JPS6239115A - Helical angle automatic adjusting device for gear shaper - Google Patents

Helical angle automatic adjusting device for gear shaper

Info

Publication number
JPS6239115A
JPS6239115A JP17692585A JP17692585A JPS6239115A JP S6239115 A JPS6239115 A JP S6239115A JP 17692585 A JP17692585 A JP 17692585A JP 17692585 A JP17692585 A JP 17692585A JP S6239115 A JPS6239115 A JP S6239115A
Authority
JP
Japan
Prior art keywords
main shaft
axial direction
helical angle
drive
motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17692585A
Other languages
Japanese (ja)
Inventor
Takayo Noguchi
隆世 野口
Seigo Nakai
中井 誠吾
Motoo Nishimoto
西本 基生
Kouji Tonohara
殿原 好治
Tadashi Rokkaku
正 六角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17692585A priority Critical patent/JPS6239115A/en
Publication of JPS6239115A publication Critical patent/JPS6239115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gear Processing (AREA)

Abstract

PURPOSE:To improve productivity, by steplessly adjusting a helical angle so that a helical gear of plural kinds can be machined with no necessity for rearrangements. CONSTITUTION:A cam lever 25 performs an oscillating motion about an axis 26 serving as the center by motion of a cam integrally formed with a backoff driving shaft 24 synchronously rotating with vertical motion of a main spindle 11. The motion of said lever 25 causes a joint 27 to perform a lateral (horizontal) motion. The main spindle 11 simultaneously performs a rotary motion corresponding to a helical angle of a cutter 12 by controlling a rotary speed of a motor 20. Accordingly, the helical angle is steplessly adjusted. When a work is machined with a zero helical angle, it is only required to stop rotation of the motor 20.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はギヤシェーパのヘリカルガイドに関し、ヘリカ
ルアングルを自動的に無段階に調整できるようにしたも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a helical guide for a gear shaper, and is capable of automatically and steplessly adjusting the helical angle.

〈従来の技術〉 ギヤシェーパのヘリカルガイド機構はその断面側面を表
わす第3図に示すように、歯切り工具工が装着された主
軸2は静圧軸受3で軸方向1こ往復移動自在且つ回転自
在に案内されてクランク機構で駆動されろコネクティン
グロッド4により球面軸受5を介して軸方向に往復移動
されるようになっている。主軸2には第4図にその斜視
を示すようなヘリカルガイドのオス形6が固定されてお
り、フランシフに嵌着されたヘリカルガイドのメス形8
によりオス形6が案内され、主軸2は軸方向に往復動す
る際に往復回転するようになっている。フランジ7はウ
オームホイール9と図示しないウオームによって歯切9
加工中には被加工物であるへりカルギヤと同期回転駆動
されるようになっている。
<Prior art> As shown in FIG. 3, which shows a cross-sectional side view of the helical guide mechanism of a gear shaper, a main shaft 2 on which a gear cutting tool is attached is capable of reciprocating once in the axial direction and is rotatable using a hydrostatic bearing 3. It is adapted to be reciprocated in the axial direction via a spherical bearing 5 by a connecting rod 4 guided by a crank mechanism and driven by a crank mechanism. A male helical guide 6 as shown in perspective in Fig. 4 is fixed to the main shaft 2, and a female helical guide 8 fitted to the franchise.
The male shape 6 is guided by the shaft 2, and the main shaft 2 rotates back and forth when reciprocating in the axial direction. The flange 7 is gear-cutted by a worm wheel 9 and a worm (not shown).
During machining, it is driven to rotate synchronously with the helical gear that is the workpiece.

ここで、ヘリカルガイドのリード長さしと歯切り工具1
のピッチ円直径dCPとには下式の様な関係がある。
Here, measure the lead length of the helical guide and gear cutting tool 1.
There is a relationship between the pitch circle diameter dCP and the following equation.

π・do、 = L―ψ          ・・・(
1)尚、ψは歯切り工具1のねじれ角、m、は歯切り工
具lの歯直角モジュール、Zは歯切り工具1の歯数であ
る。
π・do, = L−ψ ...(
1) Here, ψ is the helix angle of the gear cutting tool 1, m is the normal module of the gear cutting tool 1, and Z is the number of teeth of the gear cutting tool 1.

