JPS6239804B2 - - Google Patents

Info

Publication number
JPS6239804B2
JPS6239804B2 JP56064174A JP6417481A JPS6239804B2 JP S6239804 B2 JPS6239804 B2 JP S6239804B2 JP 56064174 A JP56064174 A JP 56064174A JP 6417481 A JP6417481 A JP 6417481A JP S6239804 B2 JPS6239804 B2 JP S6239804B2
Authority
JP
Japan
Prior art keywords
superconducting coil
support
superconducting
coil
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56064174A
Other languages
Japanese (ja)
Other versions
JPS57180105A (en
Inventor
Susumu Shimamoto
Koichi Koizumi
Isamu Kamishita
Fumio Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56064174A priority Critical patent/JPS57180105A/en
Publication of JPS57180105A publication Critical patent/JPS57180105A/en
Publication of JPS6239804B2 publication Critical patent/JPS6239804B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 本発明は超電導コイル、及びその製作方法に係
り、例えば、核融合実験装置用超電導磁石等に採
用され、所定数巻回される超電導導体が極低温状
態に維持されて使用される超電導コイル、及びそ
の製作方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting coil and a method for manufacturing the same, and is used, for example, in a superconducting magnet for a nuclear fusion experimental device, in which a superconducting conductor wound a predetermined number of times is maintained at an extremely low temperature. The present invention relates to the superconducting coil used and its manufacturing method.

近年、核融合実験装置に用いられ各種コイル
は、装置の大形化と共に、高電圧、大電流のもの
が望まれていることより超電導化することの開発
がさかんに行なわれている。これは、電気導体を
極低温状態にまで冷却すると電気抵抗が零とな
る、いわゆる超電導現象を利用しようとするもの
である。
In recent years, the various coils used in nuclear fusion experimental equipment have been actively developed to be superconducting, as the equipment has become larger and higher voltage and larger current are desired. This is an attempt to take advantage of the so-called superconductivity phenomenon, in which electrical resistance becomes zero when an electrical conductor is cooled to an extremely low temperature.

この超電導現象を利用した超電導コイルの例と
して、トカマク型核融合実験装置に使用される超
電導トロイダル磁場コイルを例にとつて以下に説
明する。
As an example of a superconducting coil that utilizes this superconducting phenomenon, a superconducting toroidal magnetic field coil used in a tokamak-type nuclear fusion experimental device will be described below.

一般にトカマク型核融合実験装置の超電導トロ
イダル磁場コイルの如く、超電導コイルを構成す
る超電導導体は、安定化導体、例えば銅に溝加工
し、その溝内に沿つて極細超電導線束を埋込み、
安定化導体と極細超電導線束を半田等にて一体化
した所請平角状超電導導体が使用される。
Generally, the superconducting conductor constituting the superconducting coil, such as the superconducting toroidal magnetic field coil of a tokamak-type nuclear fusion experimental device, is made by cutting a groove into a stabilizing conductor, such as copper, and embedding a bundle of ultrafine superconducting wires along the groove.
A rectangular superconducting conductor is used in which a stabilizing conductor and a bundle of ultrafine superconducting wires are integrated by soldering or the like.

この平角状超電導導体で超電導トロイダル磁場
コイルを製作する際には、まず巻芯型をガイドに
して、平角状超電導導体をその周囲に層間絶縁物
を介在させながら順次巻回する。巻回されて構成
されるコイルを所定の方法によつて加熱圧縮した
りして、平角状超電導導体と層間絶縁物とを接着
して1個のパンケーキコイルが形成される。
When manufacturing a superconducting toroidal magnetic field coil using this rectangular superconducting conductor, first, the rectangular superconducting conductor is sequentially wound around the core with an interlayer insulator interposed therebetween, using the winding core as a guide. A coil formed by winding is heated and compressed by a predetermined method, and a rectangular superconducting conductor and an interlayer insulator are bonded together to form one pancake coil.

このようなパンケーキコイルを、このパンケー
キコイルを冷却する冷却媒体は、例えば液体ヘリ
ウムを収納するための極低温容器内に複数個積み
重ね、かつ第1図に示す如く、巻枠サポート2で
支持して超電導コイル1が形成される。
A plurality of such pancake coils are stacked in a cryogenic container for storing liquid helium as a cooling medium for cooling the pancake coils, and are supported by a winding frame support 2 as shown in FIG. A superconducting coil 1 is thus formed.

