature, compared with a case where the present invention is not applied. fuck 1 figure

Claims (2)

【特許請求の範囲】[Claims] (1)負極活物質がカドミウムであり、かつアルカリ電
解液に1×10^−^5mol/l以上の白金を含有さ
せたこと、もしくはカドミウム負極板に白金を析出させ
たことを特徴とするベント形焼結式アルカリ蓄電池。
(1) A vent characterized in that the negative electrode active material is cadmium, and the alkaline electrolyte contains platinum in an amount of 1×10^-^5 mol/l or more, or platinum is deposited on the cadmium negative electrode plate. Shaped sintered alkaline storage battery.
(2)アルカリ電解液に含有させる白金が、テトラアン
ミン白金(II)イオン[Pt(NH_3)_4]^2^
+やヘキサアンミン白金(IV)イオン[Pt(NH_3
)_6]^4^+のようなアンミン錯体であることを特
徴とする特許請求の範囲第(1)項記載のベント形焼結
式アルカリ蓄電池。
(2) The platinum contained in the alkaline electrolyte is tetraammineplatinum(II) ion [Pt(NH_3)_4]^2^
+ or hexaammine platinum (IV) ion [Pt(NH_3
)_6]^4^+ The vented sintered alkaline storage battery according to claim (1), which is an ammine complex such as _6]^4^+.
JP60179773A 1985-08-14 1985-08-14 Vent-type sintered alkaline storage battery Pending JPS6240173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60179773A JPS6240173A (en) 1985-08-14 1985-08-14 Vent-type sintered alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60179773A JPS6240173A (en) 1985-08-14 1985-08-14 Vent-type sintered alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS6240173A true JPS6240173A (en) 1987-02-21

Family

ID=16071630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60179773A Pending JPS6240173A (en) 1985-08-14 1985-08-14 Vent-type sintered alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS6240173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2646561A1 (en) * 1989-04-28 1990-11-02 Accumulateurs Fixes CADMIUM-BASED NEGATIVE ELECTRODE FOR OPEN ALKALINE ACCUMULATOR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2646561A1 (en) * 1989-04-28 1990-11-02 Accumulateurs Fixes CADMIUM-BASED NEGATIVE ELECTRODE FOR OPEN ALKALINE ACCUMULATOR

Similar Documents

Publication Publication Date Title
Pletcher et al. The reduction of nitrate at a copper cathode in aqueous acid
Shivkumar et al. Studies with porous zinc electrodes with additives for secondary alkaline batteries
US3944430A (en) Rechargeable galvanic cell and electrolyte therefor-II
JP2001501019A (en) Lead-acid battery paste containing tin compound and method for producing and using the same
Vorkapić et al. Corrosion of pure and amalgamated zinc in concentrated alkali hydroxide solutions
US4091152A (en) Lithium SO2 cell
US3964927A (en) Lead dioxide-zinc rechargeable-type cell and battery and electrolyte therefor
US4143216A (en) Lead crystal storage cells and storage devices made therefrom
US4152224A (en) Inorganic additives for zinc-alkaline secondary batteries and alkaline zinc-plating baths
US3873367A (en) Zinc-container electrode
US4124743A (en) Mercury-free secondary alkaline battery and improved negative interseparator therefor
US4092463A (en) Secondary battery
Gregory et al. The corrosion of zinc anodes in aqueous alkaline electrolytes
US3701684A (en) Zinc-zinc halide storage battery
JPS6240173A (en) Vent-type sintered alkaline storage battery
US3895961A (en) Electrodeposition of iron active mass
US3565695A (en) Method of forming an amalgamated zinc electrode
US2582845A (en) Means for reducing local action in lead acid storage batteries
US2513292A (en) Alkaline primary battery and electrolyte therefor
US3746940A (en) A non-aqueous cadmium coulometer
US4038586A (en) Coulomb memory element
JPH01319261A (en) Alkaline-zinc storage battery
SU561528A3 (en) A method of manufacturing an iron alkaline battery electrode
US976277A (en) Electrolyte for alkaline batteries.
US3081204A (en) Primary cells