JPS6239681B2 - - Google Patents

Info

Publication number
JPS6239681B2
JPS6239681B2 JP2020680A JP2020680A JPS6239681B2 JP S6239681 B2 JPS6239681 B2 JP S6239681B2 JP 2020680 A JP2020680 A JP 2020680A JP 2020680 A JP2020680 A JP 2020680A JP S6239681 B2 JPS6239681 B2 JP S6239681B2
Authority
JP
Japan
Prior art keywords
projection
cross
section
projection beam
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2020680A
Other languages
Japanese (ja)
Other versions
JPS56117107A (en
Inventor
Yoshio Kawashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2020680A priority Critical patent/JPS56117107A/en
Publication of JPS56117107A publication Critical patent/JPS56117107A/en
Publication of JPS6239681B2 publication Critical patent/JPS6239681B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/54Revolving an optical measuring instrument around a body

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はプロフイル測定方法に係り、特に物
体断面の真円度測定に好適なプロフイル測定方法
に関する。 第1図に示すように従来のプロフイル測定方法
は物体1の直径D1,D2,……,Doを測定し、こ
れらの偏差から物体1の真円度を求めていた。し
かしこのような測定方法では、物体1の断面2が
等幅図形である場合に断面2が真円でないにもか
かわらず測定結果は真円になつてしまうという問
題があつた。 この発明はこのような従来の問題点を解消すべ
く創案されたもので等幅図形の断面についても精
確にプロフイルを測定し得るプロフイル測定方法
を提供することを目的とする。 この発明に係るピロフイル測定方法は、プロフ
イルを測定すべき物体の断面外周に第一接線、第
二接線および第三接線を与え、第一接線と第二接
線とを交叉させるとともに、前記交叉の交点と第
三接線との距離Hを求めつつ全ての接線と断面と
を相対的に回転させ、この回転角度θとHとの関
係を求めることを基礎原理とする。 第2図に示すように、プロフイルを測定すべき
物体1の断面2における外周上の点A,B,Cに
第一接線L1、第二接線L2、第三接線L3をそ
れぞれ与え、接線L1,L2を交叉させるととも
にこの交叉における外周部分を臨む交叉角度をα
とし、この角度αの二等分線L4に垂直に接線L
3を配置する。ここで断面2内の任意の一点Oか
ら接線L1,L2,L3に垂直L5,L6,L7
をそれぞれ下し、X′軸とL7のなす角をQとす
れば、これらの垂線の長さを点Oを中心とした極
座標で表示すると、垂線L5,L6,L7の長さ
はそれぞれr(θ+90゜+α/2)、r(θ−90
゜−α/2)、r(θ)となる。ここで前記交叉
の交点Dと接線L3との距離Hを求めると、 H=+(+)/2sinα/2=r(θ)+{r(θ+90゜+α/2) +r(θ−90゜−α/2)}/2sinα/2 ……式(1) となる。またr(θ)は360゜を周期とする周期
関数であるからフーリエ級数で表示できる。従つ
て、 r(θ)=C0+C1cos(θ+)+……+Cocos(nθ+o)+…… ……式(2) となる。式(2)を式(1)に代入すると、 であり、C1の項が消去される。 ところで第3図に示す真円断面の場合同様の測
定を行い。半径をC0とすれば H=C0(1+1/sinα/2) ……式(4) となる。 式(3)、(4)を比較すれば式(3)における第2項 が真円からのずれを表わすことになる。 この発明は投影ビームを断面外周部分を含む領
域に放射し、断面外周に接する投影ビームを検出
することによつて前記接線L1,L2,L3を求
め、これに基づいてHを算出するものである。 第4図において、投影ビームB1,B2,B3
を前記接線L1,L2,L3にそれぞれ沿う方向
に放射し、各投影ビームB1,B2,B3を、点
A,B,Cを含む領域を所定幅をもつて通過させ
る。そして物体1を通過した後の投影ビームB
1,B2,B3を投影ビーム検出手段3,4,5
によつて検出する。ここで点Aの外側を通過した
投影ビームB1の幅をx、点Bの外側を通過した
投影ビームB2の幅をy、点Cの外側を通過した
投影ビームB3の幅をzとすると、これらの幅
x,y,Zの投影ビームに基づいて投影ビーム検
出手段3,4,5において接線L1,L2,L3
を求めることができる。またビームB1,B2の
縁E1,E2の交点EとビームB3の縁E3まで
の距離Wをあらかじめ求めておけば、 H=W−z−(x+y)/2sinα/2 ……式(5) としてHを求めることができる。 距離Wは次の方法で求められる。一般にビーム
幅B1,B2,B3は正確に判明している。そこで直
径D0が正確に判明している真円の基準ケージを
セツトしてその通過幅X0,Y0,Z0を実測すれ
ば、 W=D/2(1+1/Sinα/2)+X+Y
2sinα/2+Z0 で求められる。 第4図の測定方法では断面2とビームB1
B2,B3全体とを相対的に360度回転させなければ
断面2の全周について測定を行うことができない
が、第5図に示すようにビームB1,B2,B3の幅
を断面2の任意の直径よりも大にし、各ビームに
よつて断面2の両側にそれぞれ接線を生じさせる
ことにすると、180度位相がずれた二箇所で同時
にHを求めていることになるので前記の相対的回
転角度は180度で足りる。 第6図では第5図の場合と同様なビームB1,
B2,B3とともにビームB3に直交するビーム
B4を用いている。この場合ビームB1,B2,
B3の組合せ、ビームB2,B3,B4の組合せ
のそれぞれによつて第5図の場合と同様の測定を
行うので、位相が90度ずれた四箇所で同時にHを
求めていることにより、前記の相対的回転角度は
90度で足りる。 なお第4図〜第6図のいずれの測定方法におい
ても、測定範囲の始点と終点とをある程度重複さ
せることによつて測定値の信頼性を著しく高め得
るので、前記の相対的回転角度を90度、180度、
360度などの角度に重複分の角度を加えた角度に
することが好ましい。 Hの測定値に基づいて断面2の真円度Uを求め
る場合には次のような計算処理を行うとよい。 フーリエ級数は収束が速いので実用上は無限項
とする必要がなく、有限項によつて良好な近似が
得られる。そこでHの偏心に関する項 を有限項近似したものを とおき、 cos k(90゜+α/2)/sinα/2+1=μ
k……式(7) μkk=hk ……式(8) とおいて、プロフイルを代表するものとして絶対
真円度を と定義すると、絶対真円度uは、 と表現される。またフーリエ級数においては一般
に、ak、bkを定数として、 k=tan-1(−bk/ak) ……式(12) となるので、ak、bkまたはhkkを求めれば
絶対真円度uが求められる。 コンピユータによつてこの真円度を求める場合
には有限個のデータしか入力できないので、θを
0度〜360度の範囲でr等分し、各測定位置Q1
Q2,……QrでのHの測定値をH1,H2,……,H
rとすると、最小二乗法による近似では、 であり、容易にVまたはuを求めることができ
る。 さらに、各項のフーリエ係数の相互の大小を比
較すればプロフイルに関するスペクトル解析を行
うこともできるが、前記交叉角度αはこのスペク
トルの影響を大きく受ける。例えばVが大略f個
