JPS6239737A - System for setting temperature range - Google Patents
System for setting temperature rangeInfo
- Publication number
- JPS6239737A JPS6239737A JP60180833A JP18083385A JPS6239737A JP S6239737 A JPS6239737 A JP S6239737A JP 60180833 A JP60180833 A JP 60180833A JP 18083385 A JP18083385 A JP 18083385A JP S6239737 A JPS6239737 A JP S6239737A
- Authority
- JP
- Japan
- Prior art keywords
- temp
- temperature
- range
- image
- temps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Radiation Pyrometers (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Closed-Circuit Television Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
赤外線映像装置の温度レンジ設定方式であって、表示画
像上の温度測定を行ないたい画像位置にカーソル(輝線
)を重合して指定し、該指定区域内の最高温度と最低温
度を検出して両温度の温度差値を温度レンジとして映像
輝度を設定するように構成し、任意の温度測定点にカー
ソルを重合することにより、自動的に最適な温度レンジ
の設定ができるため測定の効率化と高精度の温度測定を
可能とする。[Detailed Description of the Invention] [Summary] This is a temperature range setting method for an infrared imaging device, in which a cursor (bright line) is superimposed on the image position on the displayed image where temperature measurement is desired, and the temperature range within the specified area is specified. The configuration is configured to detect the maximum and minimum temperatures and set the image brightness using the temperature difference value between the two temperatures as the temperature range, and by placing the cursor on any temperature measurement point, the optimal temperature range is automatically set. Since it can be configured, it enables more efficient measurement and highly accurate temperature measurement.
(産業上の利用分野〕
本発明は赤外線映像装置の温度レンジ設定方式に関し、
特に最適な温度レンジを自動的に設定して表示画像を高
精度で測定することができるようにした赤外線映像装置
の温度レンジ設定方式に関するものである。(Industrial Application Field) The present invention relates to a temperature range setting method for an infrared imaging device.
In particular, the present invention relates to a temperature range setting method for an infrared imaging device that enables highly accurate measurement of displayed images by automatically setting an optimal temperature range.
被写体の温度パターンを表示し、パターン中の温度を測
定する装置として赤外線映像装置が広く用いられている
。2. Description of the Related Art Infrared imaging devices are widely used as devices for displaying a temperature pattern of a subject and measuring the temperature in the pattern.
赤外線映像装置は、被写体より放射される赤外線量に対
応して輝度諧調を変化させ、被写体の温度パターンとし
て表示器に表示している。An infrared imaging device changes the brightness gradation according to the amount of infrared rays emitted from a subject, and displays the temperature pattern of the subject on a display.
表示パターンの温度測定は表示画像の輝度諧調を目視に
より測定したり、輝度諧調に対応して表示される温度数
値により測定している。The temperature of the display pattern is measured by visually measuring the brightness gradation of the display image or by measuring the temperature value displayed corresponding to the brightness gradation.
高精度の温度測定を行なうための輝度諧調の変化幅(V
M度レンジ)は測定者が測定点付近の温度を勘案して最
適値を判断して決定しており、それがために、測定に多
くの時間を必要とする。The width of change in brightness gradation (V) for highly accurate temperature measurement
The M degree range) is determined by the measurer by determining the optimum value in consideration of the temperature near the measurement point, which requires a lot of time for measurement.
そこで、測定者の判断による温度レンジの設定でなく、
自動的に最適の温度レンジが設定され、表示温度パター
ンを高精度で測定することができる赤外線映像装置の温
度レンジ設定方式の出現が要望されている。Therefore, instead of setting the temperature range based on the judgment of the measurer,
There is a need for a temperature range setting method for an infrared imaging device that can automatically set the optimum temperature range and measure the displayed temperature pattern with high precision.
第4図は従来の温度レンジ設定方式のブロック図である
。FIG. 4 is a block diagram of a conventional temperature range setting method.
第4図において、被写体1より放射された赤外線は赤外
線カメラ部2で捕捉されて電気信号に変換される。In FIG. 4, infrared rays emitted from a subject 1 are captured by an infrared camera section 2 and converted into electrical signals.
