JPS6239224B2 - - Google Patents

Info

Publication number
JPS6239224B2
JPS6239224B2 JP19009683A JP19009683A JPS6239224B2 JP S6239224 B2 JPS6239224 B2 JP S6239224B2 JP 19009683 A JP19009683 A JP 19009683A JP 19009683 A JP19009683 A JP 19009683A JP S6239224 B2 JPS6239224 B2 JP S6239224B2
Authority
JP
Japan
Prior art keywords
cylinder
lining
layer
particles
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19009683A
Other languages
Japanese (ja)
Other versions
JPS6082644A (en
Inventor
Takashi Mori
Kenji Toda
Shigehiro Matsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP19009683A priority Critical patent/JPS6082644A/en
Publication of JPS6082644A publication Critical patent/JPS6082644A/en
Publication of JPS6239224B2 publication Critical patent/JPS6239224B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、プラスチツク成形機、スラリーポン
プ、および圧縮機等のシリンダ内周面に遠心鋳造
法によりライニングするライニング材に関する。 〔従来技術〕 プラスチツク成形機用シリンダには、樹脂また
は樹脂に加えた強化添加剤による腐食や摩耗を防
止するために耐食性と耐摩耗が要求されるが、従
来耐食・耐摩耗性シリンダとして鋼製シリンダ内
周面に、Ni基合金を遠心鋳造法によりライニン
グしたものが使用されていた。しかし、これ等の
合金をライニングしたシリンダは、ガラス繊維な
どの強化剤混入率が高いプラスチツク成形に使用
された時、数ケ月程度の使用で摩耗による損耗が
大きく、使用に耐えなくなるという欠点があつ
た。またこの欠点を改善するためにNi基合金中
にWC粒子を分散させた複合ライニング材もあ
る。 〔発明が解決しようとする問題点〕 しかしながら、この複合ライニング材は耐食、
耐摩耗性は向上したが次のような欠点がある。す
なわちマトリツクス合金より耐摩耗性強化材であ
るWCの比重が約2倍も大きいので、ライニング
時にそれらの比重差に基づく遠心力の差によつて
WC粒子がシリンダ母材側に押し付けられ、WC
粒子が密集した層とWC粒子が微量、あるいは全
くない層とに分離する。従つてライニング後のシ
リンダ内周面に、Ni基合金マトリツクスに強化
材のWC粒子を分散させた耐食、耐摩耗性複合ラ
イニング層を得るためには、シリンダ内周側にあ
るWC粒子が微量、あるいは全くない余分な層を
除去しなければならないという問題があつた。ま
たWC粒子を含む層と、含まない層との境界を所
定寸法のシリンダ内周面近傍に制御するには、ラ
イニング処理条件を非常に厳しくする必要がある
という欠点もあつた。 本発明の目的は上記のような欠点を解消しよう
とするもので、耐食性に加え特に耐摩耗性に富ん
だシリンダ用複合ライニング材を提供することに
ある。 〔問題点を解決するための手段〕 本発明は上記目的を達成するために、シリンダ
用複合ライニング材において耐食性を有する金属
をマトリツクスとし、同マトリツクス中に硬さは
WCとほぼ同一で、かつ比重がマトリツクスの比
重に極めて近いニオブカーバイド(NbC)粒子を
耐摩耗性強化材として分散させたことを特徴とす
るものである。 すなわち本発明のシリンダ用複合ライニング材
は、化学成分が重量比でCr5〜10%、B2.5〜4
%、Si2.5〜10%、Co5〜40%、Mn0.2〜2%、残
部Niおよび不可避的不純物からなる耐食性を有
するNi基合金をマトリツクスとし、同マトリツ
クス中に耐摩耗性強化材としてNbC粒子を重量比
で10〜30%分散させてなることを特徴とする。 硬質粒子であるNbCの硬さはHv2400前後であ
り、WCの硬さとほぼ同じ硬さを有している。ま
たその比重は7.7〜7.8である。また本発明の複合
ライニング材のマトリツクスは従来から用いられ
ているNi―Cr―B―Si―Co系の合金であり、特
公昭56−53626号(特願昭53−161354号)公報に
記載されている。即ち、化学成分が重量比でCr5
〜10%、2.5〜4%、Si2.5〜10%、Co5〜40%、
Mn0.2〜2%、残部Niおよび不可避的不純物から
なる。この合金Ni及びCrを高含有して耐食性に
優れており、かつ比重も7.8〜8.5とNbCに近い。
この合金のマトリツクスにニオブの硼化物が晶出
あるいは析出しているので、Hv400〜800の硬さ
を有し耐摩耗性に優れでいる。 なおNbC粒子の配合比を10〜30重量%と限定す
る理由は次の通りである。NbC粒子が10重量%未
満では充分な耐摩耗性が得られず、30重量%を越
えるとライニング材の粘性が大きくなつて、遠心
鋳造法による均一なライニング層が形成できなく
なるからである。 本発明の複合ライニング材を遠心鋳造法によつ
て鋼製シリンダ内周面にライニングすると次のよ
うになる。すなわちマトリツクスとNbCの比重差
が小さいので遠心力によつてNbCが偏在すること
なくライニング層全体に分散した組織となる。た
だその分布密度についてはシリンダ母材側よりも
ライニング層の表面側(シリンダの最内面)の方
が僅かに大きい。このライニング層におけるNbC
の分散の仕方は複合ライニング材の組成、温度、
遠心力などのフエーシング条件により異なる。 上記のように本発明に係る複合ライニング材を
遠心鋳造法によつて鋼製シリンダ内周面にライニ
ングしたシリンダは、ライニング層全面に硬質粒
子であるNbCがほぼ均一に分散しているので、ラ
イニング後にライニング層を窒化ホウ素系の工具
を用いて所望の内径寸法に切削及び研削を行うだ
けで、耐食・耐摩耗性にすぐれたシリンダを容易
に得ることが出来る。 〔実施例〕 本発明を以下の実施例によりさらに詳細に説明
する。 実施例 1 加熱炉で1200℃に20分間加熱した外径115mm、
内径45mmのSCM440製シリンダ(一端が密閉さ
れ、他端に注湯口を有する)の内周面に、重量比
でCr7.2%、B2.8%、Si3.0%、Co15%、Mn1.0
%、残部が実質的にNiよりなるマトリツクス材
にNbC粉末を18重量%配合し、かつ予め片肉3.0
mmのライニング層が得られるように秤量した材料
を高周波誘導炉で溶解して1350℃で注入し、直ち
に遠心鋳造機に組込み、シリンダに1890r.p.m.の
回転を与えた。次いでシリンダを700℃まで回転
しながら冷却したのちに遠心鋳造機から取り出
し、珪藻土中で48時間徐冷後に空気中で放冷し
た。その後に当該シリンダからリング状の試料を
採取し、ライニング層の状態を調査した。その結
果ライニング層は片肉3.1mmの厚さでSCM440製
シリンダの内周壁に拡散溶着しており、NbC粒子
がライニング層全域にほぼ均一に分散していた。
またライニング層の最内径部から1.5mm外層位置
での硬さはHRC58〜59であつた。 実施例 2 加熱炉で1200℃に20分間加熱した外径115mm、
内径28mmのSCM440製シリンダ(一端が密閉さ
れ、他端に注湯口を有する)の内面に実施例1と
同一成分のマトリツクス材にNbC粉末25重量%配
合した材料を高周波誘導炉で溶解して1330℃で注
入し、直ちに遠心鋳造機に組込み、2200r.p.m.の
回転を与えた。シリンダを700℃まで回転しなが
ら冷却したのちに遠心鋳造機から取出し、実施例
1と全く同様の冷却を行つたのちに、当該シリン
ダからリング試料を採取し、ライニング層の状態
を調査した。その結果ライニング層は片肉3mmの
厚さでSCM440製シリンダの内周壁に拡散溶着し
ており、NbC粒子がライニング層全域にほぼ均一
に分散していた。ライニング層の最内径部から