の山を有する曲線である場合には、 hk cos(kθ+k) の項がVの特性を決定付ける主要因になるが、μ
kはαによつて次表のように変化する。
The present invention relates to a profile measuring method, and particularly to a profile measuring method suitable for measuring the roundness of a cross section of an object. As shown in FIG. 1, the conventional profile measuring method measures the diameters D 1 , D 2 , . However, such a measurement method has a problem in that when the cross section 2 of the object 1 is a constant-width figure, the measurement result becomes a perfect circle even though the cross section 2 is not a perfect circle. The present invention was devised to solve these conventional problems, and an object of the present invention is to provide a profile measuring method that can accurately measure the profile even of a cross section of a constant-width figure. The pyrofile measuring method according to the present invention provides a first tangent, a second tangent, and a third tangent to the cross-sectional outer circumference of an object whose profile is to be measured, intersects the first tangent and the second tangent, and intersects the intersection of the intersections. The basic principle is to relatively rotate all the tangents and the cross section while determining the distance H between the curve and the third tangent, and to determine the relationship between the rotation angle θ and H. As shown in FIG. 2, a first tangent L1, a second tangent L2, and a third tangent L3 are given to points A, B, and C on the outer circumference of a cross section 2 of an object 1 whose profile is to be measured, and the tangents L1, Let L2 intersect and the intersection angle facing the outer periphery of this intersection is α
And the tangent L is perpendicular to the bisector L4 of this angle α.
Place 3. Here, L5, L6, L7 perpendicular to tangent lines L1, L2, L3 from any one point O in the cross section 2
, and the angle between the θ+90°+α/2), r(θ−90
゜−α/2), r(θ). Here, when calculating the distance H between the intersection point D of the intersection and the tangent L3, H=+(+)/2sinα/2=r(θ)+{r(θ+90°+α/2) +r(θ−90°− α/2)}/2sinα/2...Equation (1) is obtained. Furthermore, since r(θ) is a periodic function with a period of 360°, it can be expressed as a Fourier series. Therefore, r(θ)=C 0 +C 1 cos(θ+ 1 )+...+C o cos(nθ+ o )+... Formula (2). Substituting equation (2) into equation (1), we get , and the term C 1 is eliminated. By the way, similar measurements were made for the perfect circular cross section shown in Figure 3. If the radius is C 0 , then H=C 0 (1+1/sinα/2)...Equation (4). Comparing equations (3) and (4), the second term in equation (3) represents the deviation from a perfect circle. This invention radiates a projection beam to a region including the outer periphery of the cross section, detects the projection beam that is in contact with the outer periphery of the cross section to obtain the tangent lines L1, L2, and L3, and calculates H based on this. . In FIG. 4, projection beams B1, B2, B3
are emitted in directions along the tangents L1, L2, and L3, respectively, and each projection beam B1, B2, and B3 passes through an area including points A, B, and C with a predetermined width. and the projection beam B after passing through the object 1
1, B2, B3 as projection beam detection means 3, 4, 5
Detected by. Here, if the width of the projection beam B1 that has passed outside point A is x, the width of projection beam B2 that has passed outside point B is y, and the width of projection beam B3 that has passed outside point C is z, then these tangent lines L1, L2, L3 in the projection beam detection means 3, 4, 5 based on the projection beam of width x, y, Z
