JPS6239026B2 - - Google Patents

Info

Publication number
JPS6239026B2
JPS6239026B2 JP14758481A JP14758481A JPS6239026B2 JP S6239026 B2 JPS6239026 B2 JP S6239026B2 JP 14758481 A JP14758481 A JP 14758481A JP 14758481 A JP14758481 A JP 14758481A JP S6239026 B2 JPS6239026 B2 JP S6239026B2
Authority
JP
Japan
Prior art keywords
vinyl monomer
polymer
solid
solid material
sulfur dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14758481A
Other languages
Japanese (ja)
Other versions
JPS5849479A (en
Inventor
Osamu Itabashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14758481A priority Critical patent/JPS5849479A/en
Publication of JPS5849479A publication Critical patent/JPS5849479A/en
Publication of JPS6239026B2 publication Critical patent/JPS6239026B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Polymerisation Methods In General (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、固体物質に液状ビニルモノマーを蒸
気として接触させるか、あるいは固体物質に液状
ビニルモノマーを含浸させたのち、過剰のビニル
モノマーを蒸発除去するか溶媒で洗浄して固体表
面にビニルモノマーを吸着させ、次いでガス状二
酸化硫黄を接触させて液状媒質を使用せずにこれ
を重合させる方法に関するものである。 近年、固体物質とポリマーとの複合材料は、建
材や各種資材として多くの分野に幅広く用いられ
ており、また機能性材料の担体としてその利用が
可能であり、重要視されてきている。 一般に、固体物質とポリマーとの複合材料を製
造する際、固体物質の表面は複合化のプロセスを
経て、マトリツクスポリマーと固体物質との界面
を形成する。この界面の重要性については、これ
まで種々の角度から検討されており、すでに望ま
しい界面を得るために固体物質表面の物理構造及
び化学構造の改質方法が試みられている。例えば
液体媒質を用いずに固体粒子表面をポリマーで被
覆する方法としては、固体物質表面に吸着させた
ビニルモノマーをメカノケミカル処理や放射線照
射により重合させる方法などが提案されている
が、いずれも効率が低かつたり、特殊の設備を必
要とするなどの欠点があり実用化されていない。 また、気相中において無機物質粒子表面に担持
させたラジカル重合可能なビニルモノマーをガス
状二酸化硫黄と接触させ重合を行わせる方法(特
開昭49―103978告公報)も液状媒質を用いないポ
リマー被覆無機物質製造方法の一つである。 しかしながら、この方法においては液状ビニル
モノマーをそのまま無機物質に担持させるため、
無機物質表面のビニルモノマー付着量が多く、二
酸化硫黄と接触させて重合を行う際、振りまぜや
気流吹き込みによりこれらを気相中に懸濁させて
行う必要がある。したがつて原料として用いる無
機物質の粒度は気相中に懸濁しうる程度の大きさ
に限られる。また、無機物質表面で優先的に重合
が行われ、それ以外の場所ではほとんど重合が行
われないので、ポリマー収率が低いなどの欠点が
あり、必ずしも満足しうる方法とはいえない。 本発明者は、この点を改良し、簡単な操作で効
率よく、ポリマー被覆固体物質を得ることができ
る方法を開発すべく、鋭意研究を重ねた結果、固
体物質表面に液状ビニルモノマーを蒸気として吸
着させ、非媒質中でガス状二酸化硫黄と接触させ
ることによりその目的を達成しうることを見出
し、この知見に基づいて本発明をなすに至つた。 すなわち、本発明に従えば、無機質又は有機質
の固体物質表面をポリマーで被覆するに当り、固
体物質と液状ビニルモノマーを蒸気として接触さ
せるか、あるいは固体物質に液状ビニルモノマー
を含浸させたのち、過剰のビニルモノマーを蒸発
除去するか溶媒で洗浄して、固体物質表面にビニ
ルモノマーを吸着させ、次いで非媒質中において
ガス状二酸化硫黄と接触させて重合を行わせるこ
とにより、ポリマー被覆固体物質を簡単に得るこ
とができる。 本発明を好適に実施するには、密封可能な容器
に固体物質を入れ、ラジカル重合又は共重合可能
なビニルモノマーを吸着させたのち、ガス状二酸
化硫黄を導入し、密封して所定温度、所定時間で
固体に吸着されたビニルモノマーを重合させれば
よい。 本発明方法において用いられる固体物質として
は、使用するビニルモノマー蒸気を吸着する機能
を有するものであればよいが、特に有極性の固体
表面をもつ表面積の大きな無機質又は有機質の固
体物質が望ましい。このようなものとしては、例
えばゼオライト、モレキユラシーブス、ホワイト
カーボン、シリカゲル、ケイ酸無水物、アルミ
ナ、ベントナイト、活性白土、メタハロサイト、
カオリン、雲母、タルク、カーボンブラツク、炭
素繊維、黒鉛などの無機質の固体物質、又は木
粉、精製セルロース、セルロース繊維、バルブ、
ワラ、絹、羊毛などの有機質の固体物質が挙げら
れる。 また、吸着したビニルモノマーの重合速度が遅
くて重合率が低い場合には、重合を促進させるた
めに、あらかじめ固体物質を遷移金属化合物で処
理したものを用いるのが有利である。 このような遷移金属化合物として、例えばチタ
ン、バナジウム、クロム、マンガン、鉄、コバル
ト、ニツケル、胴、亜鉛、ジルコニウム、ニオブ
などの化合物を用いることができる。これらの遷
移金属化合物の添加量は、含有金属換算で固体物
質に対して10重量%以下で十分であるが、さらに
多くてもさしつかえない。 一方、本発明方法で用いるビニルモノマーは、
ラジカル重合又はラジカル共重合しうる液状のビ
ニル系モノマーであり、このようなものとしては
例えばアクリル酸、メタクリル酸、アクリル酸エ
ステル、メタクリル酸エステル、アクリロニトリ
ル、酢酸ビニル、スチレン、ジビニルベンゼンな
どが挙げられる。 本発明方法において、これらのビニルモノマー
を固体物質表面に吸着させるには、例えば反応容
器内で減圧乾燥した固体物質にビニルモノマー蒸
気を接触させるか、あるいは液状ビニルモノマー
を固体物質に含浸させたのち減圧乾燥して過剰の
ビニルモノマーを蒸発除去させることによつて行
う。また、液状ビニルモノマーと固体物質とを混
合し、過剰のビニルモノマーをn―ヘプタンのよ
うな非極性溶媒で洗い去つて固体物質表面にビニ
ルモノマーを吸着させることもできる。また二種
以上の液状ビニルモノマーを吸着させるには、混
合ビニルモノマーを用いるか、主ビニルモノマー
を最初に吸着させ、次いで他のコビニルモノマー
を順番に吸着させることによつて行う。このよう
にしてビニルモノマーを吸着した固体物質は、1
〜10重量%程度の水分を含有した状態で次の二酸
化硫黄との接触工程に供するのが有利である。 本発明におけるビニルモノマーの使用量は、固
体物質100重量部当り0.5〜100重量部の範囲が好
ましく、特に3〜50重量部のポリマーを担持した
固体物質は工業的利用面において、コスト的にも
性能的にも好適なものが多い。 本発明における二酸化イオウの使用量は、ビニ
ルモノマーに対して0.01〜100重量%の範囲の量
で十分であるが、さらに多く用いてもさしつかえ
ない。 本発明においては、この二酸化硫黄をビニルモ
ノマーを吸着させた固体物質を入れてある反応容
器内に導入したのち、容器を密封してビニルモノ
マーを重合させる。重合は静置して行うが、必要
ならばかきまぜ、振とうのいずれの形式を用いて
もよい。本発明に従えば、1〜5時間程度の重合
時間で吸着したビニルモノマーの大部分が重合
し、固体物質は、ポリマーによつて均一かつ効率
よく、しかも生成したポリマーの大部分が溶媒で
抽出されないほど強固に被覆される。 本発明方法によつて得られたポリマー被覆固体
物質は、機能性材料の担体としての利用が可能で
あり、またそのままで成形加工できるので成形材
料、充てん材料としても好適に使用できる。 さらにこの方法は顔料などの表面処理技術とし
ても用いることができ、工業的にも極めて有用な
方法である。 次に実施例によつて本発明をさらに詳細に説明
する。 実施例 1 耐圧反応管に合成ゼオライト(東洋曹達製100
メツシユ以下)20.0gを入れ、室温で脱気したの
ちメチルメタクリレート(以下MMAと略す)
2.49gを蒸気として導入し吸着させた。次に反応
管内に二酸化硫黄1.80gを導入し密封して60℃に
調節した恒温槽の中に3時間放置した。反応後、
