JPS6239726B2 - - Google Patents

Info

Publication number
JPS6239726B2
JPS6239726B2 JP56058182A JP5818281A JPS6239726B2 JP S6239726 B2 JPS6239726 B2 JP S6239726B2 JP 56058182 A JP56058182 A JP 56058182A JP 5818281 A JP5818281 A JP 5818281A JP S6239726 B2 JPS6239726 B2 JP S6239726B2
Authority
JP
Japan
Prior art keywords
electro
optic
light
plates
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56058182A
Other languages
Japanese (ja)
Other versions
JPS57172315A (en
Inventor
Hideto Iwaoka
Sunao Sugyama
Akira Oote
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP5818281A priority Critical patent/JPS57172315A/en
Publication of JPS57172315A publication Critical patent/JPS57172315A/en
Publication of JPS6239726B2 publication Critical patent/JPS6239726B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明は、光制御装置に関するものであつて、
2次元上の任意の位置における光の通過量の大き
さを選択的に制御できる装置を提供するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light control device, and includes:
The present invention provides a device that can selectively control the amount of light passing through an arbitrary two-dimensional position.

2次元上の任意の位置における光の通過量の大
きさを選択的に制御できる光制御装置は、表示装
置や光書込装置等として有効である。
A light control device that can selectively control the amount of light passing through an arbitrary two-dimensional position is effective as a display device, an optical writing device, and the like.

従来、この種の装置として、液晶板を用いたも
のが提案されているが、比較的寿命が短いこと、
動作速度が遅いこと、構成要素が流動素子であつ
て組立に相当の工程を要すること、温度変化の影
響が大きいことなどの欠点がある。
Conventionally, devices using liquid crystal panels have been proposed as this type of device, but they have a relatively short lifespan.
There are disadvantages such as slow operation speed, the need for considerable assembly steps since the components are fluid elements, and the large effect of temperature changes.

本発明は、これらの欠点を解決するために、1
次元方向に沿つて配列された複数の電極を有しこ
れら電極を選択的に駆動することにより所望の位
置に電気光学効果による複屈折変化を生じる2枚
の電気光学板と、所定の偏光面を有する複数の偏
光板とからなり、これら電気光学板と偏光板とが
各電気光学板の電極の配列方向が直交するととも
に各電気光学板の両面に偏光面が互いに直交する
ようにして順次重ね合わせて、光制御装置を構成
したものである。
In order to solve these drawbacks, the present invention has the following objectives:
Two electro-optic plates have a plurality of electrodes arranged along the dimensional direction, and by selectively driving these electrodes, birefringence changes at desired positions due to the electro-optic effect, and a predetermined plane of polarization. The electro-optical plates and the polarizing plates are sequentially stacked so that the electrode arrangement directions of each electro-optical plate are orthogonal to each other and the polarization planes are orthogonal to each other on both sides of each electro-optic plate. This constitutes a light control device.

以下、図面を用いて詳細に説明する。 Hereinafter, it will be explained in detail using the drawings.

