JPS6238954B2 - - Google Patents

Info

Publication number
JPS6238954B2
JPS6238954B2 JP7220778A JP7220778A JPS6238954B2 JP S6238954 B2 JPS6238954 B2 JP S6238954B2 JP 7220778 A JP7220778 A JP 7220778A JP 7220778 A JP7220778 A JP 7220778A JP S6238954 B2 JPS6238954 B2 JP S6238954B2
Authority
JP
Japan
Prior art keywords
motor
starting
machine
driving motor
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7220778A
Other languages
Japanese (ja)
Other versions
JPS54163312A (en
Inventor
Noboru Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7220778A priority Critical patent/JPS54163312A/en
Publication of JPS54163312A publication Critical patent/JPS54163312A/en
Publication of JPS6238954B2 publication Critical patent/JPS6238954B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Motor And Converter Starters (AREA)

Description

【発明の詳細な説明】 本発明はモータにより減速する形の大きな慣性
機械を駆動するため主運転用モータの他に、始動
時、小形の始動専用のリニアモータを低速軸に使
い主運転用モータの出力を連続運転出力まで下げ
経済的な運転の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION In order to drive a large inertial machine that is decelerated by a motor, in addition to the main driving motor, at the time of starting, a small linear motor exclusively for starting is used on the low speed shaft. Concerning improvements in economical operation by reducing the output of the engine to continuous operation output.

モータで大きな慣性機械を始動させるには、ロ
ートルに蓄積されうる熱容量からモータの大きさ
を決め、その大きさは連続運転時より決める出力
より大きい。今回転数Oよりnまで慣性モーメン
トG(Dm)2の回転体を始動する従来の始動方法
を第1図に示す。図において大きな慣性機械1の
軸端にプーリー3を嵌着する。この慣性機械1と
平行して駆動用兼運転用(以下運転モータとい
う)モータ2を設置し、軸端に前記プーリー3よ
り外径が小径となるプーリー3aを嵌着させる。
そしてプーリー3と3aとはベルトによつて連結
させ運転モータ2の駆動により慣性機械1を減速
運転する。この時慣性機械1のロートルに蓄積す
る発熱量はQ=3.3×G(Dm)2×n2×10-4calであ
る。若し運転負荷L1Kwとしてその許容ロートル
発熱量Q1がQより小さければ、これに見合つた
モータの大きなモータL2Kwまでにする必要があ
る。そのため、大きな慣性機械1を減速して使用
する場合慣性モーメントをG(Dl)2とし回転数を
nlとして、運転モータ2軸の回転数nmに対して
駆動モータ軸換算し、これをG(Dm)2とすれば
G(Dm)2=G(Dl)2×(nl/nm)となる。そし
て 運転用モータ2の慣性モーメントをGD2とし、こ
の比G(Dm)2/GD2≧1000に達する場合には、
単に運転モータ2の容量を上げるのでは経済的に
引き合わない。
To start a large inertial machine with a motor, the size of the motor is determined based on the heat capacity that can be stored in the rotor, and the size is larger than the output determined from continuous operation. Figure 1 shows a conventional starting method for starting a rotating body with a moment of inertia G (Dm) 2 from rotational speed O to n. In the figure, a pulley 3 is fitted onto the shaft end of a large inertial machine 1. A driving/operating motor 2 (hereinafter referred to as a driving motor) is installed parallel to the inertial machine 1, and a pulley 3a having an outer diameter smaller than the pulley 3 is fitted onto the shaft end.
The pulleys 3 and 3a are connected by a belt, and the inertial machine 1 is operated at a reduced speed by the driving motor 2. At this time, the amount of heat accumulated in the rotor of the inertial machine 1 is Q = 3.3 x G (Dm) 2 x n 2 x 10 -4 cal. If the allowable rotor calorific value Q 1 is smaller than Q as the operating load L 1 K w , it is necessary to use a large motor L 2 K w corresponding to this. Therefore, when using a large inertia machine 1 at reduced speed, the moment of inertia is G (Dl) 2 and the rotation speed is
As nl, convert the rotation speed nm of the two drive motor axes into the drive motor shaft, and let this be G(Dm) 2 , then G(Dm) 2 = G(Dl) 2 × (nl/nm) 2 . Letting the moment of inertia of the driving motor 2 be GD 2 , when this ratio G(Dm) 2 /GD 2 ≧1000 is reached,
Simply increasing the capacity of the driving motor 2 is not economically advantageous.