カメラ部2で変換された電気信号は、A/D変換器3で
ディジタル信号に変換され、メモリ制御部8の書込み制
御信号によりカメラ部2の走査に同期して映像メモリ4
の所定のアドレスに格納される。The electrical signal converted by the camera section 2 is converted into a digital signal by the A/D converter 3, and is transferred to the video memory 4 in synchronization with the scanning of the camera section 2 by a write control signal from the memory control section 8.
is stored at a predetermined address.
映像メモリ4はメモリ制御部8の読出し制御信号により
格納された被写体の1画面毎の画像信号をレンジ演算部
5を介してD/A変換器6に出力する。The video memory 4 outputs the image signal of the object stored for each screen according to the read control signal from the memory control section 8 to the D/A converter 6 via the range calculation section 5.
D/A変換器6は映像メモリ4より出力されるディジタ
ル画像信号をアナログ信号に変換し、1画面毎に表示器
7で画像表示する。The D/A converter 6 converts the digital image signal output from the video memory 4 into an analog signal, and displays the image on the display 7 for each screen.
温度レンジの設定は、レンジ設定器9に設けられた温度
レンジ切換器9−1を測定者が切換えて所定の温度レン
ジに設定する。To set the temperature range, the measurer switches the temperature range switch 9-1 provided in the range setting device 9 to a predetermined temperature range.
いま、例えば温度レンジ切換器9−1を10° レンジ
に設定すると、レンジ設定器9は規定の最高温度、例え
ば50° Cと温度レンジ10° Cとの差である40
°Cとに対応した温度制御信号A、Bを発生し、レンジ
演算部5に出力する。Now, for example, if the temperature range selector 9-1 is set to the 10° range, the range setting device 9 will set the specified maximum temperature, for example 40°, which is the difference between 50°C and the temperature range of 10°C.
temperature control signals A and B corresponding to °C are generated and output to the range calculation section 5.
レンジ演算部5は、映像メモリ4より出力される画像デ
ィジクル信号を温度制御信号A、Hに対応した輝度諧調
に変換する演算を行ない、輝度諧調を工0°Cレンジの
温度幅で表示部7に画像表示する。The range calculation unit 5 performs calculations to convert the image digital signal output from the video memory 4 into brightness gradations corresponding to the temperature control signals A and H, and displays the brightness gradations in the temperature width of the 0°C range on the display unit 7. Display the image on.
この従来方式では温度レンジの設定を測定者により行な
っており、表示画像より温度レンジを判断する、いわゆ
る勘による設定であるために最適なレンジ設定に時間が
かかり、測定効率がわるいといった問題があった。In this conventional method, the temperature range is set by the measurer, and because the setting is based on intuition, in which the temperature range is judged from the displayed image, it takes time to set the optimal range, and there are problems such as poor measurement efficiency. Ta.
本発明はこのような点に鑑みて創作されたもので、簡易
な構成で自動的に最適な温度レンジが設定ができる赤外
線映像装置の温度レンジ設定方式を提供することを目的
としている。The present invention was created in view of these points, and an object of the present invention is to provide a temperature range setting method for an infrared imaging device that can automatically set an optimal temperature range with a simple configuration.
第1図は本発明の赤外線映像装置のブロック図を示し、
従来の赤外線映像装置に最高、最低温度検出手段を付設
している。FIG. 1 shows a block diagram of an infrared imaging device of the present invention,
A conventional infrared imaging device is equipped with maximum and minimum temperature detection means.
最高、最低温度検出手段は、表示画像位置を指定するカ
ーソルの位置信号を入力し、カーソルと重合する画像信
号を検出する区域検出部10と、区域検出部10より出
力される画像信号の最高温度と最低温度を検出する最高
、最低温度検出部11とで構成し、最高温度と最低温度
の温度差値を温度レンジとして画像表示するようにして
いる。The maximum and minimum temperature detection means inputs a cursor position signal specifying the display image position and detects an image signal that overlaps with the cursor, and an area detection unit 10 that detects the maximum temperature of the image signal output from the area detection unit 10. and a maximum and minimum temperature detecting section 11 for detecting the minimum temperature, and the temperature difference value between the maximum temperature and the minimum temperature is displayed as an image as a temperature range.
表示画面上の温度測定位置に輝線(カーソル)を重合す
ることによって表示画像の測定温度位置を設定し、カー
ソルの測定位置の設定に伴って、表示器上のカーソルの
位置を表す位置信号を作成して区域検出部10に出力す
る。The temperature measurement position on the display image is set by superimposing a bright line (cursor) on the temperature measurement position on the display screen, and as the cursor measurement position is set, a position signal representing the cursor position on the display is created. and outputs it to the area detection section 10.