反応生成物をエチルエーテルで洗浄したのち、60
℃で20時間減圧乾燥してポリマーの被覆状態が良
好なPMMA―合成ゼオライト複合体21.2gを得
た。これを示差熱天秤分析(以下DTA・TGAと
略す)にかけた結果、300℃と369℃にポリマーの
分解による発熱ピークとこれにともなう重量減少
が認められた。また、この複合体2.0gを40%フ
ツ酸溶液100mlに浸漬した結果、0.10gのポリマ
ーが溶液中に分解されず残存した。この結果から
重合率は42.6%、組成物中のポリマー含量は5.0
%であることが判つた。 実施例 2 実施例1において、硫酸銅処理により銅4.0重
量%を含有させた合成ゼオライト20.0gを用い、
減圧下にMMA蒸気7.20gと接触させてこれを吸
着させ、実施例1と同様の操作を行いポリマーの
被覆状態が良好な複合体27.1gを得た。複合体の
DTA・TGA及びフツ酸処理の結果、重合率は
98.0%、組成物中のポリマー含量は25.7%であつ
た。この複合体粉末を圧力200Kg/cm2、金型温度
180℃で圧縮成形して得た成形体の曲げ強度は480
Kg/cm2、圧縮強度は1,320Kg/cm2であつた。 実施例 3 耐圧反応管に天然ゼオライト(秋田県二ツ井
産、200メツシユ以下)を入れ、室温で脱気した
のちスチレン蒸気と接触させ、その2.8gを吸着
させた。次に反応管内に二酸化硫黄0.90gを導入
し密封して室温で1日放置した。反応後、反応生
成物を60℃で20時間減圧乾燥してポリマーの被覆
状態が良好な複合体22.78gを得た。複合体の
DTA・TGA及びフツ酸処理の結果、重合率は
99.2%、組成物中のポリマー含量は12.2%であつ
た。 実施例 4 実施例1において、塩化第二鉄処理した固体物
質20.0g及び各種モノマーを用いて同じ操作を繰
り返した。この結果を第1表に示す。このように
して得られた複合体を電子顕微鏡で観察したとこ
ろ、いずれもポリマーが固体物質を効率よく被覆
していることが認められた。
The present invention involves contacting a solid material with a liquid vinyl monomer in the form of vapor, or impregnating a solid material with a liquid vinyl monomer, and then removing excess vinyl monomer by evaporation or washing with a solvent to coat the surface of the solid material with the vinyl monomer. It relates to a method of adsorption followed by contact with gaseous sulfur dioxide and polymerization thereof without the use of a liquid medium. In recent years, composite materials of solid substances and polymers have been widely used in many fields as building materials and various materials, and have been gaining importance because they can be used as carriers for functional materials. Generally, when producing a composite material of a solid material and a polymer, the surface of the solid material undergoes a compositing process to form an interface between the matrix polymer and the solid material. The importance of this interface has been studied from various angles, and methods of modifying the physical and chemical structure of the surface of solid materials have already been attempted in order to obtain a desirable interface. For example, as a method for coating the surface of solid particles with a polymer without using a liquid medium, methods have been proposed in which vinyl monomers adsorbed on the surface of a solid material are polymerized by mechanochemical treatment or radiation irradiation, but none of them are effective. It has not been put into practical use because of its drawbacks such as low energy consumption and the need for special equipment. In addition, a method in which a radically polymerizable vinyl monomer supported on the surface of inorganic particles is brought into contact with gaseous sulfur dioxide in a gas phase (Japanese Unexamined Patent Application Publication No. 103978/1989) is also used to polymerize polymers that do not use a liquid medium. This is one of the methods for producing coated inorganic materials. However, in this method, the liquid vinyl monomer is directly supported on the inorganic substance, so
The amount of vinyl monomer attached to the surface of an inorganic substance is large, and when polymerization is carried out by contacting with sulfur dioxide, it is necessary to suspend them in a gas phase by shaking or blowing an air stream. Therefore, the particle size of the inorganic material used as a raw material is limited to a size that allows it to be suspended in the gas phase. In addition, since polymerization occurs preferentially on the surface of the inorganic material and almost no polymerization occurs anywhere else, this method has disadvantages such as low polymer yield, and is not necessarily a satisfactory method. The present inventor has conducted intensive research to improve this point and to develop a method that can efficiently obtain a polymer-coated solid material with simple operations. It has been discovered that the object can be achieved by adsorbing it and bringing it into contact with gaseous sulfur dioxide in a non-medium, and based on this finding, the present invention has been accomplished. That is, according to the present invention, when