このようにG(Dm)2/GD2比が大きくなる
と、始動のために運転モータ2容量を大きくし
て、且つ運転時は軽負荷となる効率の悪い所で使
用する等の欠点があつた。これらの欠点を補うも
のに機械的な遠心力クラツチを利用して、トルク
伝達面を滑らせながら始動する方法もあるが、G
(Dm)2/GD2が大きいとクラツチの伝達面が短時
間に摩耗してしまう欠点があつた。そのため非接
触形の経済的な始動機が必要であつた。
When the G (Dm) 2 / GD 2 ratio increases in this way, there are disadvantages such as the need to increase the capacity of the operating motor 2 for starting and use it in an inefficient location where the load is light during operation. . To compensate for these drawbacks, there is a method that uses a mechanical centrifugal force clutch to start while sliding the torque transmission surface, but the
If (Dm) 2 /GD 2 is large, the transmission surface of the clutch will wear out in a short period of time. Therefore, a non-contact, economical starter was needed.

本発明はかかる欠点をなくするため、運転用モ
ータは運転時の負荷に合つた容量のモータとし
て、そのモータの許容ロートル発熱量を超えた分
を吸収できる小形でしかも許容熱容量の大きな始
動用モータとしてリニアモータを使用する高慣性
モーメント回転機械の始動方法を提供することを
目的とする。
In order to eliminate such drawbacks, the present invention provides a starting motor that is small in size and has a large allowable heat capacity that can absorb the amount of heat that exceeds the allowable rotor heat capacity of the motor, and a motor that has a capacity that matches the load during operation. The purpose of this invention is to provide a method for starting a high moment of inertia rotating machine using a linear motor.

以下本発明の実施例を第2図乃至第5図を参照
しながら説明する。但し従来と同一部分は同一符
号を使用する。第2図は本発明の一実施例による
始動方法の構成図で、第3図はリニアモータ回転
子の正面図である。図において、大きな慣性機械
1の軸端にプーリー3を嵌着させ、このプーリー
3の反慣性機械1側の端面に半径Rで断面形状が
コの字形状のロートル5を取付け、このロートル
5の外周の一部分へコイル6を巻装した鉄心4を
対向に配置させリニアモータとした始動用モータ
7を形成させる。始動用モータ7の大きさは、半
径Rのロートル5に対して所定の回転数n1を得
られよい特性となる円弧角θを選ぶ。又、慣性機
械1と並行して従来より小さい運転時出力の運転
モータ2aを設置し、軸端にはプーリー3の外径
より小径となるプーリー3bを嵌着させる。そし
てプーリー3と3bとはベルトによつて連結させ
る。
Embodiments of the present invention will be described below with reference to FIGS. 2 to 5. However, the same parts as in the past are given the same reference numerals. FIG. 2 is a block diagram of a starting method according to an embodiment of the present invention, and FIG. 3 is a front view of a linear motor rotor. In the figure, a pulley 3 is fitted onto the shaft end of a large inertial machine 1, and a rotor 5 having a radius R and a U-shaped cross section is attached to the end face of the pulley 3 on the opposite side of the inertial machine 1. A starting motor 7, which is a linear motor, is formed by arranging iron cores 4, each of which has a coil 6 wound around a part of its outer periphery, facing each other. As for the size of the starting motor 7, an arc angle θ is selected that provides good characteristics for obtaining a predetermined rotational speed n1 for the rotor 5 having a radius R. Further, a driving motor 2a having a smaller operating output than the conventional motor is installed in parallel with the inertial machine 1, and a pulley 3b having a diameter smaller than the outer diameter of the pulley 3 is fitted to the shaft end. The pulleys 3 and 3b are connected by a belt.