1.5mm外層位置での硬さはHRC60〜62であつた。 次いで表1に示すように、本発明に係る複合ラ
イニング材及び従来のNi基合金のライニング材
について、ライニング後のシンリダからそれぞれ
試料を採取して摩耗試験及び腐食試験を行つた。 摩耗試験 10mm×15mm×高さ10mmの各試料(試料番号1〜
4)を、粒度800番のSiCを主成分とする200φの
研磨紙に2.5Kgの荷重で押しつけた状態で研磨紙
を回転させた。研磨紙は560r.p.m.の速度で回転
し、試験時間は3分間とした。各試料の摩耗量は
重量減によつて測定した。第1図は各試料の摩耗
試験結果を示したものであり、同図において本発
明の複合ライニング材(試料番号3、4)は従来
の合金ライニング材(試料番号1、2)に対し7
〜10倍の耐摩耗性を示している。 腐食試験 厚み2mm×幅7mm×長さ18mmの各試料(試料番
号1〜4)を、85℃の50容量%蟻酸水溶液中に24
時間浸漬して腐食減量を測定した。第2図は各試
料の腐食試験結果を示したものであり、同図にみ
るように本発明の複合ライニング材(試料番号
3、4)の耐食性は従来の合金ライニング材(試
料番号1、2)と同等、若しくはそれ以上の特性
を示している。
[Industrial Application Field] The present invention relates to a lining material for lining the inner peripheral surface of a cylinder of a plastic molding machine, a slurry pump, a compressor, etc. by centrifugal casting. [Prior art] Cylinders for plastic molding machines are required to have corrosion resistance and wear resistance to prevent corrosion and wear due to resin or reinforcing additives added to the resin. The inner peripheral surface of the cylinder was lined with a Ni-based alloy using a centrifugal casting method. However, cylinders lined with these alloys have the disadvantage that when used for plastic molding that contains a high proportion of reinforcing agents such as glass fibers, they suffer significant wear and tear after only a few months of use, making them unusable. Ta. In order to improve this drawback, there is also a composite lining material in which WC particles are dispersed in a Ni-based alloy. [Problems to be solved by the invention] However, this composite lining material has poor corrosion resistance and
Although the wear resistance has improved, it has the following drawbacks. In other words, since the specific gravity of WC, which is a wear-resistant reinforcing material, is approximately twice as large as that of the matrix alloy, the difference in centrifugal force due to the difference in specific gravity during lining
The WC particles are pressed against the cylinder base material side, and the WC
The layer is separated into a layer with dense particles and a layer with only a small amount of WC particles or no WC particles. Therefore, in order to obtain a corrosion-resistant and wear-resistant composite lining layer on the inner peripheral surface of the cylinder after lining, in which reinforcing WC particles are dispersed in a Ni-based alloy matrix, it is necessary to Alternatively, there was a problem of having to remove an extra layer that was not present at all. Another drawback is that in order to control the boundary between the layer containing WC particles and the layer not containing WC particles to be near the inner peripheral surface of a cylinder of a predetermined size, it is necessary to make the lining treatment conditions very strict. The purpose of the present invention is to eliminate the above-mentioned drawbacks, and is to provide a composite lining material for cylinders that is particularly high in wear resistance in addition to corrosion resistance. [Means for Solving the Problems] In order to achieve the above object, the present invention uses a matrix of corrosion-resistant metal in a composite lining material for cylinders, and has hardness in the matrix.
It is characterized by the fact that niobium carbide (NbC) particles, which are almost the same as WC and whose specific gravity is extremely close to that of the matrix, are dispersed as a wear-resistant reinforcing material. That is, the composite lining material for cylinders of the present invention has chemical components of Cr5 to 10% and B2.5 to 4% by weight.