coating the surface of an inorganic or organic solid material with a polymer, the solid material and the liquid vinyl monomer are brought into contact as vapor, or the solid material is impregnated with the liquid vinyl monomer, and then the excess water is removed. Polymer-coated solid materials can be easily prepared by adsorbing the vinyl monomer onto the surface of the solid material by evaporating off the vinyl monomer or washing with a solvent, followed by polymerization by contacting with gaseous sulfur dioxide in a non-medium. can be obtained. To carry out the present invention preferably, a solid substance is placed in a sealable container, and after adsorbing a vinyl monomer that can be radically polymerized or copolymerized, gaseous sulfur dioxide is introduced, the container is sealed, and a predetermined temperature is maintained at a predetermined temperature. The vinyl monomer adsorbed on the solid may be polymerized over time. The solid substance used in the method of the present invention may be any substance as long as it has the function of adsorbing the vinyl monomer vapor used, but in particular an inorganic or organic solid substance with a polar solid surface and a large surface area is desirable. Examples of such materials include zeolite, molecular sieves, white carbon, silica gel, silicic anhydride, alumina, bentonite, activated clay, metahalosite,
Inorganic solid substances such as kaolin, mica, talc, carbon black, carbon fiber, graphite, or wood flour, purified cellulose, cellulose fiber, valve,
Examples include organic solid materials such as straw, silk, and wool. Furthermore, if the polymerization rate of the adsorbed vinyl monomer is slow and the polymerization rate is low, it is advantageous to use a solid material that has been previously treated with a transition metal compound in order to accelerate the polymerization. As such a transition metal compound, compounds such as titanium, vanadium, chromium, manganese, iron, cobalt, nickel, iron, zinc, zirconium, and niobium can be used. It is sufficient that the amount of these transition metal compounds added is 10% by weight or less based on the solid material in terms of metal content, but even more is acceptable. On the other hand, the vinyl monomer used in the method of the present invention is
A liquid vinyl monomer that can undergo radical polymerization or radical copolymerization, such as acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, acrylonitrile, vinyl acetate, styrene, divinylbenzene, etc. . In the method of the present invention, in order to adsorb these vinyl monomers onto the surface of a solid substance, for example, the vinyl monomer vapor is brought into contact with a solid substance that has been dried under reduced pressure in a reaction vessel, or the solid substance is impregnated with a liquid vinyl monomer, and then the solid substance is impregnated with liquid vinyl monomer. This is done by drying under reduced pressure to evaporate off excess vinyl monomer. It is also possible to adsorb the vinyl monomer onto the surface of the solid material by mixing the liquid vinyl monomer and the solid material and washing away the excess vinyl monomer with a non-polar solvent such as n-heptane. Further, in order to adsorb two or more types of liquid vinyl monomers, a mixed vinyl monomer may be used, or the main vinyl monomer may be adsorbed first, and then other co-vinyl monomers may be adsorbed in order. The solid material adsorbing the vinyl monomer in this way has 1
