JPS6239286B2 - - Google Patents

Info

Publication number
JPS6239286B2
JPS6239286B2 JP20073681A JP20073681A JPS6239286B2 JP S6239286 B2 JPS6239286 B2 JP S6239286B2 JP 20073681 A JP20073681 A JP 20073681A JP 20073681 A JP20073681 A JP 20073681A JP S6239286 B2 JPS6239286 B2 JP S6239286B2
Authority
JP
Japan
Prior art keywords
crank pin
journal
crankshaft
fillet
crankpin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20073681A
Other languages
Japanese (ja)
Other versions
JPS58102818A (en
Inventor
Hiroshi Isaki
Shoichi Yoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP20073681A priority Critical patent/JPS58102818A/en
Publication of JPS58102818A publication Critical patent/JPS58102818A/en
Publication of JPS6239286B2 publication Critical patent/JPS6239286B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、クランク軸において、疲労強度を高
めるために、使用時に応力集中が生じるクランク
ピン隅肉部に予め圧縮残留応力を付与しておくた
めの加工方法に関する。 上記加工方法として、従来、前記クランクピン
隅肉部を加圧したり、熱処理する方法が採用され
ていたが、これらの場合、クランクピン隅肉部は
形状面からもスペース面からも加工しにくいこと
から、装置が構造の複雑なものになると共に、加
工に手間が掛かる欠点があつた。 本発明は、強度向上のための圧縮残留応力付与
が装置面からも作業手間面からも簡単に行える方
法を提供することを目的とする。 次に本発明の実施例を図面に基いて説明する。 第1図、第2図に示すようにクランク軸1のジ
ヤーナル2一端部2aを動かないように固定し、
ジヤーナル2他端部2bを引張りクランク軸1に
軸心方向の引張り荷重P1を付加させる。このとき
クランク軸1はその互に対面するクランク腕3が
ジヤーナル2から偏心した位置でクランクピン4
により連結された構造になつているので、クラン
クピン4のジヤーナル2軸心側に引張応力を生起
させる曲げモーメントM1がクランクピン4に付
与され、ジヤーナル2軸心側のクランクピン隅肉
部4aに引張応力が集中する。 引張荷重P1を付加しクランクピン4に曲げモー
メントM1を付与し、クランクピン平行部4cが
弾性変形限度内にありジヤーナル軸心側のクラン
クピン隅肉部4aに塑性変形が生じたときに引張
荷重P1の付加するのを止め曲げモーメントM1
付与を解除する。するとクランクピン平行部4c
が弾性変形限度内にあるため元の変形のない状態
に戻るが、このとき塑性変形し伸びているクラン
クピン隅肉部4aに圧縮力を作用させるので結局
クランクピン隅肉部4aには圧縮の残留応力が残
ることになる。 又、ジヤーナル2軸心側以外のクランクピン隅
肉部4bには引張りの残留応力が残る。 クランクピン平行部4cが弾性変形限度内にあ
りクランクピン隅肉部4aに塑性変形を生じさせ
る引張荷重P1の大きさはクランク軸1の材質,寸
法及び形状によつて変つてくるが、実施例として
第3図,第4図の試験片について説明する。 (1) 試験片 材質:FCD 90 寸法:
The present invention relates to a processing method for applying compressive residual stress in advance to a crankpin fillet where stress is concentrated during use, in order to increase fatigue strength of a crankshaft. Conventionally, methods of applying pressure or heat treatment to the crank pin fillet have been adopted as the above processing method, but in these cases, the crank pin fillet is difficult to process from both a shape and space standpoint. As a result, the device has a complicated structure and has the disadvantage that processing is time-consuming. SUMMARY OF THE INVENTION An object of the present invention is to provide a method that can easily apply compressive residual stress to improve strength in terms of both equipment and labor. Next, embodiments of the present invention will be described based on the drawings. As shown in FIGS. 1 and 2, one end 2a of the journal 2 of the crankshaft 1 is fixed so as not to move,
The other end 2b of the journal 2 is pulled to apply a tensile load P1 in the axial direction to the crankshaft 1. At this time, the crankshaft 1 is placed at a position where the crank arms 3 facing each other are eccentric from the journal 2, and the crank pin 4 is
Since the structure is such that the crank pin 4 is connected to the crank pin 4, a bending moment M1 that generates a tensile stress on the journal 2 axis side is applied to the crank pin 4, and the crank pin fillet portion 4a on the journal 2 axis side is applied to the crank pin 4. Tensile stress is concentrated on. When a tensile load P 1 is applied and a bending moment M 1 is applied to the crank pin 4, and the parallel part 4c of the crank pin is within the elastic deformation limit and plastic deformation occurs in the fillet part 4a of the crank pin on the journal axis side. The application of the tensile load P 1 is stopped and the application of the bending moment M 1 is canceled. Then, the crank pin parallel part 4c
is within the elastic deformation limit, so it returns to its original undeformed state, but at this time, a compressive force is applied to the crankpin fillet 4a, which is plastically deformed and elongated, so that no compression is applied to the crankpin fillet 4a. Residual stress will remain. Further, residual tensile stress remains in the crank pin fillet portion 4b on the side other than the second axis of the journal. The magnitude of the tensile load P1 , which causes the crank pin parallel portion 4c to be within the elastic deformation limit and cause plastic deformation to the crank pin fillet portion 4a, varies depending on the material, dimensions, and shape of the crankshaft 1; As an example, the test pieces shown in FIGS. 3 and 4 will be explained. (1) Test piece Material: FCD 90 Dimensions:

【表】 (2) 引張荷重P1付加解除後のクランクピン隅肉部
4a1の残留圧縮応力
[Table] (2) Residual compressive stress in crank pin fillet 4a 1 after removal of tensile load P 1

【表】 引張荷重P1付加時のクランクピン隅肉部4a1
クランクピン平行部4c1の応力−歪図を第5図に
示す。 第5図において、クランクピン隅肉部4a1で応
力が集中し、クランクピン平行部4c1に対して大
きな歪が生じていることがわかる。 引張荷重P1を6トン付加し、付加解除後のクラ
ンクピン隅肉部4a1におけるクランクピン軸方向
の残留圧縮応力分布状態を第6図に示す。 第6図において2点鎖線はクランクピン隅肉部
4a1のR部を示し、残留応力の一付号は圧縮の残
留応力を示す。引張荷重P1を10トン付加し、付加
解除後のクランクピン隅肉部4a1におけるクラン
クピン径方向の残留圧縮応力分布状態を第7図に
示す。 第7図において2点鎖線はクランクピン隅肉部
4a1の断面を示し、残留応力の−付号は圧縮の残
留応力を示す。 次に第3図の試験片に6トンの引張荷重を付加
し、付加解除後第3図のA−A位置で試験片を切
断し、切断後のジヤーナル2一端部2a側の試験
片において切断部近くのジヤーナルにサーボパル
サー試験機5により曲げ荷重をくり返し付加して
行つた強度試験の結果を第8図に示す。 すなわち、縦軸に曲げ荷重P3を示し、横軸にく
り返し荷重の付加回数Nを示す。そして、一対の
実線で示す範囲Aは、圧縮残留応力を付与したク
ランク軸が位置するものであり、一対の破線で示
す範囲Bは、圧縮残留応力を付与しなかつたクラ
ンク軸が位置するものである。これから圧縮残留
応力を付与することにより疲労強度が0.8tonから
1.25tonと50%以上向上したことがわかる。 尚、上記実施例では軸心方向の引張荷重P1を付
加させて曲げモーメントM1をクランクピン4に
付与したが第1図記号P2で示すようにクランク腕
一端部3aに半径方向の押圧荷重P2を付加させて
曲げモーメントをクランクピン4に付与してもよ
い。 又、クランク軸に引張荷重を付加するには、ジ
ヤーナル他端部2bを引張る代りにジヤーナル他
端部2bを固定しジヤーナル一端部2aを引張つ
てもよいし、あるいはジヤーナル一端部2a及び
他端部2bを両方から引張つてもよい。 以上要するに、本発明によるクランク軸の加工
方法は、クランクピン4のジヤーナル2軸心側に
引張応力を生起させる曲げモーメントをクランク
ピン4に付与し、クランクピン平行部4cが弾性
変形限度内にありジヤーナル2軸心側のクランク
ピン隅肉部4aに塑性変形が生じたときに前記曲
げモーメントの付与を解除する事を特徴とする。 つまり、クランクピン4に曲げモーメントを付
与するだけで済むから、従来に比して、必要装置
を構造簡単なもので済ませられると共に、加工手
間を簡略化でき、疲労強度の高いクランク軸を安
価に提供できるようになつた。
[Table] Figure 5 shows a stress-strain diagram of the crank pin fillet portion 4a 1 and the crank pin parallel portion 4c 1 when a tensile load P 1 is applied. In FIG. 5, it can be seen that stress is concentrated at the crankpin fillet portion 4a 1 and a large strain is generated in the crankpin parallel portion 4c 1 . A tensile load P1 of 6 tons was applied, and the residual compressive stress distribution state in the crankpin axial direction in the crankpin fillet portion 4a1 after the application was removed is shown in FIG. In FIG. 6, the two-dot chain line indicates the R portion of the crank pin fillet portion 4a1 , and the residual stress number indicates the compressive residual stress. A tensile load P1 of 10 tons was applied, and the residual compressive stress distribution state in the crankpin radial direction in the crankpin fillet 4a1 after the application was removed is shown in FIG. In FIG. 7, the two-dot chain line shows the cross section of the crank pin fillet portion 4a1 , and the minus sign for residual stress indicates compressive residual stress. Next, a tensile load of 6 tons was applied to the test piece shown in Fig. 3, and after the application was released, the test piece was cut at the A-A position in Fig. 3, and the test piece was cut at the one end 2a side of the journal 2 after cutting. FIG. 8 shows the results of a strength test in which a bending load was repeatedly applied to the journal near the section using a servo pulser