can be found. Also, if the distance W between the intersection E of the edges E1 and E2 of beams B1 and B2 and the edge E3 of beam B3 is determined in advance, then H=W-z-(x+y)/2sinα/2...as equation (5). H can be found. The distance W is determined by the following method. Generally, the beam widths B 1 , B 2 , B 3 are known precisely. Therefore, if we set a perfect circular reference cage whose diameter D 0 is accurately known and actually measure its passing width X 0 , Y 0 , and Z 0 , we get W = D 0 /2 (1 + 1/Sinα/2) + X 0 + Y 0 /
It is determined by 2sin α/2+Z 0 . In the measurement method shown in Fig. 4, cross section 2 and beam B 1 ,
Although it is not possible to measure the entire circumference of cross section 2 unless the entirety of beams B 2 and B 3 are rotated 360 degrees relative to each other, as shown in Figure 5, the widths of beams B 1 , B 2 , and B 3 are If we make the diameter larger than the arbitrary diameter of the cross section 2 and create tangent lines on both sides of the cross section 2 with each beam, we will be calculating H at the same time at two locations with a 180 degree phase shift, so A relative rotation angle of 180 degrees is sufficient. In Fig. 6, beam B1, which is the same as in Fig. 5,
Along with B2 and B3, a beam B4 which is orthogonal to beam B3 is used. In this case beams B1, B2,
Since the same measurements as in Fig. 5 are performed using the combination of B3 and the combinations of beams B2, B3, and B4, the above-mentioned result can be obtained by determining H at the same time at four locations with a 90 degree phase shift. The relative rotation angle is
90 degrees is sufficient. In any of the measurement methods shown in Figs. 4 to 6, the reliability of the measured values can be significantly increased by overlapping the start and end points of the measurement range to some extent. degrees, 180 degrees,
It is preferable to use an angle such as 360 degrees plus an overlapping angle. When determining the circularity U of the cross section 2 based on the measured value of H, the following calculation process may be performed. Since the Fourier series converges quickly, it is not necessary to use infinite terms in practice, and a good approximation can be obtained using finite terms. Therefore, the term regarding the eccentricity of H The finite term approximation of Then, cos k(90°+α/2)/sin α/2+1=μ
k ...Formula (7) μ k C k =h k ...Formula (8), the absolute roundness is used as a representative of the profile. Then, the absolute roundness u is It is expressed as In addition, in the Fourier series, generally, a k and b k are constants, k = tan -1 (-b k /a k ) . . . Equation (12). Therefore, by finding a k , b k or h k , k, the absolute roundness u can be found. When calculating this roundness using a computer, only a finite amount of data can be input, so θ is divided into r equal parts in the range of 0 degrees to 360 degrees, and each measurement position Q 1 ,
The measured values of H at Q 2 ,...Q r are expressed as H 1 , H 2 ,..., H
If r is the least squares approximation, Therefore, V or u can be easily obtained. Furthermore, spectrum analysis regarding the profile can be performed by comparing the magnitudes of the Fourier coefficients of each term, but the crossing angle α is greatly influenced by this spectrum. For example, if V is a curve with approximately f peaks, the term h k cos (kθ+ k ) will be the main factor determining the characteristics of V, but μ
k changes depending on α as shown in the table below.