巻枠サポート2は、下側板サポート2a、上側
板サポート2b、内周サポート2c、外周サポー
ト2dからなり、これらがそれぞれの部品に分解
可能である方が都合がよい。個々のパンケーキコ
イルを巻枠サポート2内に積み重ねる時には、パ
ンケーキコイル間同志の間に液体ヘリウム冷却流
路となるためのスペーサーを介在させたり、パン
ケーキ間を電気接続されることは云うまでもな
い。
The winding frame support 2 consists of a lower plate support 2a, an upper plate support 2b, an inner peripheral support 2c, and an outer peripheral support 2d, and it is convenient that these can be disassembled into their respective parts. When stacking individual pancake coils in the winding frame support 2, it goes without saying that spacers are interposed between the pancake coils to form liquid helium cooling channels, and electrical connections are made between the pancakes. Nor.

超電導コイル1を巻枠サポート2に収納後、巻
枠サポート2と超電導コイル1との間の間隙、即
ち内周サポート2c、外周サポート2dと超電導
コイル1の内・外周との間の間隙や、超電導コイ
ル1と上下側面サポート2a,2b間との間の間
隙に、超電導コイル1を機械的に巻枠サポート2
に対して強固に固定するための固定用絶縁スペー
サー3a,3b,3c,4a,4bを挿入するの
が一般的である。特に外周サポート2dと超電導
コイル1との間の間隙に挿入される絶縁スペーサ
ー4a,4bはテーパー状の楔となつており強固
に打込まれる。
After storing the superconducting coil 1 in the winding frame support 2, the gap between the winding frame support 2 and the superconducting coil 1, that is, the gap between the inner circumferential support 2c, the outer circumferential support 2d, and the inner and outer circumferences of the superconducting coil 1, The superconducting coil 1 is mechanically attached to the winding frame support 2 in the gap between the superconducting coil 1 and the upper and lower side supports 2a and 2b.
It is common to insert fixing insulating spacers 3a, 3b, 3c, 4a, and 4b for firmly fixing the parts. In particular, the insulating spacers 4a and 4b inserted into the gap between the outer peripheral support 2d and the superconducting coil 1 are tapered wedges and are firmly driven.

一方、超電導コイル1と上下側板サポート2
a,2b間に設置される絶縁板3a,3cは、そ
れぞれ内周サポート2c、および外周サポート2
dに上下側板サポート2a,2bによつて締付・
固定されている。
On the other hand, superconducting coil 1 and upper and lower side plate supports 2
Insulating plates 3a and 3c installed between a and 2b are an inner support 2c and an outer support 2, respectively.
d is tightened by the upper and lower side plate supports 2a and 2b.
Fixed.

しかしながら、このような固定の仕方による従
来の超電導コイルは小〜中容量規模の超電導コイ
ルに対してはほぼ有効であつた。
However, conventional superconducting coils that are fixed in this manner are almost effective for small to medium capacity superconducting coils.

何故なら小〜中容量規模の超電導コイル1の場
合にはサイズも小さく、極低温に冷却されても超
電導コイルと巻枠サポート2の熱収縮寸法差の絶
対値が小さく、クエンチに直接結びつくほどの大
きな間隙が生じないことや、更に超電導導体のサ
イズも小さく、かつ励磁電流も小さいので電磁力
も小さいものとなり、万一電磁力でコイルに動き
が発生しても、その動き量も小さく発熱量も小さ
いのでクエンチに結びつくことも少いのである。
ここでいうクエンチとは電磁力等によつて起る超
電導導体の動きで、発熱し発熱部分の超電導状態
が破れて常電導化し、これが伝播して超電導コイ
ル全体が常電導化する現象を云うが、このクエン
チは超電導コイル1の特性劣化や絶縁劣化をまね
き、あるいは絶縁焼損をもたらす恐れがあり、超
電導コイルでは最も恐れられている事故の一つで
ある。
This is because the size of the superconducting coil 1 with a small to medium capacity scale is small, and even when cooled to an extremely low temperature, the absolute value of the thermal shrinkage dimension difference between the superconducting coil and the winding frame support 2 is small, and the difference is so large that it directly leads to quenching. Since there are no large gaps, the size of the superconducting conductor is small, and the excitation current is also small, the electromagnetic force is small, so even if movement occurs in the coil due to electromagnetic force, the amount of movement is small and the amount of heat generated is small. Since it is small, it rarely causes quenching.
The quench here refers to the phenomenon in which the superconducting conductor generates heat due to the movement of the superconducting conductor due to electromagnetic force, etc., and the superconducting state of the heating part is broken and becomes normal conductive, and this propagates and the entire superconducting coil becomes normal conductive. This quenching may lead to deterioration of the characteristics and insulation of the superconducting coil 1, or may cause insulation burnout, and is one of the most feared accidents in superconducting coils.

