JPS6240130Y2 - - Google Patents
Info
- Publication number
- JPS6240130Y2 JPS6240130Y2 JP1981181044U JP18104481U JPS6240130Y2 JP S6240130 Y2 JPS6240130 Y2 JP S6240130Y2 JP 1981181044 U JP1981181044 U JP 1981181044U JP 18104481 U JP18104481 U JP 18104481U JP S6240130 Y2 JPS6240130 Y2 JP S6240130Y2
- Authority
- JP
- Japan
- Prior art keywords
- swash plate
- chamber
- cylinder
- oil
- refrigerant gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003921 oil Substances 0.000 claims description 75
- 239000003507 refrigerant Substances 0.000 claims description 50
- 238000005192 partition Methods 0.000 claims description 20
- 238000000926 separation method Methods 0.000 claims description 20
- 239000010687 lubricating oil Substances 0.000 claims description 18
- 239000012530 fluid Substances 0.000 claims description 2
- 238000005461 lubrication Methods 0.000 description 11
- 230000001050 lubricating effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000005057 refrigeration Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Compressor (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Description
【考案の詳細な説明】
本考案は車輌空調用斜板式圧縮機に関し、特に
この圧縮機の内部の作動部材や摺動面を良好に潤
滑し連続長時間使用においても円滑な圧縮作用を
達成し得るようにした斜板式圧縮機の潤滑装置の
改善に関するものである。[Detailed Description of the Invention] The present invention relates to a swash plate compressor for vehicle air conditioning, and in particular, it provides good lubrication to the internal operating members and sliding surfaces of the compressor to achieve smooth compression even during continuous long-term use. The present invention relates to an improvement in a lubrication device for a swash plate compressor.
斜板式圧縮機として軸方向に配列した対状のシ
リンダブロツクを有し、そのシリンダブロツク内
に形成したシリンダ孔内に斜板の回転に応じて往
復運動可能な複数の両頭型ピストンが挿設されて
いる形式の圧縮機は既に提案されている。この斜
板式圧縮機において、冷凍回路から帰還した冷媒
ガスは潤滑油の油滴を混入してシリンダブロツク
に設けられた流入孔から圧縮機内に導入され、次
いでシリンダブロツク内の吸入通路に形成された
壁面に衝突するとともにその流れが軸方向に互に
反対向きの2方向に偏向され、このとき冷媒ガス
中に混入した慣性の大きい油滴分が冷媒から分離
される。次いで偏向された冷媒ガスの流れは更に
シリンダブロツクの比較的大きな容積を有した油
分離室に入つてその流れ速度が遅速され、冷媒ガ
ス中に残存した油滴が今度は重力作用の影響で冷
媒ガスから分離されるように構成されている。そ
して油を分離した冷媒ガスはシリンダブロツクの
両端に備えられたシリンダヘツド内の吸入室を経
てシリンダ孔に吸入され圧縮作用を受ける。一方
冷媒ガスから分離された油滴は潤滑流体として斜
板式圧縮機内の作動部材や摺動面に誘引・分配さ
れてこれらの部材や面の油滑を行つている。ま
た、この公知の斜板式圧縮機においてはシリンダ
ブロツクの底部内側もしくは外側に潤滑油を貯溜
する油溜室が形成されて圧縮機の無作動時にはこ
の油溜室内に油が確保されるようになつている。
しかし、このような強制潤滑機構をもたない従来
の斜板式圧縮機においては潤滑液体がシリンダブ
ロツクと駆動軸との間に設けた空隙に流れ込むこ
とを介して作動部材にその潤滑液体を分配する方
法が採られており、従つて潤滑を必要とするベア
リング等の作動部材や斜板等の摺動面に対して圧
縮機の作動時に直接的にまた積極的に潤滑油を供
給することが出来ないという欠点があり、従つて
連続長時間の使用時にも焼付きを阻止し得るとい
う信頼性には欠如している。また帰還冷媒に対す
る油分離がより高性能に行われる程シリンダ孔の
潤滑性は低下し、特に吸入のためのバルブプレー
トの通孔位置から上位もしくは遠隔に位置するシ
リンダ孔程この傾向が著しい。 The swash plate compressor has a pair of cylinder blocks arranged in the axial direction, and a plurality of double-headed pistons that can reciprocate in accordance with the rotation of the swash plate are inserted into cylinder holes formed in the cylinder blocks. A type of compressor has already been proposed. In this swash plate compressor, the refrigerant gas returned from the refrigeration circuit is mixed with lubricating oil droplets and introduced into the compressor through an inflow hole provided in the cylinder block, and then is introduced into the suction passage formed in the cylinder block. Upon collision with the wall surface, the flow is deflected in two opposite directions in the axial direction, and at this time, oil droplets with high inertia mixed in the refrigerant gas are separated from the refrigerant. The deflected refrigerant gas flow then further enters the relatively large volume oil separation chamber of the cylinder block, where its flow velocity is slowed down, and the remaining oil droplets in the refrigerant gas are now absorbed into the refrigerant under the influence of gravity. configured to be separated from the gas. The refrigerant gas from which the oil has been separated is sucked into the cylinder hole through suction chambers in the cylinder head provided at both ends of the cylinder block, where it is compressed. On the other hand, oil droplets separated from the refrigerant gas are attracted and distributed as a lubricating fluid to the operating members and sliding surfaces within the swash plate compressor, thereby lubricating these members and surfaces. In addition, in this known swash plate compressor, an oil reservoir chamber for storing lubricating oil is formed inside or outside the bottom of the cylinder block, and oil is secured in this oil reservoir chamber when the compressor is not operating. ing.