【表】 この表から、例えばk=2のときにはα=60度
とすると断面の特徴が全く表われず、α=90度、
α=120度、α=180度としていくと次第に断面の
特徴が明確になつてくることが分る。従つてαは
断面の特徴に応じて適宜選択すべきであり、その
特徴が全く不明である場合には数種のαによつて
測定を行うことが好ましい。 投影ビームとしては指向性と所定のエネルギと
を有する任意のビーム、例えば電磁波、放射線、
音波などを採用し得るが現在のところレーザ光を
用いて良好な結果を得ている。このレーザ光を用
いた測定のための装置の一実施例を次に説明す
る。 第7図〜第10図において、測定装置6は線材
移送ラインSに対して進退可能な本体7と、この
本体7を走行自在に支持する基盤8と、本体7を
その進退方向に走行させる流体圧シリンダ9とを
備え、基盤8上には本体7を走行自在に案内する
レール10が敷設されている。 本体7は、レール10に係合しつつ走行する台
車11を有し、この台車11上には、測定を行う
ための測定ドラム12および測定を行わないとき
に線材13を案内するためのローラテーブル14
が設置されている。基盤8上には台車11の両側
にロツク装置15が設けられ、このロツク装置1
5は台車11に穿設された凹部16に係合してロ
ーラテーブル14または測定ドラム12を線材移
送ラインS上において固定する。さらに台車11
上には線材13の走行方向についてのドラム12
の前後にガイド17が配置され、線材13はこの
ガイド17,17によつてその走行方向に案内さ
れる。 ドラム12の中央には線材走行方向に沿つてド
ラム12の外方に突出する中空軸18が突設さ
れ、この中空軸18はベアリング19によつて回
転自在に支承されている。ドラム12はこの中空
軸18を介してベアリング19によつて支承され
て、円周方向に回転自在とされている。ドラム1
2における軸18の周囲には歯車20が装着さ
れ、この歯車20にはギヤボツクス21の出力軸
22が噛合されている。ギヤボツクス21は油圧
モータ23に接続され、油圧モータ23の出力は
減速されつつ出力軸22に伝達される。ギヤボツ
クス21には出力軸22と同期回転する他の出力
軸22が設けられ、この出力軸22はスプロケツ
ト24を介してセルシンモータ25に接続されて
いる。すなわちドラム12は油圧モータによつて
回転されそのときの回転角度がセルシンモータ2
5によつて検出される。 ドラム12内には投影手段26,27,28,
29と投影ビーム検出手段30,31,33,3
3が収納され、手段26,30、手段27,3
1、手段28,32、手段29,33がドラム1
2の直径方向に対で配置されている。投影手段2
6,27,28,29はそれぞれ投影ビームB
1,B4,B2,B3を放射し、第6図と同様の
測定を行うようになつている。検出手段26〜2
9はイメージセンサとされ、いずれのビツトでレ
ーザ光を受光し、いずれのビツトでレーザ光を受
光しなかつたかを検出して接線L1〜L4を求め
る。従つてこの装置では90度に重複分の角度を加
えた角度だけドラム12を回転させれば線材13
の全周に渡つて精密なプロフイル測定を行い得る
が、経験的にこの重複分の角度は30度とされてい
る。 ドラム12の回転角度を設定するためにドラム
12にはストツパ34,34が突設され、台車1
1にはこのストツパ34に当接してドラム12の
回転を緩衝的に停止させるストツパ35が設けら
れている。 ドラム12の支持を強固にするために軸18は
ドラム12内部にまで延長され、軸18には、ビ
ームB1〜B4を透過させるスリツト36が穿設
されている。線材13は軸18内を通過し、スリ
ツト36の位置でプロフイル測定される。 前述のとおりこの発明に係るプロフイル測定方
法は、プロフイルを測定すべき物体の断面外周に
第一接線、第二接線、第三接線を与え、これらの
接線によつて規定される円と断面2のプロフイル
との差によつて断面2のプロフイルを測定するの
で等幅図形についても精確にプロフイルを測定で
き、しかも前記接線を投影ビームによつて与える
ので非接触で能率的にプロフイル測定を行い得る
という優れた効果を有する。
[Table] From this table, for example, when k = 2, if α = 60 degrees, no cross-sectional features will appear, and α = 90 degrees,
It can be seen that when α = 120 degrees and α = 180 degrees, the characteristics of the cross section gradually become clearer. Therefore, α should be appropriately selected depending on the characteristics of the cross section, and if the characteristics are completely unknown, it is preferable to measure using several types of α. The projection beam may be any beam having directivity and a predetermined energy, such as electromagnetic waves, radiation,
Although it is possible to use sound waves, etc., good results have currently been obtained using laser light. An example of an apparatus for measurement using this laser light will be described below. 7 to 10, the measuring device 6 includes a main body 7 that can advance and retreat with respect to the wire transfer line S, a base 8 that supports the main body 7 in a movable manner, and a fluid that causes the main body 7 to travel in the forward and backward directions. A pressure cylinder 9 is provided, and rails 10 are laid on the base 8 to guide the main body 7 in a freely movable manner. The main body 7 has a trolley 11 that travels while engaging with the rail 10, and on the trolley 11 are a measuring drum 12 for performing measurements and a roller table for guiding the wire 13 when not measuring. 14