第1図は、本発明の一実施例を示す構成説明図
であつて、M1,M2は気光学板、P1〜P3は
偏光板である。電気光学板M1,M2は、それぞ
れ1次元方向に沿つて配列された複数の電極を有
するものであり、これら電極に電圧を印加し選択
的に駆動することにより所望の位置に電気光学効
果による複屈折変化を生じるように構成されてい
る。第2図は、このような電気光学板M1,M2
の具体例の一部分を示す構成説明図である。第2
図において、aは斜視図であり、bは動作説明図
である。第2図に示す電気光学板は、電気光学基
板3(たとえばPLZT)の一方の表面に1次元方
向に沿つて複数の切溝4を設け、各切溝4の表面
に電極5を設けたものである。なお、第2図の例
では切溝4として断面形状が矩形の例を示してい
るが、三角形や円弧形、あるいは線状であつても
よい。このように構成された電気光学板の各電極
5にたとえばbに示すような極性の電圧を選択的
に印加することにより、正極性が印加された電極
と負極性が印加された電極との間にのみ電気光学
効果による複屈折変化を生じることになる。この
ように構成される電気光学板は、前述のように各
電極5が電気光学基板3の厚さ方向に沿つて設け
られているので、電気光学基板の表面にのみ電極
が設けられている場合に比べて内部における光の
進行方向に直交する電界成分は、同じ印加電圧で
比較すると、大きくすることができ、より低電圧
で動作を行なわせることができる。再び第1図に
おいて、偏光板P1〜P3は、それぞれ所定の偏
光面を有している。これら電気光学板M1,M2
と偏光板P1〜P3とは、各電気光学板M1,M
2の電極の配列方向が直交するとともに各電気光
学板M1,M2の両面に偏光面が互いに直交する
ようにして順次重ね合わされ、2次元上の任意の
位置における光の通過量の大きさを選択的に制御
できる光制御装置として構成される。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention, in which M1 and M2 are pneumatic plates, and P1 to P3 are polarizing plates. The electro-optic plates M1 and M2 each have a plurality of electrodes arranged along a one-dimensional direction, and by applying a voltage to these electrodes and selectively driving them, the electro-optic effect is applied to a desired position. The refractive index is configured to produce a refractive change. FIG. 2 shows such electro-optical plates M1 and M2.
FIG. 2 is a configuration explanatory diagram showing a part of a specific example. Second
In the figures, a is a perspective view, and b is an explanatory diagram of the operation. The electro-optic board shown in FIG. 2 has a plurality of grooves 4 provided along one-dimensional direction on one surface of an electro-optic substrate 3 (for example, PLZT), and an electrode 5 provided on the surface of each groove 4. It is. In addition, although the example of FIG. 2 shows an example in which the cross-sectional shape of the kerf 4 is rectangular, it may be triangular, arcuate, or linear. By selectively applying a polarity voltage as shown in b to each electrode 5 of the electro-optic plate configured in this way, the voltage between the electrode to which positive polarity is applied and the electrode to which negative polarity is applied is A change in birefringence due to the electro-optic effect occurs only in this case. In the electro-optic board configured in this way, each electrode 5 is provided along the thickness direction of the electro-optic substrate 3 as described above, so when electrodes are provided only on the surface of the electro-optic substrate Compared to this, the internal electric field component perpendicular to the traveling direction of light can be made larger when compared with the same applied voltage, and operation can be performed at a lower voltage. Referring again to FIG. 1, each of the polarizing plates P1 to P3 has a predetermined plane of polarization. These electro-optical plates M1, M2
and polarizing plates P1 to P3 are each electro-optical plate M1, M
The arrangement directions of the two electrodes are orthogonal to each other, and the polarization planes are sequentially overlapped on both sides of each electro-optical plate M1 and M2 so that they are orthogonal to each other, and the magnitude of the amount of light passing through at any two-dimensional position is selected. It is configured as a light control device that can be controlled.

このようにして構成される装置の動作につい
て、第3図を用いて説明する。
The operation of the apparatus constructed in this way will be explained using FIG. 3.

第3図において、電気光学板M1は領域A部分
のみが電気光学効果による複屈折を生じるように
選択的に駆動され、電気光学板M2は領域B部分
のみが電気光学効果による複屈折を生じるように
選択的に駆動されているものとする。偏光板P1
側から非偏波光を入力すると、偏光板P1からは
一定の偏波面を有する直線偏光が送出される。こ
の直線偏光は電気光学板M1に入力され、電気光
学板M1の領域Aを通過する光のみが複屈折を受
ける。電気光学板M1により複屈折を受けた光に
は、偏光板P2を通過して電気光学板M2に入力
される成分が生じる。電気光学板M2に入力され
るA領域の直線偏光のうち領域Bを通過する光の
みがさらに複屈折を受け、偏光板P3を通過する
成分が生じる。これにより、偏光板P3では、電
気光学板M1の領域Aと電気光学板M2の領域B
とが光の進行方向に対して重なり合う2次元上の
領域C部分だけが、直線偏光を送出することにな
る。
In FIG. 3, the electro-optic plate M1 is selectively driven so that only the region A portion produces birefringence due to the electro-optic effect, and the electro-optic plate M2 is selectively driven so that only the region B portion produces birefringence due to the electro-optic effect. Assume that it is selectively driven. Polarizing plate P1
When unpolarized light is input from the side, linearly polarized light having a constant plane of polarization is sent out from the polarizing plate P1. This linearly polarized light is input to the electro-optic plate M1, and only the light that passes through region A of the electro-optic plate M1 undergoes birefringence. The light subjected to birefringence by the electro-optic plate M1 has a component that passes through the polarizing plate P2 and is input to the electro-optic plate M2. Of the linearly polarized light in region A that is input to electro-optic plate M2, only the light that passes through region B is further subjected to birefringence, and a component that passes through polarizing plate P3 is generated. As a result, in the polarizing plate P3, the area A of the electro-optic plate M1 and the area B of the electro-optic plate M2 are
Only the two-dimensional area C portion where the C and C overlap with each other in the traveling direction of the light transmits linearly polarized light.