ところで、超電導コイル1のサイズが上記に反
して大きくなり、超電導トロイダル磁場コイル寸
法のスケールアツプ化に伴つて独特の問題を生じ
るようになつてきた。それは超電導コイル1や巻
枠サポート2を極低温状態に冷却する過程、並び
にその極低温状態において、超電導コイル導体と
巻枠サポート2の熱膨張係数の大小の差によつ
て、熱収縮寸法差に相当する隙間がこれら材料間
に生じてくることである。この冷却状態で、かつ
隙間の発生のある状態で超電導コイル1を励磁し
なければならないから、強大な電磁力によつて、
微少な超電導コイル導体の動きでも発熱し、クエ
ンチを起す引金となることである。すなわち、常
温(約300〓)状態で強固にスペーサーを介して
超電導コイル1が固定されていても、液体ヘリウ
ム等によつて極低温に冷却された状態では超電導
コイルを構成する材料、たとえば超電導コイル銅
材と、巻枠サポート用ステンレス材の熱膨張係数
の差異によつて熱収縮差が生じ、超電導コイル1
と巻枠サポート2間にギヤツプが生じることであ
る。即ち、銅材の熱膨張係数をα、ステンレス
材の熱膨張係数をα、温度差300〓とすると、
1m当りの熱収縮寸法差Δlは3×105(α−α
)となる。この熱収縮寸法差Δlは、超電導コ
イル1、および巻枠サポート2の寸法増大に比例
して大きくなることは云うまでもないし、極低温
状態の時に限つて発生する特殊な問題である。
By the way, the size of the superconducting coil 1 has increased contrary to the above, and as the dimensions of the superconducting toroidal magnetic field coil have increased in scale, unique problems have started to occur. This is due to the process of cooling the superconducting coil 1 and the winding frame support 2 to an extremely low temperature state, and due to the difference in thermal expansion coefficient between the superconducting coil conductor and the winding frame support 2 in the extremely low temperature state. Corresponding gaps will occur between these materials. Since the superconducting coil 1 must be excited in this cooled state and in a state where a gap is generated, a strong electromagnetic force is used to
Even the slightest movement of the superconducting coil conductor generates heat and triggers quenching. In other words, even if the superconducting coil 1 is firmly fixed via a spacer at room temperature (approximately 300 °C), the materials constituting the superconducting coil, such as the superconducting coil, may be damaged when cooled to an extremely low temperature by liquid helium or the like. Due to the difference in thermal expansion coefficient between the copper material and the stainless steel material for the winding frame support, a difference in thermal contraction occurs, and the superconducting coil 1
This causes a gap between the reel support 2 and the reel support 2. That is, if the coefficient of thermal expansion of copper material is α 1 , the coefficient of thermal expansion of stainless steel material is α 2 , and the temperature difference is 300〓,
The heat shrinkage dimension difference Δl per 1 m is 3×10 51 − α
2 ). It goes without saying that this heat shrinkage dimensional difference Δl increases in proportion to the increase in the dimensions of the superconducting coil 1 and the winding frame support 2, and is a special problem that occurs only at extremely low temperatures.