%, Si2.5~10%, Co5~40%, Mn0.2~2%, balance Ni and unavoidable impurities. It is characterized by having particles dispersed in a weight ratio of 10 to 30%. The hardness of NbC, which is a hard particle, is around Hv2400, which is almost the same as that of WC. Moreover, its specific gravity is 7.7 to 7.8. Furthermore, the matrix of the composite lining material of the present invention is a conventionally used Ni-Cr-B-Si-Co alloy, which is described in Japanese Patent Publication No. 56-53626 (Japanese Patent Application No. 161354-1983). ing. In other words, the chemical composition is Cr5 in weight ratio.
~10%, 2.5~4%, Si2.5~10%, Co5~40%,
Consisting of 0.2-2% Mn, the balance being Ni and unavoidable impurities. This alloy contains high amounts of Ni and Cr and has excellent corrosion resistance, and has a specific gravity of 7.8 to 8.5, which is close to NbC.
Since niobium boride is crystallized or precipitated in the matrix of this alloy, it has a hardness of 400 to 800 Hv and excellent wear resistance. The reason why the blending ratio of NbC particles is limited to 10 to 30% by weight is as follows. If the content of NbC particles is less than 10% by weight, sufficient wear resistance cannot be obtained, and if it exceeds 30% by weight, the viscosity of the lining material increases, making it impossible to form a uniform lining layer by centrifugal casting. When the composite lining material of the present invention is lined on the inner peripheral surface of a steel cylinder by centrifugal casting, the result will be as follows. In other words, since the difference in specific gravity between the matrix and NbC is small, a structure in which NbC is dispersed throughout the lining layer without being unevenly distributed due to centrifugal force is created. However, the distribution density is slightly larger on the surface side of the lining layer (innermost surface of the cylinder) than on the cylinder base material side. NbC in this lining layer
The method of dispersion depends on the composition of the composite lining material, temperature,
Varies depending on facing conditions such as centrifugal force. As described above, in a cylinder in which the inner peripheral surface of a steel cylinder is lined with the composite lining material according to the present invention by centrifugal casting, NbC, which is a hard particle, is almost uniformly dispersed over the entire surface of the lining layer. A cylinder with excellent corrosion and wear resistance can be easily obtained by simply cutting and grinding the lining layer to a desired inner diameter using a boron nitride tool. [Example] The present invention will be explained in more detail with reference to the following example. Example 1 Outer diameter 115 mm heated to 1200°C for 20 minutes in a heating furnace,
The inner circumferential surface of an SCM440 cylinder with an inner diameter of 45 mm (one end is sealed and the other end has a pouring port) contains 7.2% Cr, 2.8% B, 3.0% Si, 15% Co, and 1.0 Mn by weight.
%, 18 wt.
The material weighed to obtain a lining layer of mm was melted in a high frequency induction furnace and injected at 1350°C, immediately installed in a centrifugal casting machine, and the cylinder was rotated at 1890 rpm. Next, the cylinder was cooled to 700° C. while rotating, and then taken out from the centrifugal casting machine, slowly cooled in diatomaceous earth for 48 hours, and then left to cool in air. Thereafter, a ring-shaped sample was taken from the cylinder and the state of the lining layer was investigated. As a result, the lining layer had a thickness of 3.1 mm per side and was diffusion-welded to the inner peripheral wall of the SCM440 cylinder, and the NbC particles were almost uniformly dispersed throughout the lining layer.