従って、一つのヘリカルガイドに対しては加工できるね
じれ角は一腫類となる。
Therefore, the helix angle that can be processed for one helical guide is one size.

〈発明が解決しようとする問題点〉 上述したヘリカルガイド機構においては、ヘリカルガイ
ドのオス形6及びメス形8を交換しない限りへリカルギ
ャを加工する際のヘリカルアングルを変丸ることは不可
能であり、設計上の制約を受けるか、又は加工の段取り
替え時間が非常に長くなるという不具合がある。
<Problems to be Solved by the Invention> In the helical guide mechanism described above, it is impossible to change the helical angle when processing the helical gear unless the male type 6 and female type 8 of the helical guide are replaced. However, there are problems in that there are design restrictions or the processing setup change time is extremely long.

本発明は上記状況に鑑みてなされたもので、ヘリカルア
ングルを無段階に調節することができるギヤシェーパの
へりカルアングル自動調整装置を提供し、もってへりカ
ルアングルの異なる複数種類のヘリカルギヤを段取り替
え無しで加工可能にし、ヘリカルギヤの設計上の制約を
少なくすると共に加工の段取り替え時間を短縮して生産
能率向上を図ることを目的とする。
The present invention has been made in view of the above circumstances, and provides an automatic helical angle adjustment device for a gear shaper that can steplessly adjust the helical angle, thereby eliminating the need for setup changes for multiple types of helical gears with different helical angles. The purpose is to reduce design constraints of helical gears, shorten machining setup change time, and improve production efficiency.

く問題点を解決するための手段〉 上記目的を達成するための本発明の構成は、被加工物支
持用回転軸の回転中心軸と同一方向に延びろ回転中心軸
でもって回転し軸方向に往復動可能な主軸と、該主軸の
往復動の駆動を行なう往復駆動手段と、前記主軸に連結
され該主軸に取付けられるカッタのねじれ角に追従した
回転を行なうガイド部材と、該ガイド部材を回転不能且
つ回転軸方向に摺動自在に支持し前記主軸の駆動回転を
行なう駆動ガイドと、該駆動ガイドに取付けられ前記ガ
イド部材の回転駆動を行なうガイド部材回転駆動手段と
、前記往復駆動手段により前記主軸が軸方向に一端側か
ら他端側に移動する際に該往復駆動手段の駆動に同期さ
せて該主軸を軸方向に交差する方向の一端側に移動させ
前記主軸が軸方向に他端側から一端側に移動する際に前
記往復駆動手段の駆動に同期させて該主軸を軸方向に交
差する方向の他端側に移動させるバックオフ機構とを具
えたことを特徴する。
Means for Solving the Problems〉 The structure of the present invention for achieving the above-mentioned object is to extend in the same direction as the rotational center axis of the rotating shaft for supporting the workpiece, rotate with the rotational center axis, and rotate in the axial direction. a reciprocating main shaft, a reciprocating drive means for driving the reciprocating movement of the main shaft, a guide member connected to the main shaft and rotating in accordance with a torsion angle of a cutter attached to the main shaft, and a guide member for rotating the guide member. a drive guide that supports the main shaft so as to be slidable in the rotational axis direction and drives and rotates the main shaft; a guide member rotation drive means that is attached to the drive guide and rotates the guide member; When the main shaft moves from one end side to the other end side in the axial direction, the main shaft is moved to the one end side in the direction crossing the axial direction in synchronization with the drive of the reciprocating drive means, so that the main shaft moves to the other end side in the axial direction. The main shaft is further provided with a back-off mechanism that moves the main shaft to the other end in a direction intersecting the axial direction in synchronization with the drive of the reciprocating drive means when the main shaft is moved from one end to the other end.