is installed. A locking device 15 is provided on both sides of the trolley 11 on the base 8, and this locking device 1
5 engages with a recess 16 formed in the carriage 11 to fix the roller table 14 or the measuring drum 12 on the wire transfer line S. Furthermore, trolley 11
Above is a drum 12 for the running direction of the wire rod 13.
Guides 17 are arranged before and after the wire rod 13, and the wire rod 13 is guided in its traveling direction by these guides 17,17. A hollow shaft 18 is provided at the center of the drum 12 and projects outward from the drum 12 along the wire traveling direction, and this hollow shaft 18 is rotatably supported by a bearing 19. The drum 12 is supported by a bearing 19 via the hollow shaft 18, and is rotatable in the circumferential direction. drum 1
A gear 20 is mounted around the shaft 18 at 2, and an output shaft 22 of a gearbox 21 is meshed with this gear 20. The gearbox 21 is connected to a hydraulic motor 23, and the output of the hydraulic motor 23 is transmitted to the output shaft 22 while being decelerated. The gearbox 21 is provided with another output shaft 22 that rotates synchronously with the output shaft 22, and this output shaft 22 is connected to a sershin motor 25 via a sprocket 24. That is, the drum 12 is rotated by the hydraulic motor, and the rotation angle at that time is
5. Projection means 26, 27, 28,
29 and projection beam detection means 30, 31, 33, 3
3 is stored, means 26, 30, means 27, 3
1, means 28, 32, means 29, 33 are drum 1
They are arranged in two diametrical pairs. Projection means 2
6, 27, 28, 29 are projection beams B, respectively.
1, B4, B2, and B3, and measurements similar to those shown in FIG. 6 are made. Detection means 26-2
Reference numeral 9 denotes an image sensor, which detects which bits receive the laser beam and which bits do not receive the laser beam, thereby determining tangents L1 to L4. Therefore, with this device, if the drum 12 is rotated by an angle equal to 90 degrees plus the overlap angle, the wire 13
Accurate profile measurements can be made over the entire circumference of the rim, but empirically the angle of overlap is 30 degrees. In order to set the rotation angle of the drum 12, stoppers 34, 34 are provided on the drum 12 so as to protrude from the drum 12.