However, in conventional swash plate compressors that do not have such a forced lubrication mechanism, the lubricating liquid is distributed to the operating members by flowing into the gap provided between the cylinder block and the drive shaft. This method makes it possible to directly and actively supply lubricating oil to operating members such as bearings and sliding surfaces such as swash plates that require lubrication during compressor operation. Therefore, it lacks reliability in preventing burn-in even when used continuously for a long time. In addition, the higher the efficiency of oil separation for the returned refrigerant, the lower the lubricity of the cylinder hole, and this tendency is particularly noticeable for cylinder holes located higher or further away from the valve plate passage hole for suction.
従つて本考案の主目的は従来の斜板式圧縮機に
おける上述の欠点を解消し得る潤滑装置を備え、
かつ従来の斜板式圧縮機に特別の部材を追加する
ことなく、シリンダ孔および斜板とピストンを連
結する鋼球並びにシユーに対して積極的に潤滑油
を供給し得る装置を具えた斜板式圧縮機を提供す
ることである。 Therefore, the main purpose of the present invention is to provide a lubricating device that can eliminate the above-mentioned drawbacks of conventional swash plate compressors.
A swash plate type compressor that is equipped with a device that can actively supply lubricating oil to the cylinder hole, the steel balls and shoes that connect the swash plate and the piston, without adding any special parts to the conventional swash plate type compressor. The goal is to provide opportunities.
すなわち、本考案はピストンによる冷媒ガスの
圧縮作用時にシリンダ孔から斜板格納室に漏洩す
る高圧のブローバイガスを潤滑油貯溜室を介して
シリンダヘツドの吸入室に流入させ、油分離室か
ら該吸入室に吸入された冷媒ガスに集合させると
ともに上記油分離室から上記の吸入室内に流入し
た潤滑油をこのブローバイガスによつて各シリン
ダ孔および作動部材に分配搬入させるようにし、
またシリンダブロツクの吸入通路上に開口した帰
還冷媒ガスの流入孔の中心延長線上において斜板
格納室と上記吸入通路との間の仕切壁に通孔を設
けてその開口面積は帰還冷媒中に混入した潤滑油
の一部油滴を斜板格納室内に導入させるように定
め、かつ該斜板格納室にて斜板とピストンを連結
する鋼球並びにシユー等を潤滑後シリンダブロツ
ク下方の潤滑油貯溜室に滴下し得るようにして圧
縮機内部の総合的潤滑を計つていることを特徴と
するものである。しかも斜板格納室内に導入した
油滴分は内部要素の冷却作用をも行うのである。 That is, the present invention allows the high-pressure blow-by gas that leaks from the cylinder hole into the swash plate storage chamber when the piston compresses the refrigerant gas to flow into the suction chamber of the cylinder head via the lubricating oil storage chamber, and removes the suction from the oil separation chamber. The blow-by gas collects the lubricating oil that has flowed into the suction chamber from the oil separation chamber into the refrigerant gas sucked into the chamber, and distributes the lubricating oil to each cylinder hole and the operating member.
In addition, a through hole is provided in the partition wall between the swash plate storage chamber and the above suction passage on the central extension of the return refrigerant gas inflow hole opened on the suction passage of the cylinder block, and the opening area is set so that the return refrigerant gas is mixed in the return refrigerant. A portion of the lubricating oil droplets are introduced into the swash plate storage chamber, and after lubricating the steel balls, shoes, etc. that connect the swash plate and the piston in the swash plate storage chamber, the lubricant oil is stored below the cylinder block. It is characterized by the fact that it can be dripped into the chamber to provide comprehensive lubrication inside the compressor. Moreover, the oil droplets introduced into the swash plate storage chamber also have a cooling effect on the internal elements.
以下、本考案を添付図面に示す実施例に基き、
詳細に説明する。なお、添付図面において、第1
図から第5図は本考案の第1の実施例に関し、第
6図、第7図は本考案の第2、第3の実施例に関
するものである。 Hereinafter, based on the embodiments of the present invention shown in the accompanying drawings,
Explain in detail. In addition, in the attached drawing, the first
5 to 5 relate to the first embodiment of the present invention, and FIGS. 6 and 7 relate to the second and third embodiments of the present invention.
第1図から第5図において、一対のシリンダブ
ロツク11a,11bは3つのシリンダ孔13
と、このシリンダ孔13に挟まれて形成された断
面扇形の油分離室14a,14bと、圧縮された
冷媒ガスの排出室15と、下部に配設された油溜
室16と、中央に配設された斜板格納室17とを
有し、その前・後端には前部バルブプレート18
aと後部バルブプレート18bを介して一対のシ
リンダヘツド20,21が固着されており、両シ
リンダヘツド20,21には内面48,49から
突出した隔壁20a,20bと21a,21bに
よつてそれぞれ冷媒ガスの吸入外室22,23と
この吸入外室22,23に連通した吸入内室2
6,27と吐出室24,25が区画形成されてい
る。両バルブプレート18a,18bには油分離
室14a,14bと吸入外室22,23とを連通
する通孔28a,28bおよび吐出室24,25
と圧縮冷媒の排出室15とを連通する通孔(図示
なし)、更にまた吸入外室22,23と各シリン
ダ孔13とを連通する吸入孔52、各シリンダ孔
13と吐出室24,25とを連通する排出孔29
a,29bおよび油分離室14a,14bと吸入
内室26,27とを連通する通孔30a,30b
が貫設されている。シリンダブロツク11a,1
1bの斜板室17には斜板33が格納されかつ駆
動軸31にねじ止め等で固着されており、一方そ
の駆動軸31はシリンダブロツク11a,11b
およびフロント側のシリンダヘツド20を貫通し
て延び両シリンダブロツク11a,11bの両端
部に嵌設されたニードルベアリング32a,32
bによつて回転可能に支持されている。斜板33
は鋼球35およびシユー36を介してシリンダ孔
13内に摺動可能に挿設された両頭型ピストン3
4と連接され、しかもシリンダ孔13は斜板33
の駆動軸31と平行に設けられていることから斜
板33の回転により上記両頭型ピストン34はシ
リンダ孔13中を往復動作する。またピストン3
4の往復動作によつて発生する軸方向の荷重は斜
板33のハブ両端面とシリンダブロツク11a,