区域検出部10において、入力された位置信号よりカー
ソルと重合した区域の画像信号を検出し、さらに、最高
、最低温度検出部11において、カーソルと重合した区
域の画像信号の最高温度と最低温度を検出してレンジ演
算部5に出力する。The area detection unit 10 detects the image signal of the area overlapped with the cursor from the input position signal, and the maximum and minimum temperature detection unit 11 detects the maximum and minimum temperatures of the image signal of the area overlapped with the cursor. It is detected and output to the range calculation section 5.
レンジ演算部5は映像メモリ4より出力される1画面分
毎の画像信号の輝度諧調を最高温度と最低温度の温度差
値の温度幅(温度レンジ)に設定してを表示するように
変換し、D/A変換器6を介して表示器7で表示する。The range calculation unit 5 converts the brightness tone of the image signal for each screen outputted from the video memory 4 so as to set it to the temperature range (temperature range) of the temperature difference value between the maximum temperature and the minimum temperature and display it. , and displayed on the display 7 via the D/A converter 6.
本発明では、測定位置を規定するカーソルに重合した区
域の画像信号の最高温度と最低温度を検出し、両温度の
温度差を温度レンジとして画像表示することにより、自
動的な温度レンジの設定と、最適な温度レンジが得られ
、高精度な温度測定が可能となる。In the present invention, the maximum and minimum temperatures of the image signal in the area superimposed on the cursor that defines the measurement position are detected, and the difference between the two temperatures is displayed as a temperature range, thereby automatically setting the temperature range. , the optimum temperature range can be obtained and highly accurate temperature measurement is possible.
第1図は本発明の一実施例の赤外線映像装置のブロック
図、第2図は実施例の最高、最低温度検出部のブロック
図、第3図は実施例の最高、最低温度検出手段の動作説
明図である。Fig. 1 is a block diagram of an infrared imaging device according to an embodiment of the present invention, Fig. 2 is a block diagram of a maximum and minimum temperature detection section of the embodiment, and Fig. 3 is an operation of the maximum and minimum temperature detection means of the embodiment. It is an explanatory diagram.
第1図において、最適な温度レンジを自動的に設定する
ため表示画像位置を指定するカーソルの位置信号を入力
し、カーソルと重合する画像信号を検出する区域検出部
10と、区域検出部10より出力される画像信号の最高
温度と最低温度を検出する最高、最低温度検出部11と
より成る最高、最低温度検出手段を赤外線映像装置に付
設している。In FIG. 1, an area detection unit 10 receives a cursor position signal specifying the display image position and detects an image signal that overlaps with the cursor in order to automatically set the optimum temperature range; The infrared imaging device is provided with maximum and minimum temperature detection means consisting of a maximum and minimum temperature detection section 11 for detecting the maximum and minimum temperatures of the image signal to be output.
被写体1より放射された赤外線はカメラ部2の走査によ
り捕捉され、電気信−号に変換される。この変換された
電気信号は、A/D変換器3によりディジクル信号に変
換され、メモリ制御部8の書込み制御信号によりカメラ
部2の走査に同期して映像メモリ4の所定のアドレスに
格納される°。Infrared rays emitted from the subject 1 are captured by scanning by the camera section 2 and converted into electrical signals. This converted electrical signal is converted into a digital signal by the A/D converter 3, and is stored at a predetermined address in the video memory 4 in synchronization with the scanning of the camera unit 2 by a write control signal from the memory control unit 8. °.
映像メモリ4に格納されたディジタル信号はメモリ制御
部8の読出し制御信号により1画面毎の画像信号となっ
てレンジ演算部5を介してD/A変換器6に出力され、
D/A変換器6においてアナ′ログ信号に変換されて表
示部7で画像表示される。The digital signal stored in the video memory 4 is outputted to the D/A converter 6 via the range calculation unit 5 as an image signal for each screen according to the readout control signal of the memory control unit 8.
The signal is converted into an analog signal by the D/A converter 6 and displayed as an image on the display section 7.