1 is provided with a stopper 35 that comes into contact with this stopper 34 and stops the rotation of the drum 12 in a cushioning manner. In order to firmly support the drum 12, the shaft 18 is extended into the interior of the drum 12, and the shaft 18 is provided with a slit 36 through which the beams B1 to B4 pass. The wire 13 passes through the shaft 18 and is profiled at the slit 36. As mentioned above, the profile measuring method according to the present invention provides a first tangent, a second tangent, and a third tangent to the outer periphery of the cross section of the object whose profile is to be measured, and connects the circle defined by these tangents to the cross section 2. Since the profile of cross section 2 is measured based on the difference from the profile, the profile can be measured accurately even for figures of equal width, and since the tangent is given by the projection beam, the profile can be measured efficiently without contact. Has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプロフイル測定方法を示す概念
図、第2図はこの発明に係るプロフイル測定方法
の第一実施例を示す概念図、第3図は真円につい
ての同実施例による測定方法を示す概念図、第4
図は第二実施例を示す概念図、第5図は第三実施
例を示す概念図、第6図は第四実施例を示す概念
図、第7図はこの発明に使用する装置の一実施例
を示す正面図、第8図は第7図の平面図、第9図
は第7図の縦断面図、第10図は第9図のX−X
矢視線に沿う断面図である。 1……物体、2……断面、3,4,5……投影
ビーム検出手段、6……測定装置、7……本体、
8……基盤、9……流体圧シリンダ、10……レ
ール、11……台車、12……測定ドラム、13
……線材、14……ローラテーブル、15……ロ
ツク装置、16……凹部、17……ガイド、18
……中空軸、19……ベアリング、20……歯
車、21……ギヤボツクス、22……出力軸、2
3……油圧モータ、24……スプロケツト、25
……セルシンモータ、26,27,28,29…
…投影手段、30,31,32,33……投影ビ
ーム検出手段、34,35……ストツパ、36…
…スリツト。A,B,C,D,E……点、B1,
B2,B3,B4……投影ビーム、E1,E2,
E3……縁、L1,L2,L3……接線、L4…
…二等分線、L5,L6,L7……垂線、S……
線材移送ライン、W……全体幅、x,y,z……
幅。
Fig. 1 is a conceptual diagram showing a conventional profile measuring method, Fig. 2 is a conceptual diagram showing a first embodiment of the profile measuring method according to the present invention, and Fig. 3 is a conceptual diagram showing a measuring method according to the same embodiment for a perfect circle. Conceptual diagram shown, 4th
The figure is a conceptual diagram showing the second embodiment, Fig. 5 is a conceptual diagram showing the third embodiment, Fig. 6 is a conceptual diagram showing the fourth embodiment, and Fig. 7 is an implementation of the device used in this invention. A front view showing an example, FIG. 8 is a plan view of FIG. 7, FIG. 9 is a vertical sectional view of FIG. 7, and FIG. 10 is a
It is a sectional view along the arrow line. DESCRIPTION OF SYMBOLS 1...Object, 2...Cross section, 3, 4, 5...Projection beam detection means, 6...Measuring device, 7...Main body,
8...Base, 9...Fluid pressure cylinder, 10...Rail, 11...Dolly, 12...Measuring drum, 13
... Wire rod, 14 ... Roller table, 15 ... Lock device, 16 ... Recess, 17 ... Guide, 18
... hollow shaft, 19 ... bearing, 20 ... gear, 21 ... gearbox, 22 ... output shaft, 2
3... Hydraulic motor, 24... Sprocket, 25
...Celsin motor, 26, 27, 28, 29...
...projection means, 30, 31, 32, 33...projection beam detection means, 34, 35...stopper, 36...
...Slit. A, B, C, D, E... point, B1,
B2, B3, B4...projection beam, E1, E2,
E3... Edge, L1, L2, L3... Tangent, L4...
...Bisector, L5, L6, L7... Perpendicular line, S...
Wire rod transfer line, W... overall width, x, y, z...
width.