tester 5. That is, the vertical axis shows the bending load P3 , and the horizontal axis shows the number of times N of repeated load application. Range A, indicated by a pair of solid lines, is where the crankshaft to which compressive residual stress is applied is located, and range B, indicated by a pair of broken lines, is where the crankshaft is located, to which no compressive residual stress is applied. be. By applying compressive residual stress, the fatigue strength will increase from 0.8 tons.
You can see that it has improved by more than 50% to 1.25 tons. In the above embodiment, a tensile load P 1 in the axial direction is applied to give a bending moment M 1 to the crank pin 4, but as shown by symbol P 2 in FIG. A bending moment may be applied to the crank pin 4 by adding a load P2 . Furthermore, in order to apply a tensile load to the crankshaft, instead of pulling the other end 2b of the journal, the other end 2b of the journal may be fixed and one end 2a of the journal may be pulled, or one end 2a of the journal and the other end 2b may be fixed. 2b may be pulled from both sides. In summary, the crankshaft processing method according to the present invention applies a bending moment to the crankpin 4 that generates a tensile stress on the 2nd journal axis side of the crankpin 4, and the crankpin parallel portion 4c is within the elastic deformation limit. It is characterized in that the application of the bending moment is canceled when plastic deformation occurs in the crankpin fillet 4a on the side of the journal's two axes. In other words, since it is only necessary to apply a bending moment to the crank pin 4, the structure of the necessary equipment is simpler than before, and the processing time can be simplified, making it possible to produce a crankshaft with high fatigue strength at a low cost. Now we can provide it.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係るクランク軸の加工方法の実
施例を示し、第1図はクランク軸の正面図、第2
図は第1図の−断面図、第3図は試験片の正
面図、第4図は第3図の−断面図、第5図は
引張荷重付加時の応力歪図、第6,7図は残留応
力分布状態を示す説明図、第8図は試験結果の説
明図である。 1……クランク軸、2……ジヤーナル、4……
クランクピン、4a……ジヤーナル軸心側のクラ
ンクピン隅肉部、4c……クランクピン平行部。
The drawings show an embodiment of the crankshaft processing method according to the present invention, and FIG. 1 is a front view of the crankshaft, and FIG. 2 is a front view of the crankshaft.
The figures are - cross-sectional view of Fig. 1, Fig. 3 is a front view of the test piece, Fig. 4 is - cross-sectional view of Fig. 3, Fig. 5 is a stress strain diagram when tensile load is applied, and Figs. 6 and 7. is an explanatory diagram showing the state of residual stress distribution, and FIG. 8 is an explanatory diagram of the test results. 1... Crankshaft, 2... Journal, 4...
Crank pin, 4a...Crank pin fillet part on the journal axis side, 4c...Crank pin parallel part.