このように、本発明に係る光制御装置は、純固
体要素で構成されているので、液晶で構成される
装置に比べて寿命を長くすることができ、動作速
度の高速化が図れ、組立も比較的簡単に行なえ、
温度変化の影響も小さくなる。
As described above, since the light control device according to the present invention is composed of pure solid elements, it can have a longer lifespan compared to devices composed of liquid crystals, can operate at higher speeds, and is easier to assemble. It's relatively easy to do,
The influence of temperature changes is also reduced.

第4図および第5図は、本発明に係る光制御装
置を用いた光応用機器の具体例を示す構成説明図
であつて、第4図は投写形光学装置の例を示し、
第5図は画像情報処理システムの例を示してい
る。第4図において、6は光源、7は制御回路、
8は受光部、CTLは本発明に係る光制御装置で
ある。制御回路7は、キヤラクタジエネレータや
グラフイツクメモリ等の表示情報源を含むもので
あつて、この回路の出力に応じて光制御装置
CTLの所定の電極を選択的に駆動する。受光部
8は、光制御装置CTLから送出される光が照射
されるものであつて、表示面,感光面等を有する
ものである。なお、第4図では、レンズ系は図示
しない。このように構成することにより、制御回
路7から送出される表示情報に基づいて所定の表
示情報を表示あるいは感光記録することができ
る。
4 and 5 are configuration explanatory diagrams showing specific examples of optical application equipment using the light control device according to the present invention, and FIG. 4 shows an example of a projection optical device,
FIG. 5 shows an example of an image information processing system. In FIG. 4, 6 is a light source, 7 is a control circuit,
8 is a light receiving section, and CTL is a light control device according to the present invention. The control circuit 7 includes a display information source such as a character generator and a graphic memory, and controls the light control device according to the output of this circuit.
Selectively drive predetermined electrodes of the CTL. The light receiving section 8 is irradiated with light sent from the light control device CTL, and has a display surface, a photosensitive surface, and the like. Note that the lens system is not shown in FIG. 4. With this configuration, predetermined display information can be displayed or photographically recorded based on the display information sent from the control circuit 7.

第5図において、9は画像情報源、10は制御
回路、11は画像処理装置である。画像情報源9
からは、TV画像や写真,立体像などの被写体情
報が光学情報として送出される。制御回路10か
らは、画像情報源9から送出される被写体情報の
特定の一部分のみを選択的に通過させるための駆
動信号が本発明に係る光制御装置CTLの電極に
印加される。画像処理装置11は、入力される画
像情報に対してたとえば空間フイルタリング演算
を施す。なお、第5図でも、レンズ系は図示しな
い。このように構成することにより、精度の高い
画像処理を行なうことができる。
In FIG. 5, 9 is an image information source, 10 is a control circuit, and 11 is an image processing device. Image information source 9
From there, subject information such as TV images, photographs, and 3D images is sent out as optical information. A drive signal is applied from the control circuit 10 to the electrodes of the light control device CTL according to the present invention for selectively passing only a specific part of the subject information sent from the image information source 9. The image processing device 11 performs, for example, a spatial filtering operation on input image information. Note that the lens system is not illustrated in FIG. 5 as well. With this configuration, highly accurate image processing can be performed.

以上説明したように、本発明によれば、比較的
簡単な構成で、2次元上の任意の位置における光
の通過を選択的にON―OFF制御できる光制御装
置が実現でき、実用上の効果は大きい。
As explained above, according to the present invention, it is possible to realize a light control device that can selectively control the passage of light on and off at any two-dimensional position with a relatively simple configuration, and has practical effects. is big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成説明図、
第2図は本発明で用いる電気光学板の具体例の一
部分を示す構成説明図、第3図は第1図の装置の
動作説明図、第4図および第5図は本発明に係る
光制御装置を用いた光応用機器の具体例を示す構
成説明図である。 M1,M2……電気光学板、P1〜P3……偏
光板、3……電気光学基板、4……切溝、5……
電極。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention;
FIG. 2 is a configuration explanatory diagram showing a part of a specific example of an electro-optic plate used in the present invention, FIG. 3 is an explanatory diagram of the operation of the device in FIG. 1, and FIGS. 4 and 5 are optical control diagrams according to the present invention. FIG. 2 is a configuration explanatory diagram showing a specific example of optical application equipment using the device. M1, M2...electro-optical plate, P1-P3...polarizing plate, 3...electro-optic substrate, 4...kerf, 5...
electrode.