11bとの間に介在したスラストベアリング37
a,37bによつて支承される。なお、バルブプ
レート18a,18bに形成された開口53aと
53bは前述の吸入内室26,27とニードルベ
アリング32a,32bとを連通する給油孔であ
り、この給油孔53a,53bから流入した潤滑
油はニードルベアリング32a,32bを潤滑
後、更に給油路39a,39bに流入し、スラス
トベアリング37a,37bに達してこれらを潤
滑する。なお、40はフロントシリンダヘツド2
0側に設けられた軸密封装置である。シリンダブ
ロツク11a,11bに設けられた開口路41,
42は冷凍回路から圧縮機へ帰還してきた冷媒ガ
スを油分離室14a,14b内へ導入させるため
の流入孔であり、この流入孔41,42はシリン
ダブロツク11a,11bの最外壁12a,12
bと斜板室17を構成する隔壁17a,17bの
円周表面とにより形成された比較的狭い穀粒形状
の断面を有した吸入通路43,44の上部に通じ
るよう穿設されている。また上記の吸入通路4
3,44はシリンダブロツク11a,11bの外
壁12a,12bと隔壁17a,17bの側面お
よびシリンダ孔13の包囲周面に沿つて曲折した
壁面とにより形成された油分離室14a,14b
につながつている。前記の吸入通路43,44と
斜板室17とを仕切る隔壁17a,17bには流
入孔41,42から流入する油滴を混入した冷媒
ガスの流れの一部を分流させ、その流れの慣性に
従つて直接的に斜板室17に侵入させる分流孔4
5,46が設けられていて、その位置は冷媒ガス
の流れに関し、前述の流入孔41,42の中心線
の延長上に穿設されていることが好ましく、また
分流孔45,46の開口面積は前述の如く帰還冷
媒ガスの一部、特にその一部冷媒ガス中に混入し
た油滴分が流れの慣性に従つて斜板室17中に侵
入する上に充分な面積を有していればよいのであ
る。なお、第3図に示す開口路47は吐出室2
4,25から排出室15に収集された圧縮済みの
冷媒ガスを車輌の冷媒回路へ導き出す流出孔であ
る。更に斜板室17は油溜室16と下部隔壁17
c,17dによつて仕切られており、この下部隔
壁17c,17dの両側下端には斜板室17と油
溜室16とを空間的に連通する通孔50,51が
設けられている(第2図、第3図参照)。一方油
溜室16は第2図に示すように各バルブプレート
18a,18bの開口53a,53bから下方に
向けて内側面に刻設された溝19a,19b(第
5図参照)と、上記開口53a,53bを経由し
てシリンダヘツド20,21の吸入内室26,2
7に空間的に連通している。この結果、斜板室1
7もシリンダヘツド20,21の吸入内室26,
27に空間的に連通することになる。 In FIGS. 1 to 5, a pair of cylinder blocks 11a and 11b have three cylinder holes 13.
, oil separation chambers 14a and 14b having a fan-shaped cross section formed between the cylinder holes 13, a discharge chamber 15 for compressed refrigerant gas, an oil reservoir chamber 16 disposed at the bottom, and an oil separation chamber 14a, 14b disposed in the center. A swash plate storage chamber 17 is provided, and a front valve plate 18 is provided at the front and rear ends of the swash plate storage chamber 17.
A pair of cylinder heads 20, 21 are fixed via a rear valve plate 18b, and refrigerant is supplied to both cylinder heads 20, 21 by partition walls 20a, 20b and 21a, 21b protruding from inner surfaces 48, 49, respectively. Gas suction outer chambers 22 and 23 and suction inner chamber 2 communicating with the gas suction outer chambers 22 and 23.
6, 27 and discharge chambers 24, 25 are partitioned. Both valve plates 18a, 18b have through holes 28a, 28b that communicate the oil separation chambers 14a, 14b with the suction outer chambers 22, 23, and discharge chambers 24, 25.
and a through hole (not shown) that communicates with the compressed refrigerant discharge chamber 15, a suction hole 52 that communicates the external suction chambers 22 and 23 with each cylinder hole 13, and a suction hole 52 that communicates between each cylinder hole 13 and the discharge chamber 24 and 25. A discharge hole 29 that communicates with
a, 29b and through holes 30a, 30b that communicate the oil separation chambers 14a, 14b with the suction inner chambers 26, 27.
is installed through it. Cylinder block 11a, 1
A swash plate 33 is stored in the swash plate chamber 17 of 1b and is fixed to a drive shaft 31 with screws or the like, while the drive shaft 31 is connected to the cylinder blocks 11a and 11b.
and needle bearings 32a, 32 extending through the front cylinder head 20 and fitted into both ends of both cylinder blocks 11a, 11b.
It is rotatably supported by b. Swash plate 33
is a double-headed piston 3 slidably inserted into the cylinder hole 13 via a steel ball 35 and a shoe 36.
4, and the cylinder hole 13 is connected to the swash plate 33.
Since the double-headed piston 34 is provided in parallel with the drive shaft 31 of the cylinder hole 13, the double-headed piston 34 reciprocates within the cylinder hole 13 due to the rotation of the swash plate 33. Also piston 3
The axial load generated by the reciprocating motion of the swash plate 33 is applied to both end surfaces of the hub of the swash plate 33, the cylinder block 11a,
Thrust bearing 37 interposed between
a, 37b. Note that the openings 53a and 53b formed in the valve plates 18a and 18b are oil supply holes that communicate the aforementioned suction inner chambers 26 and 27 with the needle bearings 32a and 32b, and the lubricating oil that flows through the oil supply holes 53a and 53b is After lubricating the needle bearings 32a, 32b, the oil flows further into the oil supply passages 39a, 39b, reaches the thrust bearings 37a, 37b, and lubricates them. In addition, 40 is the front cylinder head 2
This is a shaft sealing device provided on the 0 side. Opening passages 41 provided in cylinder blocks 11a and 11b,
42 is an inflow hole for introducing the refrigerant gas returned from the refrigeration circuit to the compressor into the oil separation chambers 14a, 14b, and these inflow holes 41, 42 are connected to the outermost walls 12a, 12 of the cylinder blocks 11a, 11b.