Further, the hardness at the outer layer position of 1.5 mm from the innermost diameter portion of the lining layer was H RC 58 to 59. Example 2 Outer diameter 115 mm heated at 1200°C for 20 minutes in a heating furnace,
The inner surface of an SCM440 cylinder with an inner diameter of 28 mm (one end is sealed and the other end has a spout) was melted using a high-frequency induction furnace by melting a matrix material with the same composition as in Example 1 and 25% by weight of NbC powder. It was injected at ℃ and immediately installed in a centrifugal casting machine and rotated at 2200 rpm. After the cylinder was cooled while rotating to 700°C, it was taken out from the centrifugal casting machine and cooled in exactly the same manner as in Example 1. A ring sample was taken from the cylinder and the state of the lining layer was investigated. As a result, the lining layer was diffusion-welded to the inner circumferential wall of the SCM440 cylinder with a thickness of 3 mm per side, and the NbC particles were almost uniformly dispersed throughout the lining layer. From the innermost diameter of the lining layer
The hardness at the 1.5 mm outer layer position was H RC 60-62. Next, as shown in Table 1, samples of the composite lining material according to the present invention and the conventional Ni-based alloy lining material were taken from the thin lids after lining and subjected to wear tests and corrosion tests. Wear test Each sample of 10 mm x 15 mm x height 10 mm (sample number 1 ~
4) was pressed against a 200φ abrasive paper whose main component is SiC with a particle size of No. 800 under a load of 2.5 kg, and the abrasive paper was rotated. The abrasive paper was rotated at a speed of 560 rpm, and the test time was 3 minutes. The amount of wear of each sample was measured by weight loss. Figure 1 shows the abrasion test results for each sample. In the figure, the composite lining materials of the present invention (sample numbers 3 and 4) were 7% lower than the conventional alloy lining materials (sample numbers 1 and 2).
~10 times more abrasion resistant. Corrosion test Each sample (sample numbers 1 to 4) with a thickness of 2 mm x width of 7 mm x length of 18 mm was placed in a 50% by volume formic acid aqueous solution at 85°C for 24 hours.
The corrosion weight loss was measured after soaking for a certain period of time. Figure 2 shows the corrosion test results for each sample, and as seen in the figure, the corrosion resistance of the composite lining materials of the present invention (sample numbers 3 and 4) was higher than that of conventional alloy lining materials (sample numbers 1 and 2). ) shows characteristics that are equivalent to or better than.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明に係るシリンダ
用複合ライニング材においては、耐食性を有する
Ni基合金をマトリツクスとし、このマトリツク
ス中に耐摩耗性強化材としてNbC粒子を重量比で
10〜30%分散させたことにより、耐食性に加え耐
摩耗性を従来のシリンダ材に比べて数倍向上させ
ることができ、シリンダの寿命が長くなり経済的
である。
As explained above, the composite lining material for cylinders according to the present invention has corrosion resistance.
A Ni-based alloy is used as a matrix, and NbC particles are added as a wear-resistant reinforcement in this matrix in terms of weight ratio.
By dispersing it by 10 to 30%, it is possible to improve not only corrosion resistance but also wear resistance several times compared to conventional cylinder materials, extending the life of the cylinder and making it economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の複合ライニング層な
らびに従来のライニング層から採取した試料の摩
耗試験結果を示した図であり、第2図は同じく腐
食試験結果を示した図である。
FIG. 1 is a diagram showing the wear test results of samples taken from the composite lining layer of the embodiment of the present invention and the conventional lining layer, and FIG. 2 is a diagram showing the corrosion test results as well.