従つて、上記のような状態の超電導コイル1に
通電・励磁した場合には、励磁電流の増大に伴う
電磁力の増大によりクエンチしてしまい、所定の
通電容量を得ることができないばかりか、重大な
事故を引き起す恐れがある。
Therefore, if the superconducting coil 1 in the above state is energized and excited, it will be quenched due to the increase in electromagnetic force that accompanies the increase in the excitation current, and not only will it not be possible to obtain the specified current carrying capacity, but it will also cause serious damage. There is a risk of causing an accident.

本発明は上述の点に鑑みなされたもので、その
目的とするところは、超電導コイルとサポート間
に間隙が生じることのないようにし、クエンチの
発生を防ぐことのできる超電導コイル、及びその
製作方法を提供するにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to provide a superconducting coil that can prevent the occurrence of quenching by eliminating gaps between the superconducting coil and the support, and a method for manufacturing the same. is to provide.

本発明は超電導導体を層間絶縁物を介在させな
がら所定数巻回して形成されるパンケーキコイル
と、このパンケーキコイルを複数個積み重ねて収
納し、冷却媒体で極低温状態に冷却する極低温容
器とから成り、これらを絶縁物を介してサポート
で支持する超電導コイルの熱膨張収縮差を、サポ
ートの常温時の熱膨張収縮差とほぼ同様にした超
電導コイル、及び、前記超電導コイルを支持して
いるサポートの一部を取り除くと共に、該部分に
冷却媒体を供給できる入口部を有する仮サポート
を装着し、しかる後に仮サポート入口部より冷却
媒体を供給して超電導コイルの熱膨張収縮差が、
前記サポートの常温時の熱膨張収縮差とほぼ同様
になるまで冷却し、その後、前記仮サポートを取
り外して該部分に前記取り除いたサポートを装着
するようにした超電導コイルの製作方法とするこ
とにより所期の目的を達成するようになしたもの
である。
The present invention relates to a pancake coil formed by winding a superconducting conductor a predetermined number of times with an interlayer insulator interposed, and a cryogenic container in which a plurality of these pancake coils are stacked and stored and cooled to a cryogenic state with a cooling medium. and a superconducting coil that supports these superconducting coils with a support via an insulator, the thermal expansion and contraction difference of which is almost the same as the thermal expansion and contraction difference of the support at room temperature, and a superconducting coil that supports the superconducting coil with At the same time as removing a part of the support, a temporary support having an inlet that can supply a cooling medium is attached to the part, and then a cooling medium is supplied from the temporary support inlet to adjust the difference in thermal expansion and contraction of the superconducting coil.
The method for manufacturing a superconducting coil includes cooling the support until the difference in thermal expansion and contraction becomes almost the same as that at room temperature, and then removing the temporary support and attaching the removed support to the corresponding part. This was done to achieve the objectives of the period.

以下、図面の実施例に基づいて本発明を詳細に
説明する。尚、符号は従来と同一のものは同符号
を使用する。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings. Incidentally, the same reference numerals are used for the same parts as in the past.

第2図、及び第3図に本発明の一実施例を示
す。
An embodiment of the present invention is shown in FIGS. 2 and 3.