The suction passages 43 and 44, which have relatively narrow grain-shaped cross sections formed by the circumferential surfaces of the partition walls 17a and 17b constituting the swash plate chamber 17, are bored to communicate with the upper portions of the suction passages 43 and 44, respectively. In addition, the above-mentioned suction passage 4
Reference numerals 3 and 44 denote oil separation chambers 14a and 14b formed by outer walls 12a and 12b of cylinder blocks 11a and 11b, side surfaces of partition walls 17a and 17b, and wall surfaces bent along the surrounding circumferential surface of cylinder hole 13, respectively.
connected to. A part of the flow of refrigerant gas mixed with oil droplets flowing from the inflow holes 41 and 42 is divided into the partition walls 17a and 17b that partition the suction passages 43 and 44 and the swash plate chamber 17, and the flow is divided according to the inertia of the flow. Diversion hole 4 that directly enters the swash plate chamber 17
5 and 46 are provided, and their positions are preferably located on extensions of the center lines of the aforementioned inflow holes 41 and 42 in terms of the flow of refrigerant gas, and the opening areas of the branch holes 45 and 46 are As mentioned above, it is sufficient that the refrigerant gas has a sufficient area so that a part of the return refrigerant gas, especially the oil droplets mixed in the refrigerant gas, can enter into the swash plate chamber 17 according to the inertia of the flow. It is. Note that the opening passage 47 shown in FIG.
This is an outflow hole through which the compressed refrigerant gas collected in the discharge chamber 15 from 4 and 25 is led out to the refrigerant circuit of the vehicle. Furthermore, the swash plate chamber 17 has an oil reservoir chamber 16 and a lower partition wall 17.
Through holes 50 and 51 are provided at the lower ends of both sides of the lower partition walls 17c and 17d to spatially communicate the swash plate chamber 17 and the oil reservoir chamber 16 (second (See Figure 3). On the other hand, as shown in FIG. 2, the oil reservoir chamber 16 has grooves 19a, 19b (see FIG. 5) carved on the inner surface downward from the openings 53a, 53b of each valve plate 18a, 18b, and the openings 53a, 53b of each valve plate 18b. The suction inner chambers 26, 2 of the cylinder heads 20, 21 via 53a, 53b.
It is spatially connected to 7. As a result, swash plate chamber 1
7 is also the suction inner chamber 26 of the cylinder head 20, 21,
It will be spatially connected to 27.
さて、駆動軸31が車輌から駆動力を得て駆動
されると、本圧縮機の斜板33が回転し圧縮機は
圧縮作用を行う作動状態に入る。圧縮機の作動中
には冷凍回路から帰還してきた油粒を含む冷媒ガ
スは流入孔41,42をそれぞれ通つて先ず吸入
通路43,44に流入するとともに斜板室17上
方の隔壁17a,17bの分流孔45,46およ
びその近傍に衝突して前述の如く一部が斜板室1
7へ流入し、残余の主たる流れは隔壁17a,1
7bによつて強制的に偏向される。こうして隔壁
17a,17bの円周面に衝突して強制的に偏向
されるとき冷媒ガス中に混入されている油溜分は
大きな慣性から偏向されることなく従つて冷媒ガ
スから分離される。そしてこの分離された油は油
分離室14a,14bの底部に流下してゆく。こ
の段階で分離を受けなかつた油滴分を混入した冷
媒ガスは吸入通路43,44から油分離室14
a,14bに流れ込む。この油分離室14a,1
4bは吸入通路43,44より大きな通路断面積
を有するので、この油分離室14a,14bに流
入した冷媒ガスはその流速が急激に低下すること
になり、この結果、冷媒ガス中に残溜していた油
滴分は冷媒ガス成分に比較して重いことから重力
の作用で冷媒ガスより分離されることとなる。そ
して分離した油は油分離室14a,14bの底壁
上に落下し、次いでバルブプレート18a,18
bの通孔30a,30bを経てシリンダヘツド2
0,21の隔壁20b,21bに沿つて吸入内室
26,27に流入する。そしてシリンダブロツク
11aにおける吸入内室26においては、軸密封
装置40を潤滑するとともに給油路53aに流入
し、ニードルベアリング32aを潤滑し、その後
更に給油路39aを経てスラストベアリング37
aを潤滑する。シリンダブロツク11b内では吸
入内室27から給油路53bを経てニードルベア
リング32bを潤滑し、かつその後給油路39b
に流入してスラストベアリング37bを潤滑す
る。 Now, when the drive shaft 31 receives driving force from the vehicle and is driven, the swash plate 33 of the compressor rotates, and the compressor enters an operating state in which it performs a compression action. During operation of the compressor, refrigerant gas containing oil particles returned from the refrigeration circuit first flows into suction passages 43 and 44 through inflow holes 41 and 42, respectively, and is diverted through partition walls 17a and 17b above swash plate chamber 17. As mentioned above, a portion of the swash plate chamber 1 collides with the holes 45 and 46 and their vicinity.