It is advantageous to subject the material to the next contacting step with sulfur dioxide while containing about 10% by weight of water. The amount of vinyl monomer used in the present invention is preferably in the range of 0.5 to 100 parts by weight per 100 parts by weight of the solid material, and in particular, solid materials supporting 3 to 50 parts by weight of polymer are suitable for industrial use and from a cost standpoint. Many of them are suitable in terms of performance. The amount of sulfur dioxide used in the present invention is preferably in the range of 0.01 to 100% by weight based on the vinyl monomer, but a larger amount may be used. In the present invention, this sulfur dioxide is introduced into a reaction vessel containing a solid substance adsorbed with vinyl monomer, and then the vessel is sealed and the vinyl monomer is polymerized. Polymerization is carried out by standing still, but if necessary, stirring or shaking may be used. According to the present invention, most of the adsorbed vinyl monomer is polymerized in a polymerization time of about 1 to 5 hours, and the solid substance is uniformly and efficiently produced by the polymer, and most of the produced polymer is extracted with the solvent. The coating is so strong that it will not be damaged. The polymer-coated solid substance obtained by the method of the present invention can be used as a carrier for functional materials, and can be molded as it is, so it can be suitably used as a molding material or a filling material. Furthermore, this method can be used as a surface treatment technique for pigments, etc., and is an extremely useful method industrially. Next, the present invention will be explained in more detail with reference to Examples. Example 1 Synthetic zeolite (Toyo Soda 100
Add 20.0g of methyl methacrylate (hereinafter abbreviated as MMA) and degas it at room temperature.
2.49g was introduced as vapor and adsorbed. Next, 1.80 g of sulfur dioxide was introduced into the reaction tube, the tube was sealed, and the tube was left in a constant temperature bath adjusted to 60.degree. C. for 3 hours. After the reaction,
After washing the reaction product with ethyl ether,
After drying under reduced pressure at ℃ for 20 hours, 21.2 g of PMMA-synthetic zeolite composite with good polymer coating was obtained. When this was subjected to differential thermal analysis (hereinafter abbreviated as DTA/TGA), exothermic peaks at 300°C and 369°C due to polymer decomposition and an accompanying weight loss were observed. Furthermore, when 2.0 g of this composite was immersed in 100 ml of 40% hydrofluoric acid solution, 0.10 g of the polymer remained in the solution without being decomposed. From this result, the polymerization rate was 42.6%, and the polymer content in the composition was 5.0%.
It was found that %. Example 2 In Example 1, using 20.0 g of synthetic zeolite containing 4.0% by weight of copper by copper sulfate treatment,
The mixture was brought into contact with 7.20 g of MMA vapor under reduced pressure to adsorb it, and the same operation as in Example 1 was carried out to obtain 27.1 g of a composite with good polymer coverage. complex
As a result of DTA/TGA and hydrofluoric acid treatment, the polymerization rate was
98.0%, and the polymer content in the composition was 25.7%. This composite powder was heated at a pressure of 200Kg/cm 2 and a mold temperature of
The bending strength of the molded product obtained by compression molding at 180℃ is 480
Kg/cm 2 , and the compressive strength was 1,320 Kg/cm 2 . Example 3 Natural zeolite (manufactured in Futatsui, Akita Prefecture, 200 mesh or less) was placed in a pressure-resistant reaction tube, degassed at room temperature, and brought into contact with styrene vapor to adsorb 2.8 g of it. Next, 0.90 g of sulfur dioxide was introduced into the reaction tube, the tube was sealed, and the tube was left at room temperature for one day. After the reaction, the reaction product was dried under reduced pressure at 60° C. for 20 hours to obtain 22.78 g of a composite with good polymer coverage. complex
As a result of DTA/TGA and hydrofluoric acid treatment, the polymerization rate was
99.2%, and the polymer content in the composition was 12.2%. Example 4 The same procedure as in Example 1 was repeated using 20.0 g of ferric chloride treated solid material and various monomers. The results are shown in Table 1. When the composites thus obtained were observed under an electron microscope, it was found that the polymer efficiently coated the solid substance in each case.