〈作   用〉 主軸は往復駆動手段により軸方向に往復運動すると共に
駆動ガイドにより被加工物支持用回転軸の回転と同期し
て回転する。主軸の往復時にはガイド部材回転駆動手段
によりガイド部材がカッタのねしれ角に追従した回転を
行ない、主軸は被加工物支持用回転軸の回転と同期する
回転と、カッタのねじれ角に追従した回転とが合わされ
た回転を行なう。また、バックオフ機構により、主軸は
軸方向の往復動に同期して往動時には軸方向に交差する
方向の一端側に移動し、復動時には軸方向に交差する方
向の他端側に移動する。
<Operation> The main shaft is reciprocated in the axial direction by the reciprocating drive means, and rotated by the drive guide in synchronization with the rotation of the rotating shaft for supporting the workpiece. When the main shaft reciprocates, the guide member rotation drive means rotates the guide member following the helix angle of the cutter, and the main shaft rotates in synchronization with the rotation of the rotating shaft for supporting the workpiece, and rotates in accordance with the helix angle of the cutter. Perform a combined rotation. In addition, due to the back-off mechanism, the main shaft synchronizes with the reciprocating motion in the axial direction, and moves toward one end in the direction that intersects with the axial direction during forward motion, and moves toward the other end in the direction that intersects with the axial direction during backward motion. .

く実 施 例〉 第1図には本発明の一実施例に係るギヤシェーパのヘリ
カルアングル自動調整装置の断面側面、第2図にはカッ
タの動きを説明する工程を示しである。
Embodiments FIG. 1 shows a cross-sectional side view of an automatic helical angle adjustment device for a gear shaper according to an embodiment of the present invention, and FIG. 2 shows a process for explaining the movement of a cutter.

第1図において、主軸11にはその下端部にカッタ12
が装着され、主軸11はカッタヘッド13に嵌着されt
こ軸受14により軸方向及び回転方向に摺動自在に案内
されている。
In FIG. 1, the main shaft 11 has a cutter 12 at its lower end.
is installed, and the main shaft 11 is fitted into the cutter head 13.
It is slidably guided by a bearing 14 in the axial direction and rotational direction.

主軸11の上部はテーパシャンク部11aになっており
、テーパシャンク部11aはガイド部材であるオスガイ
ド15のテーパ穴15aに嵌合されている。オスガイド
15ばホイール16と一体に組合わされた駆動ガイドで
あるホイールガイド17に軸受18を介して軸方向及び
回転方向に摺動自在に案内されている。オスガイド15
の上端はフランジ19を介して ガイド部材回転駆動手
段である回転数制御可能なスプライン軸20aを有する
モータ20に結合され、ホイール16は図示しないウオ
ームによって駆動される。主軸11の外周にはラックギ
ヤ21が加工され、主軸11はこのラックギヤ21とか
み合う往復駆動手段であるギヤ22の正逆の繰返し回転
により軸方向に往復動される。このギヤ22の正逆の回
転運動は図示しないクランク機構の運動により行なわれ
る。バックオフ*ll1123は主軸11の軸方向の往
復動の図示されていない駆動系とギヤトレインでつなが
ったバックオフ駆動軸24の回転運動により行なわれろ
。このバックオフ駆動軸24には図示しない帰心カムが
バックオフ駆動軸24と一体で軸方向に二列加工され、
それぞれのカムがカムレバー25の二箇舒省着されたロ
ーラ26cLと当接している。またカムレバー25は軸
26を介してジヨイント27に連結され、軸26とジル
インド27の連結中心と軸26の回転中心とは偏心して
いる。ジヨイント27はピン28を介してカッタヘッド
3に取付けられた軸受29に連結されている。尚、図中
の符号で30は加工ワーク、31はモータ支台である。
The upper part of the main shaft 11 is a tapered shank portion 11a, and the tapered shank portion 11a is fitted into a tapered hole 15a of a male guide 15, which is a guide member. The male guide 15 is slidably guided in the axial and rotational directions via a bearing 18 by a wheel guide 17, which is a drive guide integrated with the wheel 16. Male guide 15
The upper end of the wheel 16 is connected via a flange 19 to a motor 20 having a spline shaft 20a whose rotation speed can be controlled, which is a guide member rotation driving means, and the wheel 16 is driven by a worm (not shown). A rack gear 21 is machined on the outer periphery of the main shaft 11, and the main shaft 11 is reciprocated in the axial direction by the repeated forward and reverse rotation of a gear 22, which is a reciprocating drive means that meshes with the rack gear 21. This forward and reverse rotational movement of the gear 22 is performed by the movement of a crank mechanism (not shown). The back-off *ll1123 is performed by the rotational movement of the back-off drive shaft 24, which is connected to a drive system (not shown) through a gear train, which reciprocates in the axial direction of the main shaft 11. Returning cams (not shown) are machined in two rows in the axial direction on this back-off drive shaft 24 integrally with the back-off drive shaft 24.
Each cam is in contact with two rollers 26cL of the cam lever 25, which are omitted. Further, the cam lever 25 is connected to a joint 27 via a shaft 26, and the center of connection between the shaft 26 and the joint 27 is eccentric to the center of rotation of the shaft 26. The joint 27 is connected via a pin 28 to a bearing 29 attached to the cutter head 3. In the figure, numeral 30 is a processing workpiece, and 31 is a motor support.