尚慣性機械1の慣性モーメントはG(Dl)2とし
回転数nlとする。又、運転モータ2aの慣性モー
メントをGa(Da)2とし回転数nmとする。そして
始動用モータ7と運転モータ2aのスピード・ト
ルク曲線は第4図の曲線8と9に夫々示す。次に
本実施例の起動方法を説明する。まず始動用モー
タ7と運転モータ2aの回転方向の同一性を確認
して電源を投入する。すると始動用モータ7のリ
ニアモータは起動トルクが大きいために低速軸を
n1回転まで始動すると電源を遮断する。その時
の運転モータ2aの回転数は第5図に示すように
n1×nm/nlまで上昇する。更に運転用モータ2aを nmまで回転させると慣性機械1の回転数もnlま
で上昇する。この時の始動用モータ7と運転モー
タ2aのスピードトルク曲線に於ける前記回転数
n1×nm/nlとnmの関係は、第4図に示すような位置 となる。このように起動トルクの大きい始動用モ
ータ7が始動時を分担し、慣性機械1の始動の途
中からと運転時には運転特性の良い運転モータ2
aの分担により、始動が短時間で終る。又、運転
モータ2a自身の慣性モーメントGa(Da)2と、
運転モータ軸換算の負荷慣性モーメントG
(Dm)2を加算した慣性モーメントが起動時に運転
モータ2aにかかつている。そして慣性機械1の
起動完了までに要する総始動の発熱量はQt=3.3
×{Ga(Da)2+G(Dm)2}n2×10-4calであり、
運転モータ2aの許容発熱量をQm(n1nm/nlから nm迄の回転数のもの)とすれば、総始動の発熱
量Qtとの差Qs=Qt−Qm分は始動用モータ7に
配分されねばならぬ(零からnl迄の回転数のもの
である)。これにより3.3×{G(Dl)2+Ga(Da)2
×(nm/nl)}n1 2×10-4calが始動用モータで、
3.3 ×{G(Dm)2+Ga(Da)2}{(nm)2−(n×nm/
nl) }×10calが運転モータ2aにて、夫々負担する
発熱量である。即ち総始動の発熱量を始動用モー
タ7と運転モータ2aで分担していると、前記短
時間始動による発熱量減により運転モータ2aが
従来に比べ、同一定格モータでは2乃至3割の鉄
心重量と巻線量が減少し大幅に小形化される。
The moment of inertia of the inertia machine 1 is G(Dl) 2 , and the number of rotations is nl. Further, the moment of inertia of the driving motor 2a is Ga (Da) 2 and the rotation speed is nm. The speed/torque curves of the starting motor 7 and the driving motor 2a are shown in curves 8 and 9 in FIG. 4, respectively. Next, the startup method of this embodiment will be explained. First, it is confirmed that the rotational directions of the starting motor 7 and the driving motor 2a are the same, and then the power is turned on. Then, the linear motor of the starting motor 7 has a large starting torque, so the low-speed shaft is turned off.
When it starts up to n1 rotation, the power is cut off. The rotational speed of the driving motor 2a at that time is as shown in Fig. 5.
It increases to n 1 ×nm/nl. Further, when the driving motor 2a is rotated to nm, the rotational speed of the inertial machine 1 is also increased to nl. The above-mentioned rotational speed in the speed-torque curve of the starting motor 7 and the driving motor 2a at this time
The relationship between n1×nm/nl and nm is as shown in FIG. In this way, the starting motor 7, which has a large starting torque, takes over the task of starting the inertial machine 1, and during the start of the inertial machine 1, and during operation, the starting motor 7, which has good operating characteristics, takes over the task.
Due to the sharing of part a, starting can be completed in a short time. In addition, the moment of inertia Ga (Da) 2 of the driving motor 2a itself,
Load inertia moment G converted to operating motor shaft
(Dm) 2 is applied to the driving motor 2a at startup. The total amount of heat generated to start up the inertial machine 1 is Qt = 3.3.
×{Ga(Da) 2 +G(Dm) 2 }n 2 ×10 -4 cal,
If the allowable calorific value of the operating motor 2a is Qm (with a rotational speed from n 1 nm/nl to nm), the difference from the total starting calorific value Qt is distributed to the starting motor 7 by Qs = Qt - Qm. (with rotational speeds from 0 to nl). This results in 3.3×{G(Dl) 2 +Ga(Da) 2
×(nm/nl) 2 }n 1 2 ×10 -4 cal is the starting motor,
3.3 × {G(Dm) 2 +Ga(Da) 2 }{(nm) 2 −(n×nm/
nl) 2 }×10cal is the amount of heat generated by each driving motor 2a. In other words, when the total starting heat generation is shared between the starting motor 7 and the driving motor 2a, the iron core weight of the driving motor 2a is 20 to 30% as compared to the conventional motor due to the reduction in heat generation due to the short time starting. The amount of winding is reduced and the size is significantly reduced.

この始動用モータ7は低速軸でも高速軸に取付
けてもよいが、低速軸に取付の方がリニアモータ
の設計上の円弧角θが小さく出来る点にある。リ
ニアモータの回転数は60τp/πR(ここでτ
pはコイルのポールピツチ、は電源周波数、R
はロートル半径)で示されるように、半径Rは周
囲の寸法条件と経済性より決まり大きくとれない
ので、回転数のコントロールはピツチτpで行わ
れる。もし回転数を大きくとろうとしても、2極
巻線にしてしかもコイルのポールピツチτpを大
きく、即ち円弧角θの大きい極端な場合にはθ>
180゜になる。これは機械の構成、巻線の納め、
極の形成が不利となつて特性が悪くなる。低速軸
ではリニアモータは極を大きくしても、ポールピ
ツチτpを小さく且つ円弧角θも小さく出来て機
械として小形にまとめられ、しかも特性がよいも
のが設計出来る。始動用モータ7としてのリニア
モータはこのような理由で高速には不向きで低速
軸に取付けの方がよい。
This starting motor 7 may be attached to either the low-speed shaft or the high-speed shaft, but the advantage of attaching it to the low-speed shaft is that the arc angle θ in the design of the linear motor can be made smaller. The rotation speed of the linear motor is 60τp/πR (where τ
p is the pole pitch of the coil, is the power supply frequency, and R
Since the radius R cannot be made larger due to the surrounding dimensional conditions and economical considerations, the rotational speed is controlled by the pitch τp. Even if you try to increase the rotation speed, use a two-pole winding and increase the pole pitch τp of the coil, that is, in the extreme case where the arc angle θ is large, θ>
It becomes 180°. This is the configuration of the machine, the storage of the windings,
The formation of poles becomes disadvantageous and the characteristics deteriorate. On the low-speed axis, even if the poles of the linear motor are made large, the pole pitch τp and the arc angle θ can be made small, making it possible to design a machine that is compact and has good characteristics. For these reasons, the linear motor used as the starting motor 7 is not suitable for high speed operation, and is better installed on a low speed shaft.