本実施例でも平角状超電導導体をその周囲に層
間絶縁物を介在させながら順次巻回して構成され
たものを、所定の方法によつて加熱圧縮して平角
状超電導導体と層間絶縁物とを接着し形成した1
個のパンケーキコイルを、このパンケーキコイル
を冷却する冷却媒体、例えば液体ヘリウムを収納
するための極低温容器内に複数個積み重ね、か
つ、巻枠サポート2で支持して超電導コイル1を
形成している。そして、本実施例では、まず下側
板サポート2a上に内周サポート2cを取付け
し、絶縁板3c,3bを介して超電導コイル1を
組込む。しかる後、外周サポート2dに相当する
部分には、冷却媒体を供給する入口配管部6aを
有する薄鋼板製仮外周サポート雇治具5を取付け
し、更に超電導コイル1と仮外周サポート雇治具
5間の間隙に絶縁テーパー楔4a,4bを挿入
し、仮止めしておく。次に絶縁板3aを介して上
側板サポート2bを取付けたのち、仮外周サポー
ト雇治具5の外表面に取付けた入口配管部6aよ
り冷却媒体、例えば冷却窒素ガス等を供給し、超
電導コイル1を所定温度、即ち、超電導コイル1
の熱膨張収縮差が、巻枠サポート2の熱膨張収縮
差とほぼ同程度となるまで冷却する。尚、この冷
却期間中は、巻枠サポート2の外表面をポリエス
テルフイルム7等にてカバーして巻枠サポート2
との間に乾燥気体(例えばN2ガス)8を封入さ
せた方が、巻枠サポート2の外表面の結露防止に
有効である。
In this example, a rectangular superconducting conductor is sequentially wound around it with an interlayer insulating material interposed therebetween, and the rectangular superconducting conductor and interlayer insulating material are bonded together by heating and compressing using a predetermined method. and formed 1
A superconducting coil 1 is formed by stacking a plurality of pancake coils in a cryogenic container for storing a cooling medium for cooling the pancake coils, such as liquid helium, and supporting them with a winding frame support 2. ing. In this embodiment, first, the inner peripheral support 2c is attached on the lower plate support 2a, and the superconducting coil 1 is installed via the insulating plates 3c and 3b. Thereafter, a temporary outer support jig 5 made of a thin steel plate having an inlet piping section 6a for supplying a cooling medium is attached to a portion corresponding to the outer support 2d, and the superconducting coil 1 and temporary outer support jig 5 are then attached. Insulating tapered wedges 4a and 4b are inserted into the gap between them and temporarily fixed. Next, after attaching the upper plate support 2b via the insulating plate 3a, a cooling medium such as cooling nitrogen gas is supplied from the inlet piping section 6a attached to the outer surface of the temporary outer peripheral support jig 5, and the superconducting coil 1 at a predetermined temperature, that is, superconducting coil 1
Cooling is performed until the difference in thermal expansion and contraction of the winding frame support 2 becomes approximately the same as the difference in thermal expansion and contraction of the winding frame support 2. During this cooling period, the outer surface of the winding frame support 2 is covered with a polyester film 7 or the like.
It is more effective to prevent dew condensation on the outer surface of the winding frame support 2 by sealing a dry gas (for example, N 2 gas) 8 between the winding frame support 2 and the winding frame support 2 .

超電導コイル1が前記熱膨張係数差異による熱
収縮寸法差相当分(熱膨張収縮差が同程度)の温
度に冷却されたら、仮外周サポート雇治具5、上
側板サポート2b、及び絶縁板3aを解体する。
When the superconducting coil 1 has been cooled to a temperature equivalent to the difference in thermal contraction dimensions due to the difference in coefficient of thermal expansion (the difference in thermal expansion and contraction is about the same), the temporary outer support jig 5, the upper plate support 2b, and the insulating plate 3a are removed. Dismantle.

次に約300〓の外周サポート2dを取付し、超
電導コイル1と外周サポート2dとの間の間隙に
絶縁テーパー楔4a,4bを固く打込む。この時
絶縁テーパーキー4a,4bには接着剤を塗布し
て固く打込み固着してもよい。絶縁テーパー楔4
a,4bを打込み後第3図の如く絶縁板3aを介
在させて上側板サポート2bを正規位置に取付け
る。更に、上記の如く組立作業完了後、全体を常
温まで昇温させれば、前記温度差に相当する膨張
力が超電導コイル1と巻枠サポート2間に作用し
続けて極めて緊密に固定・固着されることとな
る。
Next, a peripheral support 2d of about 300 mm is attached, and insulating tapered wedges 4a and 4b are firmly driven into the gap between the superconducting coil 1 and the peripheral support 2d. At this time, the insulating taper keys 4a and 4b may be coated with adhesive and firmly driven into place. Insulated tapered wedge 4
After a and 4b are driven in, the upper plate support 2b is attached to the proper position with the insulating plate 3a interposed as shown in FIG. Furthermore, if the entire assembly is heated to room temperature after the assembly work is completed as described above, an expansion force corresponding to the temperature difference will continue to act between the superconducting coil 1 and the winding frame support 2, and they will be fixed and fixed extremely tightly. The Rukoto.