7, and the remaining main flow flows through the partition walls 17a, 1
7b. In this way, when the oil fraction is forcibly deflected by colliding with the circumferential surfaces of the partition walls 17a and 17b, the oil fraction mixed in the refrigerant gas is not deflected due to the large inertia and is therefore separated from the refrigerant gas. This separated oil then flows down to the bottom of the oil separation chambers 14a, 14b. The refrigerant gas mixed with the oil droplets that have not been separated at this stage is transferred from the suction passages 43 and 44 to the oil separation chamber 14.
a, 14b. This oil separation chamber 14a, 1
4b has a larger passage cross-sectional area than the suction passages 43 and 44, the flow velocity of the refrigerant gas that has flowed into the oil separation chambers 14a and 14b decreases rapidly, and as a result, no residue remains in the refrigerant gas. Since the oil droplets are heavier than the refrigerant gas component, they are separated from the refrigerant gas by the action of gravity. The separated oil then falls onto the bottom walls of the oil separation chambers 14a, 14b, and then the valve plates 18a, 18.
cylinder head 2 through through holes 30a and 30b of
It flows into the suction internal chambers 26, 27 along the partition walls 20b, 21b of 0, 21. In the suction chamber 26 of the cylinder block 11a, the oil lubricates the shaft sealing device 40, flows into the oil supply passage 53a, lubricates the needle bearing 32a, and then further passes through the oil supply passage 39a to the thrust bearing 37.
Lubricate a. Inside the cylinder block 11b, the needle bearing 32b is lubricated from the suction inner chamber 27 through the oil supply passage 53b, and then the oil supply passage 39b
and lubricates the thrust bearing 37b.
さて本考案において注目すべきことは、前述の
ように斜板室17、油溜室16およびシリンダヘ
ツド20,21の吸入内室26,27は空間的に
連通していることから、圧縮機の圧縮作用時にシ
リンダ孔13から斜板室17内に漏洩侵入するこ
の種圧縮機に必至の高圧のブローバイガスが通孔
50,51および溝19a,19b、開口53
a,53bを経て吸入内室26,27に流入して
いることである。このブローバイガスが吸入内室
26,27に流入する流れを形成することは、ピ
ストン34の往復動作時に吸入外室22,23、
吸入内室26,27内に滞溜する冷媒ガスがバル
ブプレート18a,18bの吸入孔52を経てシ
リンダ孔13に絶えず吸入されていることによつ
て助成されるのである。この結果、吸入内室2
6,27に流入したブローバイガスは第4図に矢
印Bで示す流れ方向に沿つて、吸入外室22,2
3に吸入されて矢印Aで示す流れ方向に従つてシ
リンダ孔13内に吸入される冷媒ガスと共にシリ
ンダ孔13内に吸入されている。そしてこのシリ
ンダ孔13内に吸入される際、通孔30a,30
bに沿つて吸入内室26,27に流入した潤滑油
の一部を吸入孔52を経てシリンダ孔13内に搬
入しシリンダ孔壁面とピストン34との摺動動作
の潤滑に寄与させるのである。なお、第4図にお
いて、矢印Bは、隔壁21bの開口部を経て3つ
のシリンダ孔13の内2つのシリンダボア13に
のみ到達しているが、他の1つのシリンダ孔13
は各バルブプレート18aないし18bの各通孔
28aまたは28bの直下に位置していることか
ら、比較的油滴分を含んだ冷媒ガスが上記通孔2
8aまたは28bを通過後、このシリンダ孔に流
入するので究極的には本圧縮機の3つのシリンダ
孔13は共に均等な潤滑効果を得られるのであ
る。尚、上述のブローバイガスは圧縮作用を受け
て高圧状態にあることから吸入内室26,27か
ら給油路53a,53bに流れる潤滑油に流入圧
を付与し油の流れを積極化することにも寄与して
いるのである。 What should be noted in this invention is that, as mentioned above, the swash plate chamber 17, the oil reservoir chamber 16, and the suction chambers 26, 27 of the cylinder heads 20, 21 are spatially connected to each other. During operation, high-pressure blow-by gas, which is inevitable for this type of compressor, leaks into the swash plate chamber 17 from the cylinder hole 13 and enters the swash plate chamber 17 through the through holes 50, 51, the grooves 19a, 19b, and the opening 53.
This means that it flows into the suction internal chambers 26 and 27 via a and 53b. Forming a flow of this blow-by gas flowing into the inner suction chambers 26, 27 is caused by the fact that the blow-by gas flows into the outer suction chambers 22, 23,
This is assisted by the fact that the refrigerant gas accumulated in the suction chambers 26, 27 is constantly sucked into the cylinder hole 13 via the suction holes 52 of the valve plates 18a, 18b. As a result, the suction chamber 2
The blow-by gas flowing into the external suction chambers 22, 27 flows along the flow direction shown by arrow B in FIG.
3 and into the cylinder hole 13 along with the refrigerant gas which is sucked into the cylinder hole 13 in the flow direction shown by arrow A. When sucked into the cylinder hole 13, the through holes 30a, 30
A part of the lubricating oil that has flowed into the suction inner chambers 26 and 27 along the direction b is carried into the cylinder hole 13 through the suction hole 52 and contributes to the lubrication of the sliding movement between the cylinder hole wall surface and the piston 34. Note that in FIG. 4, the arrow B reaches only two of the three cylinder bores 13 through the opening of the partition wall 21b;
are located directly below each of the through holes 28a or 28b of each valve plate 18a or 18b, so that refrigerant gas relatively containing oil droplets flows through the through holes 2.
After passing through 8a or 28b, it flows into this cylinder hole, so that ultimately all three cylinder holes 13 of this compressor can obtain an even lubrication effect. Since the blow-by gas mentioned above is in a high pressure state due to compression, it is also possible to apply inflow pressure to the lubricating oil flowing from the suction inner chambers 26 and 27 to the oil supply passages 53a and 53b to make the oil flow more active. It is contributing.