第3図の説明図に示すように、表示器7に表示された左
手の指の温度を測定する場合、表示画像7−1の指の位
置Al上にカーソル(輝線)7−2を重合する。このカ
ーソル7−2によって表示器7のカーソル位置^2に対
応した位置信号を作成して区域検出部10に出力する。As shown in the explanatory diagram of FIG. 3, when measuring the temperature of the finger of the left hand displayed on the display 7, a cursor (bright line) 7-2 is superimposed on the finger position Al of the display image 7-1. . Using this cursor 7-2, a position signal corresponding to the cursor position ^2 on the display 7 is created and output to the area detection section 10.
区域検出部10は、入力される位置信号に対応して映像
メモリ4に格納されている画像信号中よりカーソルに重
合する画像信号を続出して最高、最低温度検出部11に
出力せしめる。The area detection section 10 sequentially outputs image signals superimposed on the cursor from among the image signals stored in the video memory 4 in response to the input position signal, and outputs them to the maximum and minimum temperature detection sections 11.
最高、最低温度検出部11は第2図のブロック図に示す
ように、それぞれ直列に接続された比較器11−1とデ
ータレジスタ11−3および比較器11−2とデータレ
ジスタ11−4とで構成している。As shown in the block diagram of FIG. 2, the maximum and minimum temperature detection section 11 includes a comparator 11-1 and a data register 11-3, and a comparator 11-2 and a data register 11-4, which are connected in series. It consists of
その動作は、データレジスタ11−3.11−4には予
め規定温度値Bを設定しておく。比較器11−1および
11−2は各データレジスタに設定された規定温度値B
と映像メモリ4より順次出力されるカーソルに重合した
画像信号、第3図(blのAの温度値とを比較する。In this operation, a specified temperature value B is set in advance in the data registers 11-3 and 11-4. Comparators 11-1 and 11-2 use the specified temperature value B set in each data register.
The image signals superimposed on the cursor sequentially output from the video memory 4 are compared with the temperature value of A in FIG. 3 (bl).
いま、比較器11−1において、A>Bであればデータ
レジスタ11−3の内容をAと書替える。Now, in the comparator 11-1, if A>B, the contents of the data register 11-3 are rewritten to A.
これを全入力画像信号について行なえば画像信号中の最
高温度H−T (第3図中)の最高温度38°C)を得
ることができる。If this is done for all input image signals, the maximum temperature H-T (in FIG. 3) of the image signals can be obtained (38 DEG C.).
また、比較器11−2において、A<Bを検出し、以後
上記と同様にすれば最低温度L−T(第3図中)の最低
温度28°C)を得ることができる。Further, by detecting A<B in the comparator 11-2 and thereafter performing the same procedure as described above, the lowest temperature LT (lowest temperature 28 DEG C. in FIG. 3) can be obtained.
このようにして得られた最高温度H−T(38゜C)お
よび最低温度L−T(28°C)はレンジ演算部5に入
力され、レンジ演算部5において、映像メモリ部4より
出力される1画面毎の画像信号の輝度諧調を最高温度と
最低温度の温度差値である10°C幅に設定して画像表
示する。The maximum temperature HT (38°C) and minimum temperature LT (28°C) obtained in this way are input to the range calculation section 5, where they are output from the video memory section 4. The image is displayed by setting the brightness gradation of the image signal for each screen to a width of 10°C, which is the temperature difference value between the maximum temperature and the minimum temperature.
以上説明したように本発明によれば、温度測定区域の最
高温度と最低温度を検出し、両温度の温度差値を温度レ
ンジとして画像の輝度諧調を設定して表示することによ
り、自動的に、且つ最適の温度レンジが設定できるため
、測定作業の効率化と、高精度の温度測定が可能となる
。As explained above, according to the present invention, the maximum temperature and minimum temperature of the temperature measurement area are detected, and the temperature difference value between the two temperatures is set and displayed as the temperature range, thereby automatically , and the optimum temperature range can be set, making measurement work more efficient and enabling highly accurate temperature measurement.