Claims (1)

【特許請求の範囲】[Claims] 1 プロフイルを測定すべき物体の断面に沿つた
投影方向および幅を有する投影ビームを第一投影
手段、第二投影手段および第三投影手段から前記
断面の外周を含む領域に放射し、第一投影手段の
断面外周に接する投影ビームと第二投影手段の断
面外周に接する投影ビームと第三投影手段の断面
外周に接する投影ビームとを異なる交点で交叉さ
せるとともに、各投影手段の投影ビームを前記断
面外周を通過した後に投影ビーム検出手段によつ
て前記断面外周の部分におけるそれぞれの投影ビ
ームのその部分に対する接線を検出し、任意の第
一投影手段の断面外周に接する投影ビームと第二
投影手段の断面外周に接する投影ビームとの交点
から第三投影手段の断面外周に接する投影ビーム
までの距離Hを求めつつ、各投影手段と断面とを
相対的に回転させ、距離Hを回転角度θに関する
フーリエ級数に展開し、その展開項からプロフイ
ルを測定することを特徴とするプロフイル測定方
法。
1. A projection beam having a projection direction and a width along the cross section of the object whose profile is to be measured is emitted from the first projection means, the second projection means, and the third projection means to a region including the outer periphery of the cross section, and the first projection The projection beam in contact with the cross-sectional outer circumference of the means, the projection beam in contact with the cross-sectional outer circumference of the second projection means, and the projection beam in contact with the cross-sectional outer circumference of the third projection means are made to intersect at different intersection points, and the projection beam of each projection means is After passing through the outer periphery, the projection beam detecting means detects the tangent line of each projection beam to that part in the section outer periphery of the first projection means and the second projection means. While calculating the distance H from the point of intersection with the projection beam that is in contact with the outer periphery of the cross section to the projection beam that is in contact with the outer periphery of the cross section of the third projection means, each projection means and the cross section are rotated relative to each other, and the distance H is determined by Fourier calculation with respect to the rotation angle θ. A profile measuring method characterized by expanding into a series and measuring the profile from the expanded terms.
JP2020680A 1980-02-20 1980-02-20 Measuring method of profile Granted JPS56117107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020680A JPS56117107A (en) 1980-02-20 1980-02-20 Measuring method of profile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020680A JPS56117107A (en) 1980-02-20 1980-02-20 Measuring method of profile