さて、前述において、隔壁17a,17bの通
孔45,46より斜板室17へ侵入した一部の油
粒と冷媒ガスは、斜板室17内において回転中の
斜板33に衝突し、この結果、斜板33に潤滑油
の滴粒が付着してこれを湿潤化すると共に斜板3
3の回転につれて飛散され、斜板33の側面およ
び斜板33とピストン34とを連結している鋼球
35およびシユー36へと供給され、各滑動面を
確実に潤滑するのである。これらの潤滑を行つた
油滴は斜板室17の底部に流下し、その後通孔5
0,51を経て油溜室16内に流れ込むのであ
る。なお、斜板室17に入つた一部の冷媒ガスは
前述のブローバイガスと共に各シリンダヘツド2
0,21の吸入内室26,27へ流れる。なお、
冷凍回路から帰還してきた冷媒ガスと共に油滴の
一部を直接に斜板室内に流入させる本実施例の溝
成は、低温で粘度の高い潤滑油を滑動面に供給す
るので潤滑効果が高くかつ冷却効果も有するとい
う利点を供するのである。また、斜板室から油槽
へ流入した油の一部はブローバイガスと共に吸入
室へ流れ、シリンダボアの油滑に寄与するのであ
るが、この効果は吸入室と油槽との連通路が吸入
外室と油槽とを結ぶように構成されても可能であ
る。 Now, in the above description, some of the oil particles and refrigerant gas that entered the swash plate chamber 17 through the through holes 45 and 46 of the partition walls 17a and 17b collided with the swash plate 33 that was rotating within the swash plate chamber 17, and as a result, Droplets of lubricating oil adhere to the swash plate 33 and moisten it, and the swash plate 3
3 rotates, and is supplied to the side surface of the swash plate 33 and the steel balls 35 and shoe 36 connecting the swash plate 33 and the piston 34, thereby reliably lubricating each sliding surface. These lubricating oil droplets flow down to the bottom of the swash plate chamber 17, and then flow through the through hole 5.
It flows into the oil sump chamber 16 through 0.0 and 51. Note that some of the refrigerant gas that has entered the swash plate chamber 17 is transferred to each cylinder head 2 together with the aforementioned blow-by gas.
0 and 21 to the suction inner chambers 26 and 27. In addition,
The groove structure of this embodiment, which allows a portion of the oil droplets to flow directly into the swash plate chamber together with the refrigerant gas returned from the refrigeration circuit, supplies low-temperature, high-viscosity lubricating oil to the sliding surface, so it has a high lubrication effect. This provides the advantage of also having a cooling effect. In addition, some of the oil that has flowed into the oil tank from the swash plate chamber flows into the suction chamber together with the blow-by gas, contributing to oil slippage in the cylinder bore, but this effect is due to the fact that the communication path between the suction chamber and the oil tank is It is also possible to connect the
第6図は本考案の第2の実施例に示す縦断面図
であり、第1図から第5図に示した第1の実施例
と比較してシリンダブロツク11a,11bの外
壁12a,12bに設けられた流入孔61が唯一
つであり、従つて、この流入孔61の中心線延長
上に設けられる通孔63も唯一つであることを除
き、第1の実施例と同一の構成・作用を有するも
のである。従つて各部材あるいは部分には第1の
実施例と同一の参照番号を付して図示している。 FIG. 6 is a longitudinal cross-sectional view showing a second embodiment of the present invention, in which the outer walls 12a, 12b of the cylinder blocks 11a, 11b are different from the first embodiment shown in FIGS. 1 to 5. The structure and operation are the same as in the first embodiment, except that there is only one inflow hole 61 and therefore there is only one through hole 63 provided on the extension of the center line of this inflow hole 61. It has the following. Therefore, each member or portion is shown with the same reference numeral as in the first embodiment.
第7図は本考案の第3の実施例を示す縦断面図
である。この第3の実施例は第2図に示した第1
の実施例と比較して斜板板17と油溜室16とを
仕切る下部隔壁17c,17dが両側壁をとりは
ずされて左・右の軸方向に沿つて延長せられてお
り、油溜室16の上方部分が斜板室17に包合さ
れた構成にあることが特徴である。この結果、油
溜室16への帰還油は前記延長された下部隔壁端
とバルブプレート18a,18bとの間に形成さ
れた1対の隙間54a,54bを通路として行わ
れる。従つて本実施例ではブローバイガスが油溜
室16として定義づけられた空間を経由すること
なく吸入内室26,27に導入されているが、こ
れを除き本実施例も第1の実施例と同一の構成作
用を有するものである。 FIG. 7 is a longitudinal sectional view showing a third embodiment of the present invention. This third embodiment is similar to the first embodiment shown in FIG.
Compared to the embodiment, lower partition walls 17c and 17d that partition the swash plate 17 and the oil sump chamber 16 have both side walls removed and are extended along the left and right axial directions. It is characterized in that the upper part of the swash plate chamber 17 is enclosed in the swash plate chamber 17. As a result, oil is returned to the oil reservoir chamber 16 through a pair of gaps 54a and 54b formed between the extended lower partition wall end and the valve plates 18a and 18b. Therefore, in this embodiment, the blow-by gas is introduced into the suction chambers 26 and 27 without passing through the space defined as the oil reservoir chamber 16, but this embodiment is also the same as the first embodiment except for this. They have the same structural effect.
さて、以上の第1、第2および第3の実施例に
おいて、圧縮機が停止しているときは、前述の
前・後バルブプレート18a,18bに設けた溝
19a,19bはシリンダヘツド20,21の吸
入内室26,27に具備された隔壁20b,21
bと協働して油分離室14a,14bから通孔3
0a,30bを通して流入する潤滑油を油溜室1
6に帰還させる油通路として作用していることも
注目すべきである。このようにして油溜室16に
帰還した潤滑油が再び圧縮機の作動開始時にホー
ミング現象により通路50,51もしくは54
a,54bを経て斜板室に入り、斜板の回転に応
じて各滑動面に供給され、かつまた溝19a,1
9bを介して吸入内室に入り冷媒ガスとともにシ
リンダ孔に入つてその壁面を潤滑するのである。 Now, in the above first, second and third embodiments, when the compressor is stopped, the grooves 19a and 19b provided in the front and rear valve plates 18a and 18b are connected to the cylinder heads 20 and 21. Partition walls 20b, 21 provided in suction inner chambers 26, 27 of
through hole 3 from oil separation chambers 14a and 14b in cooperation with b.