このような本実施例によれば、超電導コイルを
常温(約300〓)から最終的な極低温状態に達す
る過程で、超電導コイルの熱膨張係数αと巻枠
サポートの熱膨張係数αの差異によつて生ずる
熱収縮寸法差Δlを吸収することができるため、
超電導コイルと巻枠サポート間には間隙が発生す
ることはなく、超電導コイルの通電、励磁時に、
励磁電流の増大に伴う電磁力の増大によるクエン
チ発生がなくなり、重大事故を引き起こしたり、
通電容量が低下することもなくなる。
According to this embodiment, the thermal expansion coefficient α 1 of the superconducting coil and the thermal expansion coefficient α 2 of the winding frame support are changed in the process of bringing the superconducting coil from room temperature (approximately 300°C) to the final cryogenic state. Because it can absorb the heat shrinkage dimensional difference Δl caused by the difference,
There is no gap between the superconducting coil and the reel support, and when the superconducting coil is energized or excited,
This eliminates the possibility of quenching due to an increase in electromagnetic force due to an increase in excitation current, which can lead to serious accidents or
There is no reduction in current carrying capacity.

尚、第2図において巻枠サポート2外表面に仮
配管を仮固定し、配管内に液体窒素や其の他の冷
却媒体を流したり、吹付けたり、或いはドライア
イスなどの固形冷却材による冷却でも類似の効果
が得られ、更に強制冷却タイプの中空超電導導
体、または類似の冷却管を付帯するタイプの超電
導コイルの場合には、直接これらの中空、または
冷却管に冷却媒体を使つて冷却することもでき
る。更には、第2図において、仮外周サポート雇
治具5の代りに直接外周サポート2dを取付けし
前記の如き方法で冷却してもよい。但しこの場合
には、冷却されている外周サポート2dのみを一
度解体し、冷却中の超電導コイル1との間に熱収
縮寸法差に相当する温度にまで昇温させたのち再
び取付ける必要があることは勿論である。
In Fig. 2, temporary piping is temporarily fixed to the outer surface of the reel support 2, and liquid nitrogen or other cooling medium is flowed or sprayed into the piping, or cooling is performed using a solid cooling material such as dry ice. However, similar effects can be obtained, and in the case of a forced cooling type hollow superconducting conductor or a type of superconducting coil with a similar cooling pipe, cooling can be performed directly using a cooling medium in these hollows or cooling pipes. You can also do that. Furthermore, in FIG. 2, instead of the temporary outer support jig 5, the outer support 2d may be directly attached and cooled by the method described above. However, in this case, it is necessary to dismantle only the outer peripheral support 2d that is being cooled, raise the temperature between it and the superconducting coil 1 that is being cooled to a temperature corresponding to the difference in heat shrinkage dimensions, and then reinstall it. Of course.

以上説明した本発明の超電導コイル、及びその
製作方法によれば、超電導コイルの熱膨張収縮差
を、これを支持するサポートの常温時の熱膨張収
縮差とほぼ同様にした超電導コイル、及び、この
超電導コイルを得るため前記超電導コイルを支持
しているサポートの一部を取り除くと共に、該部
分に冷却媒体を供給できる入口部を有する仮サポ
ートを装着し、しかる後に仮サポート入口部より
冷却媒体を供給して超電導コイルの熱膨張収縮差
が、前記サポートの常温時の熱膨張収縮差とほぼ
同様になるまで冷却し、その後、前記仮サポート
を取り外して該部分に前記取り除いたサポートを
装着するようにした製作方法としたものであるか
ら、超電導コイルとサポートとの熱膨張収縮差に
伴う熱収縮寸法差を吸収することができるため、
超電導コイルとサポート間には間隙が生じること
はなく、従つて、クエンチの発生がなくなり超電
導コイルに採用する場合には非常に有効である。
According to the superconducting coil and the manufacturing method of the present invention described above, the superconducting coil has a thermal expansion/contraction difference that is almost the same as the thermal expansion/contraction difference of the support supporting it at room temperature, and In order to obtain a superconducting coil, a part of the support supporting the superconducting coil is removed, a temporary support having an inlet part that can supply a cooling medium is attached to the part, and then a cooling medium is supplied from the temporary support inlet part. and cooling the superconducting coil until the difference in thermal expansion and contraction of the superconducting coil becomes almost the same as the difference in thermal expansion and contraction of the support at room temperature, and then removing the temporary support and attaching the removed support to the part. Because the manufacturing method was adopted, it is possible to absorb the difference in thermal contraction dimensions caused by the difference in thermal expansion and contraction between the superconducting coil and the support.
There is no gap between the superconducting coil and the support, so quenching does not occur, which is very effective when used in superconducting coils.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超電導コイルを一部断面して示
す正面図、第2図、及び第3図は本発明の超電導
コイルの製作過程を一部断面して示す正面図であ
る。 1…超電導コイル、2…巻枠サポート、2a…
下側板サポート、2b…上側板サポート、2c…
内周サポート、2d…外周サポート、3a,3
b,3c…絶縁板、4a,4b…絶縁テーパー
楔、5…仮外周サポート雇治具、6a…入口配管
部。
FIG. 1 is a partially cross-sectional front view of a conventional superconducting coil, and FIGS. 2 and 3 are partially cross-sectional front views showing the manufacturing process of the superconducting coil of the present invention. 1...Superconducting coil, 2...Reeling frame support, 2a...
Lower plate support, 2b...Upper plate support, 2c...
Inner circumference support, 2d...Outer circumference support, 3a, 3
b, 3c... Insulating plate, 4a, 4b... Insulating taper wedge, 5... Temporary outer peripheral support jig, 6a... Inlet piping section.