次に上記構成の作用を第2図を参照して説明する。Next, the operation of the above configuration will be explained with reference to FIG.

主軸11は、ギヤ22の正逆回転により軸方向の往11
動(上下動)をし且つ主軸11の下降時から上昇時にバ
ックオフ機構23によりカッタヘッド3は加工ワーク3
0から離れる。つまり主軸11の上昇端が軸方向の一端
側となり、下降端が軸方向の他端側となっている。また
、カッタヘッド3が加工ワーク30側に寄った位置が主
軸11の軸方向に交差する方向の一端側となり、加工ワ
ーク30から離れた位置が主軸11の軸方向に交差する
方向の他@側となっている。主軸11の上下連動と同期
回転するパックオフ駆動軸24と一体になった力〉駆動
によりカムレバー25は軸26を中心に汀振り運動する
。ジヨイント27とカムレバー25の連結中心は軸26
の回転中心と傷心しているため、カムレバー25の首振
り運動によりジヨイント27は左右(水平)運動を行う
。主軸11は同時にカッタエ2のヘリカルアングルに相
当する回転運動をモータ20の回転数を制御する事によ
り行なう。加工ワーク30に歯を創成するためのカッタ
12の同期回転は、一般のギヤシェーパと同様に図示し
ないウオーム軸から駆動されろホイール160回転によ
り行なわれる。
The main shaft 11 is rotated in the axial direction by forward and reverse rotation of the gear 22.
When the main spindle 11 moves (up and down) and when the main shaft 11 moves up and down, the back-off mechanism 23 moves the cutter head 3 to the workpiece 3.
Move away from 0. In other words, the ascending end of the main shaft 11 is one end in the axial direction, and the descending end is the other end in the axial direction. Further, the position where the cutter head 3 is closer to the workpiece 30 side is one end side in the direction intersecting the axial direction of the main spindle 11, and the position away from the workpiece 30 is the other @ side in the direction intersecting the axial direction of the main spindle 11. It becomes. The cam lever 25 oscillates about the shaft 26 due to the integrated force of the pack-off drive shaft 24 which rotates in synchronization with the vertical movement of the main shaft 11 . The connection center between the joint 27 and the cam lever 25 is the shaft 26
Since the joint 27 is aligned with the center of rotation of the cam lever 25, the joint 27 moves left and right (horizontally) by the swinging movement of the cam lever 25. At the same time, the main shaft 11 performs a rotational movement corresponding to the helical angle of the cutter 2 by controlling the rotation speed of the motor 20. The synchronous rotation of the cutter 12 for creating teeth on the workpiece 30 is performed by a wheel 160 rotated by a worm shaft (not shown), similar to a general gear shaper.