The lubricating oil flowing through 0a and 30b is transferred to the oil reservoir chamber 1.
It should also be noted that it also acts as an oil passageway returning to 6. When the compressor starts operating again, the lubricating oil returned to the oil sump chamber 16 in this way is transferred to the passages 50, 51 or 50 due to the homing phenomenon.
a, 54b, enters the swash plate chamber, is supplied to each sliding surface according to rotation of the swash plate, and is also supplied to the grooves 19a, 1.
It enters the suction inner chamber via 9b, enters the cylinder hole together with the refrigerant gas, and lubricates its wall surface.
以上の実施例に基づく説明より明らかなように
本考案によれば潤滑ポンプ等の特別な装置を有す
ることなく、圧縮機の各作動部材や滑動面に潤沢
に潤滑油が供給されることとなり、特に圧縮機の
圧縮作用時における潤滑効果が確保されることか
ら、長時間の連続運転に対しても圧縮機の円滑な
運転が保証されるのである。 As is clear from the explanation based on the above embodiments, according to the present invention, lubricating oil can be abundantly supplied to each operating member and sliding surface of the compressor without the need for a special device such as a lubricating pump. In particular, since the lubrication effect is ensured during the compression operation of the compressor, smooth operation of the compressor is guaranteed even during long-term continuous operation.
また、斜板、シユー等の潤滑のために帰還冷媒
の全てを斜板室に導入し、該斜板室を経由する迂
曲回路を主回路とする圧縮機構では上記斜板潤滑
の目的は達成し得てもいたずらに流路抵抗を増す
ばかりでなく、吸収熱により稀釈された冷媒がシ
リンダ孔に吸入されるので体積効率の低下を招く
ことが必至である。本考案では斜板、シユー等の
潤滑に供するに足る一部の帰還冷媒のみを斜板室
に導き、あくまでも直接にシリンダ孔に吸入させ
る回路を主回路とするものであるから上述したよ
うな体積効率の低下を招来する憂いはない。更に
ブローバイガスが分離油の一部を捕捉してシリン
ダ孔に流入するのでシリンダ孔の潤滑とともに体
積効率の向上にも貢献する。 In addition, in a compression mechanism in which all of the return refrigerant is introduced into the swash plate chamber to lubricate the swash plate, shoe, etc., and the main circuit is a detour route passing through the swash plate chamber, the purpose of swash plate lubrication cannot be achieved. Not only does this unnecessarily increase the flow path resistance, but also the refrigerant diluted by the absorbed heat is sucked into the cylinder hole, which inevitably leads to a decrease in volumetric efficiency. In this invention, the main circuit is a circuit in which only a portion of the return refrigerant sufficient to lubricate the swash plate, shoe, etc. is guided into the swash plate chamber, and sucked directly into the cylinder hole, so that the volumetric efficiency as described above is improved. There is no cause for concern about the decline in the economy. Furthermore, since the blow-by gas captures a portion of the separated oil and flows into the cylinder hole, it contributes to lubrication of the cylinder hole and to an improvement in volumetric efficiency.
第1図および第2図は本考案の1実施例による
斜板式圧縮機の異なる二縦断面図、第3図は第2
図の線−に沿う一部省略断面図、第4図は第
1図に示す圧縮機の後部シリンダヘツドの内部構
造を示す正面図、第5図は同じく後部バルブプレ
ートの正面図、第6図および第7図は本考案の第
2および第3の実施例による圧縮機を示す第2図
と同様の縦断面図である。尚、図中、11a,1
1bがシリンダブロツク、12a,12bがシリ
ンダブロツクの外壁、13がシリンダ孔、14
a,14bが油分離室、15が排出室、16が油
溜室、17が斜板室、18a,18bがバルブプ
レート、19a,19bが溝、20,21がシリ
ンダヘツド、22,23が吸入外室、24,25
が吐出室、26,27が吸入内室、30a,30
bが油の通孔、31が駆動軸、33が斜板、34
がピストン、35が鋼球、36がシユー、41,
42,61が流入孔、43,44が吸入通路、4
5,46,63が通孔、54a,54bが隙間で
ある。
1 and 2 are two different vertical sectional views of a swash plate compressor according to an embodiment of the present invention, and FIG.
4 is a front view showing the internal structure of the rear cylinder head of the compressor shown in FIG. 1, FIG. 5 is a front view of the rear valve plate, and FIG. and FIG. 7 is a longitudinal sectional view similar to FIG. 2, showing compressors according to second and third embodiments of the present invention. In addition, in the figure, 11a, 1
1b is the cylinder block, 12a and 12b are the outer walls of the cylinder block, 13 is the cylinder hole, 14
a and 14b are oil separation chambers, 15 is a discharge chamber, 16 is an oil reservoir chamber, 17 is a swash plate chamber, 18a and 18b are valve plates, 19a and 19b are grooves, 20 and 21 are cylinder heads, and 22 and 23 are outside suction chambers. Room, 24, 25
is the discharge chamber, 26, 27 are the suction inner chambers, 30a, 30
b is the oil hole, 31 is the drive shaft, 33 is the swash plate, 34
is the piston, 35 is the steel ball, 36 is the shoe, 41,
42, 61 are inflow holes, 43, 44 are suction passages, 4
5, 46, and 63 are through holes, and 54a and 54b are gaps.