【表】 実施例 5 実施例1における合成ゼオライトの代りにクロ
ム酸塩一硫酸混液で処理した200メツシユのアル
ミノケイ酸塩ガラス粉末20.0gを用い、MMA蒸
気4.2gを吸着させて、以下実施例1と同様の操
作を行い、ガラス粉末へのポリマーの複覆の程度
の良好な複合体24.0gを得た。複合体のDTA・
TGA及びフツ酸処理の結果、重合率は95.2%、
組成物中のポリマー含量は16.7%であつた。 実施例 6 耐圧反応管にモレキユラシーブス(半井化学
製、13X型)20.0gを入れ、200℃で1時間減圧
乾燥し、MMA10.0gを添加して真空含浸させ
た。次に過剰のMMAを蒸発除去したのち、反応
管内に二酸化硫黄0.9gを導入し密封して60℃に
調節した恒温槽中に3時間放置した。反応後、反
応生成物をエチルエーテルで洗浄したのち、60℃
で20時間乾燥してPMMA―モレキユラーシーブ
ス複合体23.0gを得た。これをDTA・TGAにか
けた結果、13.0%の重量減少とこれにともなう発
熱ピークが観察された。 実施例 7 フラスコに塩化第二鉄処理した粒状シリカゲル
(半井化学製、10〜40メツシユ)20.0gを入れ、
MMA38.0gを添加して真空含浸させた。次に内
容物をロ過し、n―ヘプタン50mlで洗浄したの
ち、耐圧反応管に入れ、室温で脱気した。次いで
反応管内に二酸化硫黄0.5gを導入し密封して60
℃に調節した恒温槽に3時間放置した。反応後、
反応生成物をエチルエーテルで洗浄したのち60℃
で20時間乾燥してPMMA―シリカゲル複合体25.2
gを得た。これをDTA・TGAにかけた結果、
20.6%の重量減少とこれにともなう発熱ピークが
観察された。 実施例 8 実施例4において得られた複合体10gを秤取
し、ベンゼンを溶媒としてソツクスレー抽出装置
で100時間抽出した。その結果を第2表に示す。
[Table] Example 5 In place of the synthetic zeolite in Example 1, 20.0 g of 200 mesh aluminosilicate glass powder treated with a chromate-monosulfuric acid mixture was used to adsorb 4.2 g of MMA vapor. The same operation as above was carried out to obtain 24.0 g of a composite with a good degree of double coverage of the polymer on the glass powder. Complex DTA・
As a result of TGA and hydrofluoric acid treatment, the polymerization rate was 95.2%.
The polymer content in the composition was 16.7%. Example 6 20.0 g of Molecule Sieves (manufactured by Hanui Chemical Co., Ltd., model 13X) was placed in a pressure-resistant reaction tube, dried under reduced pressure at 200° C. for 1 hour, and 10.0 g of MMA was added for vacuum impregnation. Next, excess MMA was removed by evaporation, and then 0.9 g of sulfur dioxide was introduced into the reaction tube, which was sealed and left in a constant temperature bath adjusted to 60° C. for 3 hours. After the reaction, the reaction product was washed with ethyl ether and heated to 60°C.
The mixture was dried for 20 hours to obtain 23.0 g of PMMA-molecular sieves composite. When this was subjected to DTA/TGA, a weight loss of 13.0% and an accompanying exothermic peak were observed. Example 7 20.0 g of granular silica gel treated with ferric chloride (manufactured by Hanui Chemical, 10-40 mesh) was placed in a flask.
38.0 g of MMA was added and vacuum impregnated. Next, the contents were filtered, washed with 50 ml of n-heptane, placed in a pressure-resistant reaction tube, and degassed at room temperature. Next, 0.5 g of sulfur dioxide was introduced into the reaction tube, and the tube was sealed.
It was left in a constant temperature bath adjusted to ℃ for 3 hours. After the reaction,
After washing the reaction product with ethyl ether, heat at 60°C.
After drying for 20 hours, the PMMA-silica gel composite 25.2
I got g. As a result of applying this to DTA/TGA,
A weight loss of 20.6% and an accompanying exothermic peak were observed. Example 8 10 g of the complex obtained in Example 4 was weighed out and extracted using a Soxhlet extractor using benzene as a solvent for 100 hours. The results are shown in Table 2.