ホイール16は、ホイールガイド17.軸受18、モー
タ支台31.モータ20.フランジ19.オスガイド1
5.主軸11.カッタ12と一体で回転する様にそれぞ
れボルト等で結合されている。
The wheel 16 is connected to a wheel guide 17. Bearing 18, motor support 31. Motor 20. Flange 19. Male guide 1
5. Main shaft 11. They are each connected with bolts or the like so that they rotate together with the cutter 12.

カッタ12は主軸11下降時に回転しながら加工ワーク
30を加工し、主軸11上昇時にはバックオフ機構23
により、カッタ12ば加工ワーク30から完全に引き離
され回転しながら上昇する。主軸11の上下動のストロ
ークの上死点(−サイクル終了後)ではカッタ12の回
転移動量がカッタ刃数−ピッチxll数倍になる様にス
トローク幅とストローク数が選定されている。
The cutter 12 processes the workpiece 30 while rotating when the main shaft 11 is lowered, and the back-off mechanism 23 is used when the main shaft 11 is raised.
As a result, the cutter 12 is completely separated from the workpiece 30 and rises while rotating. The stroke width and number of strokes are selected so that at the top dead center of the vertical movement of the main shaft 11 (after the end of the - cycle), the amount of rotational movement of the cutter 12 is multiplied by the number of cutter blades minus the number of pitch xll.

ヘリカルアングルが零のワークを加工する場合には、モ
ータ20の回転を停止しておけば良い。
When processing a workpiece with a helical angle of zero, it is sufficient to stop the rotation of the motor 20.

〈発明の効果〉 本発明のギヤシェーパのヘリカルアングル自動調整装置
は、ヘリカルアングルを無段階に任意に調節することが
できるので、歯切り加工されるワークのヘリカルアング
ルを任意に設定できる。その結果、段取り替え無しでヘ
リカルアングルの異なる複数種類のへりカルギヤの加工
が可能となり、へりカルギヤの設計上の制約が少なくな
ると共に加工の段取り替え時間が短縮され、生産能率向
上を図ることが可能となる。
<Effects of the Invention> Since the automatic helical angle adjustment device for a gear shaper of the present invention can arbitrarily adjust the helical angle steplessly, the helical angle of the workpiece to be gear-cut can be arbitrarily set. As a result, it is possible to process multiple types of helical gears with different helical angles without changing setups, reducing constraints on the design of helical gears, shortening the time for changing setups, and improving production efficiency. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図 は本発明の一実施例に係るギヤシェーバのヘリ
カルアングル自動調整装置の断面側面図、第2図ばカッ
タの動きを説明する工程図、第3図は従来のヘリカルガ
イド機構の断面側面図、第4図はヘリカルガイドのオス
形の斜視図である。 図  面  中、 11は主軸、 15はオス形、 17はホイールガイド、 19はフランジ、 20;よモータ、 22はギヤ、 23はバックオフ機構である。 第1図
Fig. 1 is a cross-sectional side view of an automatic helical angle adjustment device for a gear shaver according to an embodiment of the present invention, Fig. 2 is a process diagram explaining the movement of a cutter, and Fig. 3 is a cross-sectional side view of a conventional helical guide mechanism. , FIG. 4 is a perspective view of the male helical guide. In the drawing, 11 is a main shaft, 15 is a male type, 17 is a wheel guide, 19 is a flange, 20 is a motor, 22 is a gear, and 23 is a back-off mechanism. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 被加工物支持用回転軸の回転中心軸と同一方向に延びる
回転中心軸でもって回転し軸方向に往復動可能な主軸と
、該主軸の往復動の駆動を行なう往復駆動手段と、前記
主軸に連結され該主軸に取付けられるカッタのねじれ角
に追従した回転を行なうガイド部材と、該ガイド部材を
回転不能且つ回転軸方向に摺動自在に支持し前記主軸の
駆動回転を行なう駆動ガイドと、該駆動ガイドに取付け
られ前記ガイド部材の回転駆動を行なうガイド部材回転
駆動手段と、前記往復駆動手段により前記主軸が軸方向
に一端側から他端側に移動する際に該往復駆動手段の駆
動に同期させて該主軸を軸方向に交差する方向の一端側
に移動させ前記主軸が軸方向に他端側から一端側に移動
する際に前記往復駆動手段の駆動に同期させて該主軸を
軸方向に交差する方向の他端側に移動させるバックオフ
機構とを具えたギヤシエーパのヘリカルアングル自動調
整装置。
a main shaft that rotates with a rotational center shaft extending in the same direction as the rotational center axis of the rotational shaft for supporting the workpiece and is capable of reciprocating in the axial direction; a reciprocating drive means for driving the reciprocating motion of the main shaft; a guide member that rotates in accordance with the torsion angle of a cutter that is connected and attached to the main shaft; a drive guide that supports the guide member in a non-rotatable but slidable manner in the direction of the rotation axis and drives and rotates the main shaft; a guide member rotational drive means attached to a drive guide to rotationally drive the guide member; and a guide member rotation drive means that is synchronous with the drive of the reciprocating drive means when the main shaft moves in the axial direction from one end side to the other end side by the reciprocating drive means. and move the main shaft to one end side in a direction crossing the axial direction, and when the main shaft moves from the other end side to the one end side in the axial direction, the main shaft is moved in the axial direction in synchronization with the drive of the reciprocating drive means. An automatic helical angle adjustment device for a gear shaper, which is equipped with a back-off mechanism that moves the gear shaper to the other end in the intersecting direction.
JP17692585A 1985-08-13 1985-08-13 Helical angle automatic adjusting device for gear shaper Pending JPS6239115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17692585A JPS6239115A (en) 1985-08-13 1985-08-13 Helical angle automatic adjusting device for gear shaper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17692585A JPS6239115A (en) 1985-08-13 1985-08-13 Helical angle automatic adjusting device for gear shaper