Claims (1)

【特許請求の範囲】[Claims] 1 クランクピン4のジヤーナル2軸心側に引張
応力を生起させる曲げモーメントをクランクピン
4に付与し、クランクピン平行部4cが弾性変形
限度内にありジヤーナル2軸心側のクランクピン
隅肉部4aに塑性変形が生じたときに前記曲げモ
ーメントの付与を解除する事を特徴とするクラン
ク軸の加工方法。
1 A bending moment is applied to the crank pin 4 that generates a tensile stress on the side of the journal 2 axis, and the crank pin parallel portion 4c is within the elastic deformation limit and the crank pin fillet portion 4a on the journal 2 axis side. A crankshaft machining method characterized in that the application of the bending moment is canceled when plastic deformation occurs in the crankshaft.
JP20073681A 1981-12-11 1981-12-11 Processing of crank shaft Granted JPS58102818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20073681A JPS58102818A (en) 1981-12-11 1981-12-11 Processing of crank shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20073681A JPS58102818A (en) 1981-12-11 1981-12-11 Processing of crank shaft

Publications (2)

Publication Number Publication Date
JPS58102818A JPS58102818A (en) 1983-06-18
JPS6239286B2 true JPS6239286B2 (en) 1987-08-21

Family

ID=16429315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20073681A Granted JPS58102818A (en) 1981-12-11 1981-12-11 Processing of crank shaft

Country Status (1)

Country Link
JP (1) JPS58102818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493981U (en) * 1991-01-07 1992-08-14

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635839A (en) * 1986-06-25 1988-01-11 Yanmar Diesel Engine Co Ltd Die forging integral type crank shaft
DK173164B1 (en) * 1993-09-03 2000-02-21 Man B & W Diesel As Process for manufacturing crankshaft parts for use in a semi-or fully built crankshaft and apparatus for use therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493981U (en) * 1991-01-07 1992-08-14

Also Published As

Publication number Publication date
JPS58102818A (en) 1983-06-18

Similar Documents

Publication Publication Date Title
JPH07500773A (en) Improved hole fatigue life
KR890014206A (en) Turbine blade route forming method and apparatus
EP0713741B1 (en) Process for fracture separation of a workpiece in an area close to a bore, particularly for split bearings, preferably connecting rods of alternating piston engines
JPS6239286B2 (en)
US3210837A (en) Method of effecting pre-stress
Chen et al. An analysis of draw-wall wrinkling in a stamping die design
Bachschmid et al. Transverse crack modeling and validation in rotor systems, including thermal effects
JP6999515B2 (en) Pipe material molding method and molding equipment
JP3736979B2 (en) Reinforcing apparatus and reinforcing method for concrete rod-like structure
JP3333115B2 (en) Large diameter ring forging equipment
Schaeffer et al. FEM Numerical Simulation and Experimental Investigation on End‐Forming of Thin‐Walled Tubes Using a Die
Johnson The cutting of round wire with knife-edge and flat-edge tools
DE835096C (en) Method and device for expanding slotted rings, in particular piston rings
Tan et al. DEVELOPMENT OF HIGH FIDELITY FINITE ELEMENT MODEL OF MOTORCYCLE TELESCOPIC FRONT FORK.
JPS61232027A (en) Hot forging method for large-sized steel material
JP3484649B2 (en) Bolt manufacturing method
RU2025232C1 (en) Rolled stock breaking method
JPH01309745A (en) Hot forging method of large sized steel products
Koga et al. Application of visioplasticity to an experimental analysis of the shearing phenomenon
Hambli et al. Fracture prediction of sheet-metal blanking process
Trak et al. A DESIGNER'S DEFINITION OF AN OPEN-SECTION SHEAR WALL (I)
JPH07144232A (en) Method for bending steel tube with small residual stress
DE102020111251A1 (en) Material testing method
Rasty et al. Residual stresses induced by co-drawing of circular rods
Ariskin et al. Theoretical studies of the stress-strain state of the elements of joints on glued washers