【表】 比較例 PMMA10gをベンゼン100gに溶かした溶液中
に、実施例4において用いた固体物質を添加し、
かきまぜ機で均一に分散したのち、加熱脱気しな
がらベンゼンを除去させる方法によりポリマー被
覆体を得た。これを10g秤取し、実施例6に従い
ベンゼンで抽出した。その結果を第3表に示す。
[Table] Comparative example The solid substance used in Example 4 was added to a solution of 10 g of PMMA dissolved in 100 g of benzene.
After uniformly dispersing the mixture using a stirrer, a polymer coating was obtained by removing benzene while heating and degassing. 10g of this was weighed out and extracted with benzene according to Example 6. The results are shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 無機質又は有機質の固体物質表面をポリマー
で被覆するに当り、固体物質に液状ビニルモノマ
ーを蒸気として接触させて固体物質表面にビニル
モノマーを吸着させ、次いで、非媒質中において
ガス状二酸化硫黄と接触させて重合を行わせるこ
とを特徴とする方法。 2 無機質又は有機質の固体物質表面をポリマー
で被覆するに当り、固体物質に液状ビニルモノマ
ーを含浸させたのち過剰のビニルモノマーを蒸発
除去するか溶媒で洗浄して固体物質表面にビニル
モノマーを吸着させ、次いで非媒質中においてガ
ス状二酸化硫黄と接触させて重合を行わせること
を特徴とする方法。
[Scope of Claims] 1. When coating the surface of an inorganic or organic solid substance with a polymer, the solid substance is brought into contact with a liquid vinyl monomer in the form of vapor to adsorb the vinyl monomer onto the solid substance surface, and then in a non-medium. A method characterized in that the polymerization is carried out in contact with gaseous sulfur dioxide. 2. When coating the surface of an inorganic or organic solid material with a polymer, the solid material is impregnated with a liquid vinyl monomer, and then the excess vinyl monomer is removed by evaporation or washed with a solvent to adsorb the vinyl monomer onto the surface of the solid material. , followed by polymerization by contacting with gaseous sulfur dioxide in a non-medium.
JP14758481A 1981-09-18 1981-09-18 Coating method for polymer on solid material Granted JPS5849479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14758481A JPS5849479A (en) 1981-09-18 1981-09-18 Coating method for polymer on solid material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14758481A JPS5849479A (en) 1981-09-18 1981-09-18 Coating method for polymer on solid material