Claims (1)

【特許請求の範囲】[Claims] 1 化学成分が重量比でCr5〜10%、B2.5〜4
%、Si2.5〜10%、Co5〜40%、Mn0.2〜2%、残
部Niおよび不可避的不純物からなる耐食性を有
するNi基合金をマトリツクスとし、同マトリツ
クス中に耐摩耗性強化材としてNbC粒子を重量比
で10〜30%分散させてなることを特徴とするシリ
ンダ用複合ライニング材。
1 Chemical components are Cr5-10% by weight, B2.5-4
%, Si2.5~10%, Co5~40%, Mn0.2~2%, balance Ni and unavoidable impurities. A composite lining material for cylinders characterized by dispersing particles at a weight ratio of 10 to 30%.
JP19009683A 1983-10-12 1983-10-12 Composite lining material for cylinder Granted JPS6082644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19009683A JPS6082644A (en) 1983-10-12 1983-10-12 Composite lining material for cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19009683A JPS6082644A (en) 1983-10-12 1983-10-12 Composite lining material for cylinder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6520787A Division JPS62253747A (en) 1987-03-19 1987-03-19 Composite lining material for cylinder

Publications (2)

Publication Number Publication Date
JPS6082644A JPS6082644A (en) 1985-05-10
JPS6239224B2 true JPS6239224B2 (en) 1987-08-21

Family

ID=16252300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19009683A Granted JPS6082644A (en) 1983-10-12 1983-10-12 Composite lining material for cylinder

Country Status (1)

Country Link
JP (1) JPS6082644A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529480Y2 (en) * 1985-07-08 1993-07-28

Also Published As

Publication number Publication date
JPS6082644A (en) 1985-05-10

Similar Documents

Publication Publication Date Title
US8147980B2 (en) Wear-resistant metal matrix ceramic composite parts and methods of manufacturing thereof
CA2934084C (en) Composite metal product
US4346684A (en) Valve seat ring
CN110079725B (en) Ultra-high wear-resistant hypereutectic high-chromium cast iron material, and preparation method and application thereof
US4427446A (en) Corrosion-resistant and abrasive wear-resistant composite material for centrifugally cast linings
JPS6014095B2 (en) Alloy chilled roll material with excellent crack resistance and wear resistance
JPS6239224B2 (en)
JP3301441B2 (en) Composite cylinder for high-temperature and high-pressure molding
JPS638179B2 (en)
JPH0112828B2 (en)
JP2746945B2 (en) Composite lining material for cylinder
JP4491758B2 (en) Cylinder for molding machine
JPH09150257A (en) Highly wear resistant composite material and manufacture thereof
JP3301442B2 (en) Composite cylinder for high-temperature and high-pressure molding
JPWO2019045067A1 (en) Cylinder for molding machine and its manufacturing method
US20230125758A1 (en) Wear resistant composite
JPS5810458B2 (en) Corrosion-resistant and wear-resistant composite material for centrifugal casting lining
SU1694681A1 (en) Wear resistant cast iron
JPH01294843A (en) Coating alloy having wear resistance and corrosion resistance and material for forming the same
JPH0693379A (en) Erosion-corrosion resistant material against aluminum
JP4367992B2 (en) Agglomerated mineral wear material
CN113355589A (en) Alloy wear-resistant cast iron for steel pipe lining
JP2024039269A (en) High chromium cast iron and manufacturing method of high chromium cast iron
JP2024039271A (en) High chromium cast iron and manufacturing method of high chromium cast iron
JP2024039270A (en) High chromium cast iron and manufacturing method of high chromium cast iron