第1図は本発明の一実施例の赤外線映像装置のブロック
図、
第2図は実施例の最高、最低温度検出部のブロツク図、
第3図は本発明の実施例の動作説明図、第4図は従来の
赤外線映像装置のブロック図である。
図において、1は被写体、2はカメラ部、3はA/D変
換器、4は映像メモリ、5はレンジ演算部、6はD/A
変換器、7は表示器、7−1は表示画像、7−2はカー
ソル、8はメモリ制御部、9はレンジ設定器、9−1は
温度レンジ切換器、10は区域検出部、ilは最高、最
低温度検出部、11−1.11−2は比較器、11−3
.11−4はデータレジスタをそれぞれ示している。
Δ4ど呵角−欠)を例のプ外キD未f象4ur為7”D
ツ7図第1図
う(コ結ヅ列qKM 、’!’z41!<St&’i:
fp q 7゛D !27(7第 2 図FIG. 1 is a block diagram of an infrared imaging device according to an embodiment of the present invention, FIG. 2 is a block diagram of a maximum and minimum temperature detection section of the embodiment, and FIG. 3 is an explanatory diagram of the operation of an embodiment of the present invention. FIG. 4 is a block diagram of a conventional infrared imaging device. In the figure, 1 is the subject, 2 is the camera unit, 3 is the A/D converter, 4 is the video memory, 5 is the range calculation unit, and 6 is the D/A
Converter, 7 is a display, 7-1 is a display image, 7-2 is a cursor, 8 is a memory control unit, 9 is a range setting device, 9-1 is a temperature range switch, 10 is an area detection unit, il is a Maximum and minimum temperature detection section, 11-1.11-2 is comparator, 11-3
.. 11-4 indicate data registers, respectively. Δ4 do 呵 angle - missing) as an example of outside Ki D unf elephant 4ur for 7”D
Figure 7 Figure 1 U (Ko-kyuzu qKM,'!'z41!<St&'i:
fp q 7゛D! 27 (7 fig. 2
Claims (1)
る赤外線映像装置において、前記表示画像の所定区域を
指定し、該指定区域の最高および最低温度値を検出する
最高、最低温度検出手段(10、11)を付設し、前記
検出手段(10、11)の最高温度と最低温度の差値を
温度レンジとして前記赤外線画像を表示するようにした
ことを特徴とする温度レンジ設定方式。In an infrared imaging device that displays an infrared image of a subject (1) in a predetermined temperature range, maximum and minimum temperature detection means (10 , 11), and the infrared image is displayed using the difference value between the maximum temperature and the minimum temperature of the detection means (10, 11) as the temperature range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60180833A JPS6239737A (en) | 1985-08-16 | 1985-08-16 | System for setting temperature range |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60180833A JPS6239737A (en) | 1985-08-16 | 1985-08-16 | System for setting temperature range |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6239737A true JPS6239737A (en) | 1987-02-20 |
Family
ID=16090154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60180833A Pending JPS6239737A (en) | 1985-08-16 | 1985-08-16 | System for setting temperature range |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6239737A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01102329A (en) * | 1987-10-16 | 1989-04-20 | Nec San-Ei Instr Co Ltd | Measuring apparatus of temperature by infrared ray |
JPH01102330A (en) * | 1987-10-16 | 1989-04-20 | Nec San-Ei Instr Co Ltd | Measuring apparatus of temperature by infrared ray |
US6835940B2 (en) | 2002-02-18 | 2004-12-28 | Konica Corporation | Radiation image conversion panel |
US6953941B2 (en) | 2002-02-25 | 2005-10-11 | Konica Corporation | Radiation image conversion panel and producing method thereof |
EP1619691A2 (en) | 2004-07-22 | 2006-01-25 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel and manufacturing method thereof |
US7173258B2 (en) | 2003-11-18 | 2007-02-06 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel and preparation method thereof |
US7202485B2 (en) | 2003-11-18 | 2007-04-10 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel and preparation method thereof |
JPWO2006049026A1 (en) * | 2004-11-04 | 2008-05-29 | コニカミノルタエムジー株式会社 | Radiation image conversion panel and manufacturing method thereof |
US7659524B2 (en) | 2007-07-05 | 2010-02-09 | Konica Minolta Medical & Graphics, Inc. | Radiation image conversion panel and preparation method thereof |
EP2261932A2 (en) | 2002-11-27 | 2010-12-15 | Konica Minolta Holdings, Inc. | Radiographic image conversion panel, method for manufacturing the same, method for forming phosphor particle, method for forming photostimulable phosphor precursor, phosphor precursor and photostimulable phosphor |
US8436322B2 (en) | 2008-03-31 | 2013-05-07 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel |
US8440983B2 (en) | 2007-03-27 | 2013-05-14 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel, its manufacturing method, and X-ray radiographic system |