Publications (1)

Publication Number Publication Date
JPS6239115A true JPS6239115A (en) 1987-02-20

Family

ID=16022152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17692585A Pending JPS6239115A (en) 1985-08-13 1985-08-13 Helical angle automatic adjusting device for gear shaper

Country Status (1)

Country Link
JP (1) JPS6239115A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918171A (en) * 1982-07-23 1984-01-30 株式会社東芝 Ceramic manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918171A (en) * 1982-07-23 1984-01-30 株式会社東芝 Ceramic manufacture

Similar Documents

Publication Publication Date Title
WO2010067690A1 (en) Method of controlling machine tool and machine tool
CN214392949U (en) Suspension type saddle welding equipment
JP2675641B2 (en) Drive device for driving at least one main shaft having a swinging motion and intermittent feeding device including the same
CN115889899B (en) Processing machine tool and processing method for circular-arc toothed-line cylindrical internal gear
JPS6239115A (en) Helical angle automatic adjusting device for gear shaper
KR900002170B1 (en) Steplessly adjustable helical guide apparatus for a gear shaper
CN211387226U (en) Internal gear machining device with improved structure
JPS62130121A (en) Method for adjusting phase of cutter in automatic helical angle adjusting device for gear shaper
JPH10109223A (en) Gear shaver
JPS6239116A (en) Steplessly adjusting helical guide mechanism for gear shaper
CN211387239U (en) Internal gear machining device
CN212945845U (en) Gear production is with dividing tooth equipment that has adjustable pitch
JP2670508B2 (en) Grinding wheel cutting device and honing machine
CN217647502U (en) Power tool apron assembly of numerical control lathe
CN112139856B (en) Numerical control metal working machine tool
CN116944957B (en) Geometric body manufacturing industrial robot
CN219274646U (en) Interval adjustable preforming machine
CN214922277U (en) High-precision workbench
CN218904587U (en) Angle-adjustable polishing equipment
JPS6179518A (en) Method of beveling tooth end surface of work with tooth to roof shape and beveling section manufactured through said method and device for executing said method
RU70836U1 (en) CNC DRILLING MACHINE
JPS62277218A (en) Continuously variable adjustment helical guide mechanism for gear shaper
CN111940851A (en) Gear production is with dividing tooth equipment that has adjustable pitch
JPS62236619A (en) Shaping method for helical gear
JPS6215009A (en) Lead compensating method for helical guide for gear shaper