Claims (1)

【特許請求の範囲】 1 超電導導体を層間絶縁物を介在させながら所
定数巻回して形成されるパンケーキコイルと、該
パンケーキコイルを複数個積み重ねて収納し、冷
却媒体で極低温状態に冷却する極低温容器とから
成り、これらを絶縁物を介してサポートで支持し
てなる超電導コイルにおいて、前記超電導コイル
の熱膨張収縮差を、前記サポートの常温時の熱膨
張収縮差とほぼ同様にしたことを特徴とする超電
導コイル。 2 前記超電導コイルの周囲を覆つている絶縁物
のうち、側面外側に位置する絶縁物はテーパー状
の楔で、該楔が超電導コイルとサポート間に挿入
されて構成することを特徴とする特許請求の範囲
第1項記載の超電導コイル。 3 超電導導体を層間絶縁物を介在させながら所
定数巻回してパンケーキコイルを形成すると共
に、該パンケーキコイルを複数個積み重ね、極冷
媒中の極低温容器内に収納し、これを絶縁物を介
してサポートに支持して形成する超電導コイルの
製作方法において、前記超電導コイルを支持して
いるサポートの一部を取り除くと共に、該部分に
冷却媒体を供給できる入口部を有する仮サポート
を装着し、しかる後に仮サポート入口部より冷却
媒体を供給して超電導コイルの熱膨張収縮差が、
前記サポートの常温時の熱膨張収縮差とほぼ同様
になるまで冷却し、その後、前記仮サポートを取
り外して該部分に前記取り除いたサポートを装着
するようにしたことを特徴とする超電導コイルの
製作方法。 4 前記超電導コイルの周囲を覆つている絶縁物
のうち、側面外側に位置する絶縁物はテーパー状
の楔で、該楔は超電導コイルが冷却状態では該超
電導コイルと前記仮サポート間に仮止めされ、か
つ、超電導コイルが冷却された後は該超電導コイ
ルとサポート間に固く緊密に打込むことを特徴と
する特許請求の範囲第3項記載の超電導コイルの
製作方法。 5 前記超電導コイルの組立作業完了後、全体を
常温まで昇温させたことを特徴とする特許請求の
範囲第3項、または第4項記載の超電導コイルの
製作方法。 6 前記超電導コイルを冷却期間中に、前記サポ
ートの外表面をポリエステルフイルムにてカバー
し、該ポリエステルフイルムとサポートとの間に
乾燥気体を封入させたことを特徴とする特許請求
の範囲第3項、または第4項記載の超電導コイル
の製作方法。
[Claims] 1. A pancake coil formed by winding a superconducting conductor a predetermined number of times with an interlayer insulator interposed, and a plurality of pancake coils stacked and stored and cooled to an extremely low temperature with a cooling medium. A superconducting coil consisting of a cryogenic container and a cryogenic container supported by a support via an insulator, wherein the thermal expansion/contraction difference of the superconducting coil is made almost the same as the thermal expansion/contraction difference of the support at room temperature. A superconducting coil characterized by: 2. A patent claim characterized in that, among the insulators surrounding the superconducting coil, the insulator located on the outside of the side surface is a tapered wedge, and the wedge is inserted between the superconducting coil and the support. The superconducting coil according to the range 1 above. 3 A superconducting conductor is wound a predetermined number of times with an interlayer insulator interposed to form a pancake coil, and a plurality of the pancake coils are stacked and stored in a cryogenic container in a cryogenic medium, and the insulator is In a method for manufacturing a superconducting coil formed by supporting the superconducting coil on a support, a part of the support supporting the superconducting coil is removed, and a temporary support having an inlet part that can supply a cooling medium to the part is attached, After that, a cooling medium is supplied from the temporary support inlet, and the difference in thermal expansion and contraction of the superconducting coil is
A method for producing a superconducting coil, characterized in that the support is cooled until the difference in thermal expansion and contraction at room temperature becomes almost the same, and then the temporary support is removed and the removed support is attached to the corresponding part. . 4 Among the insulators surrounding the superconducting coil, the insulator located on the outside of the side surface is a tapered wedge, and the wedge is temporarily fixed between the superconducting coil and the temporary support when the superconducting coil is in a cooled state. 4. The method of manufacturing a superconducting coil according to claim 3, wherein the superconducting coil is firmly and tightly inserted between the superconducting coil and the support after the superconducting coil has been cooled. 5. The method of manufacturing a superconducting coil according to claim 3 or 4, wherein the temperature of the entire superconducting coil is raised to room temperature after the assembly work of the superconducting coil is completed. 6. Claim 3, characterized in that, during the cooling period of the superconducting coil, the outer surface of the support is covered with a polyester film, and dry gas is sealed between the polyester film and the support. , or the method for manufacturing a superconducting coil according to item 4.
JP56064174A 1981-04-30 1981-04-30 Superconductive coil and manufacture thereof Granted JPS57180105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56064174A JPS57180105A (en) 1981-04-30 1981-04-30 Superconductive coil and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56064174A JPS57180105A (en) 1981-04-30 1981-04-30 Superconductive coil and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS57180105A JPS57180105A (en) 1982-11-06
JPS6239804B2 true JPS6239804B2 (en) 1987-08-25