Publications (2)

Publication Number Publication Date
JPS5849479A JPS5849479A (en) 1983-03-23
JPS6239026B2 true JPS6239026B2 (en) 1987-08-20

Family

ID=15433647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14758481A Granted JPS5849479A (en) 1981-09-18 1981-09-18 Coating method for polymer on solid material

Country Status (1)

Country Link
JP (1) JPS5849479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312021U (en) * 1989-06-15 1991-02-07

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617218B2 (en) * 1985-06-03 1994-03-09 鐘紡株式会社 Hydrophobic zeolite composition and method for producing the same
US5272231A (en) * 1992-07-28 1993-12-21 General Electric Company Nitric oxide for vapor phase elimination of styrene and acrylonitrile popcorn polymer in bulk SAN production
US5399644A (en) * 1992-07-28 1995-03-21 General Electric Company Sulfur dioxide for vapor phase elimination of styrene and acrylonitrile popcorn polymer in bulk san production
EP0982376B1 (en) * 1998-08-24 2004-04-28 Ciba Specialty Chemicals Holding Inc. Nitrogen doped carbon-coated effect pigments and their manufacture
DE10227224B4 (en) * 2002-06-18 2005-11-24 Daimlerchrysler Ag Use of a granulate for producing an article with a 3D binder printing process
JP4574215B2 (en) * 2003-04-28 2010-11-04 株式会社トクヤマ Method for producing polymer-coated particle powder and polymer-coated inorganic particle
JP2016047922A (en) * 2014-08-27 2016-04-07 三洋化成工業株式会社 Composite particle for ink, ink composition and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312021U (en) * 1989-06-15 1991-02-07

Also Published As

Publication number Publication date
JPS5849479A (en) 1983-03-23

Similar Documents

Publication Publication Date Title
US4263407A (en) Polymeric adsorbents from macroreticular polymer beads
US5308481A (en) Chemically bound fullerenes to resin and silica supports and their use as stationary phases for chromatography
CA2391811C (en) New molecularly imprinted polymers grafted on solid supports
AU747411B2 (en) Three-dimensional interpenetrating networks of macroscopic assemblages of randomly oriented carbon fibrils and organic polymers
US6110533A (en) Polymeric desiccant articles and process for their manufacture
IL32917A (en) Macroreticular resins
GB2168045A (en) A composite porous material, process for production and separation of metallic element
US6113819A (en) Three dimensional interpenetrating networks of macroscopic assemblages of oriented carbon fibrils and organic polymers
WO2021103622A1 (en) Nicotinamide virtual template surface molecularly imprinted material and preparation method therefor and application thereof
JPS6239026B2 (en)
EP0007792B1 (en) Synthetic polymeric adsorbents and ion exchange resins, their production and processes using them
CN111085118B (en) Preparation method of polydopamine modified polyether sulfone imprinted composite membrane
US9006303B2 (en) Mesoporous polymer colloids
AU2020273237B2 (en) A polymer coated metal-organic framework
US4260388A (en) Purification of anthocyan solutions
US3967006A (en) Dry process for the production of plastic-coated inorganic substances
CN117101616A (en) Molecularly imprinted polymer adsorption material based on metal-organic framework, and preparation method and application thereof
CN110256624A (en) A kind of hypercrosslinked polymeric resin and its application in adsorbing separation 5 hydroxymethyl furfural
JPS61118402A (en) Covering of solid substance with polymer
GB2091581A (en) Macroporous polymer adsorbents
JPS6090040A (en) Synthetic adsorbent and preparation thereof
JPS60149616A (en) Production of polymer composition containing radical polymerization initiator
SU1370552A1 (en) Method of producing sorbent for chromatography liquids
JPS6317917A (en) Surface treatment of carbonaceous material
JP3588631B2 (en) Method for producing porous organic polymer