Claims (1)
クの内部中央には斜板格納用の斜板室を有しまた
下側部には潤滑油貯溜室を有しかつそれらシリン
ダブロツクのほぼ外壁中央には冷媒ガスの帰還用
流入孔を有して帰還冷媒ガスを上記シリンダブロ
ツク内の左右油分離室に導入し上記帰還冷媒ガス
中の油滴を分離させ、その後上記シリンダブロツ
クの左右端部にバルブプレートを介して固定した
1対のシリンダヘツド内部に設けられた各吸入室
を経てシリンダ孔に該油分離後の帰還冷媒ガスを
吸入、圧縮し、圧縮後の冷媒ガスを上記シリンダ
ヘツド内部の吐出室へ送出しまた上記斜板室と上
記シリンダヘツドの各吸入室を空間的に連通する
通路を上記各バルブプレートのシリンダブロツク
に面した内面に刻設して上記斜板室内へシリンダ
孔から漏洩するブローバイガスを上記シリンダヘ
ツドの各吸入室に流入させ得る流体通路を形成し
た斜板式圧縮機において、上記帰還用流入孔から
上記油分離室に帰還冷媒ガスを導く吸入通路と上
記斜板室との隔壁に上記流入孔と該孔中心線の延
長上で互いに対向し開口面積が帰還冷媒ガスの一
部だけを上記斜板室内に侵入させる大きさの通孔
を設けかつ上記斜板室と上記油溜室を空間的に連
通する通路を該斜板室と該油溜室との隔壁壁面に
おける該斜板室の最下底部位に臨んだ位置に設け
た構成としたことを特徴とする斜板式圧縮機。 The cylinder blocks, which are connected in a pair in the left and right axial directions, have a swash plate chamber for storing the swash plate in the center of the interior thereof, a lubricating oil storage chamber in the lower part, and a swash plate chamber in the lower part of the cylinder block, and a swash plate chamber for storing the swash plate in the lower part thereof. A refrigerant gas return inflow hole is provided to introduce the return refrigerant gas into the left and right oil separation chambers in the cylinder block to separate oil droplets in the return refrigerant gas, and then valve plates are installed at the left and right ends of the cylinder block. The return refrigerant gas after the oil separation is sucked and compressed into the cylinder hole through each suction chamber provided inside a pair of cylinder heads fixed through the cylinder head, and the compressed refrigerant gas is sent to the discharge chamber inside the cylinder head. A passageway is cut into the inner surface of each valve plate facing the cylinder block to spatially communicate the swash plate chamber with each suction chamber of the cylinder head to prevent blow-by from leaking into the swash plate chamber from the cylinder hole. In a swash plate compressor having a fluid passage that allows gas to flow into each suction chamber of the cylinder head, a partition wall between the suction passage and the swash plate chamber that leads the return refrigerant gas from the return inflow hole to the oil separation chamber is provided. A through hole is provided which faces each other on an extension of the inflow hole and the center line of the hole and has an opening area large enough to allow only a portion of the return refrigerant gas to enter the swash plate chamber, and which connects the swash plate chamber and the oil reservoir chamber. A swash plate compressor characterized in that a passage that spatially communicates with the swash plate chamber is provided at a position facing the lowest bottom portion of the swash plate chamber on a wall surface of a partition between the swash plate chamber and the oil reservoir chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981181044U JPS6240130Y2 (en) | 1981-12-07 | 1981-12-07 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981181044U JPS6240130Y2 (en) | 1981-12-07 | 1981-12-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57127868U JPS57127868U (en) | 1982-08-09 |
JPS6240130Y2 true JPS6240130Y2 (en) | 1987-10-14 |
Family
ID=29978176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981181044U Expired JPS6240130Y2 (en) | 1981-12-07 | 1981-12-07 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6240130Y2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4925505A (en) * | 1972-05-10 | 1974-03-07 |
-
1981
- 1981-12-07 JP JP1981181044U patent/JPS6240130Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4925505A (en) * | 1972-05-10 | 1974-03-07 |
Also Published As
Publication number | Publication date |
---|---|
JPS57127868U (en) | 1982-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4392788A (en) | Swash-plate type compressor having oil separating function | |
US3955899A (en) | Apparatus for lubricating a swash plate compressor | |
KR0180608B1 (en) | Reciprocating type compressor with oil-separating device | |
US5088897A (en) | Swash plate type compressor with internal refrigerant and lubricant separating system | |
US5636974A (en) | Reciprocating piston type compressor with an oil separator for removing lubricating oil from discharged high pressure refrigerant gas | |
US3888604A (en) | Compressor for a refrigerating machine | |
US4070136A (en) | Apparatus for lubricating a swash plate compressor | |
US4127363A (en) | Swash-plate type compressor | |
US4522112A (en) | Swash-plate type compressor having improved lubrication of swash plate and shoes | |
KR100523426B1 (en) | Compressor and lubrication method thereof | |
CA1048463A (en) | Compressor for a refrigerant gas | |
JP3062436B2 (en) | Swash plate compressor | |
US4229145A (en) | Swash plate compressor | |
US3750848A (en) | Apparatus for lubricating a rotary swash plate type compressor | |
US4326838A (en) | Swash plate type compressor for use in air-conditioning system for vehicles | |
JPS6240130Y2 (en) | ||
US4544331A (en) | Swash-plate type compressor | |
JP4258132B2 (en) | Rotary multistage compressor | |
US4003680A (en) | Swash-plate compressor | |
JPS6218755B2 (en) | ||
JPS6240557B2 (en) | ||
JP4165280B2 (en) | Compressor | |
JPS6042234Y2 (en) | Rotating swash plate compressor | |
WO2022050183A1 (en) | Variable-capacity swash-plate-type compressor | |
KR101059063B1 (en) | Oil Separation Structure of Compressor |