Family

ID=13250430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56064174A Granted JPS57180105A (en) 1981-04-30 1981-04-30 Superconductive coil and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS57180105A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648646B2 (en) * 1985-06-29 1994-06-22 株式会社東芝 Superconducting magnet device

Also Published As

Publication number Publication date
JPS57180105A (en) 1982-11-06

Similar Documents

Publication Publication Date Title
US5689223A (en) Superconducting coil
EP0207286B1 (en) Conical, unimpregnated winding for mr magnets
JPH0328044B2 (en)
US3559128A (en) Superconducting magnet for persistent operation
US3514730A (en) Cooling spacer strip for superconducting magnets
US4242534A (en) Superconductor structure and method for manufacturing same
JPS6239804B2 (en)
US4906960A (en) Distribution transformer with coiled magnetic circuit
KR100498972B1 (en) High temperature superconducting cable and process for manufacturing the same
JP2000030929A (en) Wire protection for oxide superconducting coil
JPS61229306A (en) Superconducting coil
US4907339A (en) Method of construction of a distribution transformer having a coiled magnetic circuit
JPS61179517A (en) Manufacture of stationary induction electric apparatus
JPS59208811A (en) Superconductive coil
JP3199782B2 (en) Superconducting coil manufacturing method
US4166990A (en) Core/coil assembly for use in superconducting magnets and method for assembling the same
JPS6119089B2 (en)
Zbasnik et al. Short sample testing facility for the Superconducting Super Collider
Hosoyama et al. Fabrication and testing of 1-m-long SSC model dipole magnets
JPH0529123B2 (en)
JP3068922B2 (en) Superconducting magnet
JPS5877207A (en) Superconductive coil device
JPS6173308A (en) Superconductive magnet
JPS5965410A (en) Manufacture of superconductive coil
Taylor et al. Design of the Superconducting Quadrupoles for the LEP200 Low-beta Insertions