Publications (2)

Publication Number Publication Date
JPS56117107A JPS56117107A (en) 1981-09-14
JPS6239681B2 true JPS6239681B2 (en) 1987-08-25

Family

ID=12020683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020680A Granted JPS56117107A (en) 1980-02-20 1980-02-20 Measuring method of profile

Country Status (1)

Country Link
JP (1) JPS56117107A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055212A (en) * 1983-09-06 1985-03-30 Nec Corp Contactless three-dimensional measuring device
JPS6055210A (en) * 1983-09-06 1985-03-30 Nec Corp Contactless three-dimensional measuring device
JPS61152908U (en) * 1985-03-13 1986-09-22
JPH0619251B2 (en) * 1987-09-17 1994-03-16 日本碍子株式会社 External shape measuring method for articles composed of multiple cylindrical surfaces
US4859861A (en) * 1988-05-16 1989-08-22 Becton, Dickinson And Company Measuring curvature of transparent or translucent material
DE59008567D1 (en) * 1989-06-19 1995-04-06 Maier Kg Andreas Method and device for measuring the contours of a body.
GB9110570D0 (en) * 1991-05-16 1991-07-03 Cruickshank John S Measuring,inspection and comparative analysis apparatus for moving object profiles
DE10023172C5 (en) * 2000-05-11 2007-01-04 Lap Gmbh Laser Applikationen Method and device for measuring the out-of-roundness of elongate workpieces
EP1162430B1 (en) 2000-06-09 2006-12-27 Zumbach Electronic Ag Measuring device for concrete reinforcing rods
EP1978329A1 (en) * 2007-04-04 2008-10-08 Zumbach Electronic Ag Method for measuring the roundness of round profiles
WO2010037865A1 (en) 2008-10-02 2010-04-08 Zumbach Electronic Ag Method for determining shape parameters
JP2010169670A (en) * 2008-12-25 2010-08-05 Shimomura Tokushu Kako Kk Circularity assurance apparatus
EP2365280B1 (en) * 2010-03-01 2014-04-09 Zumbach Electronic Ag Optical measurement of rails
CN105188971B (en) 2013-05-11 2017-10-13 仲巴赫电子公司 For the method for the stamping quality for determining special-shaped bar
CN103383248B (en) * 2013-07-24 2016-09-14 丽水职业技术学院 A kind of detection method of oscillating bearing inner ring spherical outside surface sphericity

Also Published As

Publication number Publication date
JPS56117107A (en) 1981-09-14

Similar Documents

Publication Publication Date Title
JPS6239681B2 (en)
RU2552543C2 (en) Method and auxiliary device for production control of pipe passability
CN105423946A (en) Laser-displacement-sensor-based journal axle center measurement apparatus, and measurement and calibration methods thereof
US2748290A (en) Measurement of wall thickness
US5140534A (en) Centerless runout and profile inspection system and method
JP3488200B2 (en) Traveling road surface shape measuring device
JPS6238642B2 (en)
CN103587548A (en) Device and method for detecting wheel out-of-roundness of urban rail vehicle through sensor direct measurement
CN103591899A (en) Device and method for detecting wheel diameter of urban rail vehicle through sensors installed on arc in normal direction
JP2004101465A (en) Shape measuring method and device for tube, tube examining method and device, and method and system for manufacturing tube
GB2197477A (en) Diametral variation determination for workpieces
CN103587550A (en) Device and method for detecting urban rail vehicle wheel diameters through arc vertical installation of sensors
RU2509441C1 (en) Method of determining phase angle of complex sensitivity of hydrophone by reciprocity method
KR960013682B1 (en) Process and apparatus for measuring sizes of steel spections
CN112097671A (en) Tire pattern depth measuring method based on laser ranging sensor
FR2540621A1 (en) DEVICE FOR MEASURING DIMENSIONS, IN CROSS-SECTION, OF HOLLOW CYLINDRICAL PARTS
USRE30088E (en) Method and a device for determining the cross-sectional dimensions of the inner space of elongated, tubular bodies
US5113591A (en) Device for measuring out-of-roundness
JP2006266910A (en) Measuring method and measuring device for cylindrical shape
JPH06307845A (en) Roll alignment measuring method
RU2301968C1 (en) Method of measuring part diameters
JPS632325B2 (en)
JPH0743119A (en) Size measurement device for tubular body
JPS63121705A (en) Instrument for measuring outer diameter and center position of pipe
JPS5927210A (en) Method and device for measuring size of shape steel