Claims (1)

【特許請求の範囲】 1 一方の面の1次元方向に沿つて複数の切溝が
設けられて各切溝の表面にはそれぞれ電極が形成
され、これら電極を選択的に駆動することにより
所望の位置に電気光学効果による複屈折変化を生
じる2枚の電気光学板と、 所定の偏光面を有する複数の偏光板とからな
り、これら電気光学板と偏光板とが、各電気光学
板の電極の配列方向が直交するとともに各電気光
学板の両面に偏光面が互いに直交するようにして
順次重ね合わされたことを特徴とする光制御装
置。
[Claims] 1. A plurality of grooves are provided along a one-dimensional direction on one surface, and electrodes are formed on the surface of each groove, and by selectively driving these electrodes, desired results can be obtained. It consists of two electro-optic plates that produce birefringence changes due to the electro-optic effect at different positions, and a plurality of polarizing plates each having a predetermined plane of polarization. 1. A light control device characterized in that the electro-optical plates are successively stacked on each other so that their arrangement directions are orthogonal and their polarization planes are orthogonal to each other on both surfaces.
JP5818281A 1981-04-17 1981-04-17 Light controlling device Granted JPS57172315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5818281A JPS57172315A (en) 1981-04-17 1981-04-17 Light controlling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5818281A JPS57172315A (en) 1981-04-17 1981-04-17 Light controlling device

Publications (2)

Publication Number Publication Date
JPS57172315A JPS57172315A (en) 1982-10-23
JPS6239726B2 true JPS6239726B2 (en) 1987-08-25

Family

ID=13076861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5818281A Granted JPS57172315A (en) 1981-04-17 1981-04-17 Light controlling device

Country Status (1)

Country Link
JP (1) JPS57172315A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2607253B1 (en) * 1986-11-21 1989-06-09 Thomson Cgr METHOD FOR REPRESENTING MOVING PARTS IN A BODY BY EXPERIMENTATION OF NUCLEAR MAGNETIC RESONANCE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838161A (en) * 1971-09-16 1973-06-05
JPS4954050A (en) * 1972-09-26 1974-05-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838161A (en) * 1971-09-16 1973-06-05
JPS4954050A (en) * 1972-09-26 1974-05-25

Also Published As

Publication number Publication date
JPS57172315A (en) 1982-10-23

Similar Documents

Publication Publication Date Title
US3329474A (en) Digital light deflector utilizing co-planar polarization rotators
KR950033935A (en) Optical deflection device, optical scanning device, information reading device and stereoscopic display device
US3644017A (en) Electro-optic light modulator with area selection
US10437082B2 (en) Wide field of view electro-optic modulator and methods and systems of manufacturing and using same
US3348217A (en) Electro-optical computer or data processing system using superimposed polarizers
WO1982004369A1 (en) Light valve apparatus
JPH079560B2 (en) Matched filtering method
US4908702A (en) Real-time image difference detection using a polarization rotation spacial light modulator
US4643533A (en) Differentiating spatial light modulator
JPS6239726B2 (en)
US4561727A (en) Two-dimensional acousto-optic deflection arrangement
CA1075388A (en) Electro-optic matrix display
GB1098183A (en) Improvements in or relating to electro-optical switching devices
JPS6217726B2 (en)
JPH08211423A (en) Deflector and image shift type image pickup device formed by using the same
JPS59139017A (en) Optical gate element
JPS6219727B2 (en)
SU1034006A1 (en) Matrix relief-graphic device for data recording
JPS60222839A (en) Three-dimensional display
JP3515994B2 (en) Electric field sensor using liquid crystal and stereoscopic moving image recording / reproducing device using the same
JPS62194221A (en) Image shifting device
JPS602915A (en) Optical shutter element
JPS62278526A (en) Two-dimensional optical shutter array
JPH03288881A (en) Optical device
JPH04147129A (en) Liquid crystal exposure device