US9109945B1 (en) * | 2006-10-06 | 2015-08-18 | Fluke Corporation | System and method for configuring a thermal imaging instrument |
EP2779623B1 (en) * | 2013-03-15 | 2019-09-18 | InfraRed Integrated Systems Limited | Apparatus and method for multispectral imaging with parallax correction |
-
1985
- 1985-08-16 JP JP60180833A patent/JPS6239737A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01102330A (en) * | 1987-10-16 | 1989-04-20 | Nec San-Ei Instr Co Ltd | Measuring apparatus of temperature by infrared ray |
JPH01102329A (en) * | 1987-10-16 | 1989-04-20 | Nec San-Ei Instr Co Ltd | Measuring apparatus of temperature by infrared ray |
US6835940B2 (en) | 2002-02-18 | 2004-12-28 | Konica Corporation | Radiation image conversion panel |
US6953941B2 (en) | 2002-02-25 | 2005-10-11 | Konica Corporation | Radiation image conversion panel and producing method thereof |
EP2261932A2 (en) | 2002-11-27 | 2010-12-15 | Konica Minolta Holdings, Inc. | Radiographic image conversion panel, method for manufacturing the same, method for forming phosphor particle, method for forming photostimulable phosphor precursor, phosphor precursor and photostimulable phosphor |
US7173258B2 (en) | 2003-11-18 | 2007-02-06 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel and preparation method thereof |
US7202485B2 (en) | 2003-11-18 | 2007-04-10 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel and preparation method thereof |
EP1619691A2 (en) | 2004-07-22 | 2006-01-25 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel and manufacturing method thereof |
US7183561B2 (en) | 2004-07-22 | 2007-02-27 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel and manufacturing method thereof |
JPWO2006049026A1 (en) * | 2004-11-04 | 2008-05-29 | コニカミノルタエムジー株式会社 | Radiation image conversion panel and manufacturing method thereof |
JP4770737B2 (en) * | 2004-11-04 | 2011-09-14 | コニカミノルタエムジー株式会社 | Radiation image conversion panel |
US9109945B1 (en) * | 2006-10-06 | 2015-08-18 | Fluke Corporation | System and method for configuring a thermal imaging instrument |
US8440983B2 (en) | 2007-03-27 | 2013-05-14 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel, its manufacturing method, and X-ray radiographic system |
US7659524B2 (en) | 2007-07-05 | 2010-02-09 | Konica Minolta Medical & Graphics, Inc. | Radiation image conversion panel and preparation method thereof |
US8436322B2 (en) | 2008-03-31 | 2013-05-07 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel |
EP2779623B1 (en) * | 2013-03-15 | 2019-09-18 | InfraRed Integrated Systems Limited | Apparatus and method for multispectral imaging with parallax correction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6239737A (en) | System for setting temperature range | |
JP2717134B2 (en) | Infrared temperature measuring device | |
JP3032381B2 (en) | Stress imaging system | |
KR0157544B1 (en) | Method & apparatus for measuring object size | |
JP2001012937A (en) | Measuring apparatus | |
JP2527825B2 (en) | Distance measuring device | |
JPH0117319B2 (en) | ||
JP2522787Y2 (en) | Image processing device | |
JPH0682312A (en) | Infrared ray heat image device | |
JPS5849255B2 (en) | Fundus photo interpretation device | |
JP2527231B2 (en) | Distance measuring device | |
JPH0687193B2 (en) | Image data average value graph display device | |
JPH06186085A (en) | Method and device for measuring temperature | |
JP2000338142A (en) | Method and device for digital measurement | |
JPS6096088A (en) | Defect detector of shaft symmetrical object | |
JPS6082823A (en) | Color display apparatus of infrared ray picture | |
JPS5833797A (en) | Photoelectric conversion measuring apparatus | |
JP2000249638A (en) | Automatic optimum phase detection method in stress image system | |
JPH0219875Y2 (en) | ||
JPH0429363Y2 (en) | ||
JP2002062219A (en) | Luminance measuring device | |
JPH09274164A (en) | Method and device for reading liquid crystal display device | |
JPS6378447A (en) | Electron beam device | |
JPH02236433A (en) | Method and device for measuring distortion of lens | |
JP3100141B2 (en) | Image processing method and image processing apparatus |