更に低速軸では、始動時モータ軸より慣性モー
メントが大きくなるが、リニアモータの円弧角θ
を変えずに鉄心積厚を大きくすることもできる。
またリニアモータ自身が、アルミキヤストロー
トル誘導電動機よりもロートル全周が外気に接触
していること。ステータに包まれている部分が
少ないこと。運転モータのロートル径より大き
いこと。アルミ等低融点の材質を使わないこ
と。冷却がよいこと等から熱容量が極めて大き
くとれるので問題とならない。
Furthermore, the moment of inertia of the low-speed shaft is larger than that of the motor shaft at startup, but the arc angle θ of the linear motor
It is also possible to increase the core thickness without changing.
In addition, the linear motor itself has more contact with the outside air than the aluminum cast rotor induction motor. Fewer parts are covered by the stator. Must be larger than the rotor diameter of the driving motor. Do not use materials with low melting points such as aluminum. This is not a problem because the heat capacity can be extremely large due to good cooling.

また、第4図に示す電流曲線で、運転モータ2
aの始動電流11並みに始動用モータ7の始動電
流10を合わすことにより、両者に用いる電源の
接触器、サーマルの設定変更を必要としない。
Also, in the current curve shown in Fig. 4, the operating motor 2
By combining the starting current 10 of the starting motor 7 with the starting current 11 of a, it is not necessary to change the settings of the contactors and thermals of the power supplies used for both.

更に始動完了後は始動用モータ7は電源が遮断
され非接触であり、運転モータ2aは従来に比べ
小形軽量化されている等で機械損が減少する。そ
して、リニアモータは停止時に制動用としても使
用出来るので、短時間で停止して危険度も少なく
且つ放熱も良い。
Further, after the start is completed, the power to the starting motor 7 is cut off and there is no contact, and the driving motor 2a is smaller and lighter than the conventional motor, reducing mechanical loss. Furthermore, since the linear motor can also be used for braking when stopped, it can be stopped in a short time, with less danger and good heat dissipation.

このように本実施例は運転モータ、始動用であ
るリニアモータの特性をいかして始動発熱を合理
的に配分し、各々適正の大きさのモータの計画を
し、効率のよい非接触にして且つ始動機は軸受を
もたないことにより保守上優れた低速軸での二段
始動方法を提供するものである。
In this way, this embodiment takes advantage of the characteristics of the driving motor and the linear motor used for starting to rationally allocate the starting heat, plans the appropriate size of each motor, and makes it efficient and non-contact. Since the starter does not have a bearing, it provides a two-stage starting method with a low-speed shaft that is superior in terms of maintenance.

始動用モータ7は低速軸に取付け、ロートル5
は鋼で設計製作出来るのでロートル5は機械の一
部を利用することもできる。
The starting motor 7 is attached to the low-speed shaft, and the rotor 5
Since the rotor 5 can be designed and manufactured from steel, a part of the machine can also be used for the rotor 5.

以上のように大きな慣性体をモータにより減速
運転する機械において、始動特性及び保守性の良
いリニアモータを低速軸に取付け、全始動発熱を
運転モータ、始動用であるリニアモータの両者に
合理的に配分し、両モータによつて2段に始動す
ることにより、運転モータを小容量とし従来より
信頼性の高く、又経済的な始動方法ができる。
As mentioned above, in a machine that decelerates a large inertial body using a motor, a linear motor with good starting characteristics and ease of maintenance is installed on the low-speed shaft, and all starting heat is rationally distributed to both the driving motor and the linear motor used for starting. By distributing the starting power and starting in two stages using both motors, the capacity of the operating motor can be reduced and a starting method that is more reliable and more economical than the conventional method can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の始動方法の構成説明図、第2図
は本発明の一実施例を示す構成説明図、第3図は
第2図のリニアモータ回転子の正面図、第4図及
び第5図は特性説明図である。 1…慣性機械、2,2a…駆動用兼運転用モー
タ、7…始動用モータ。
Fig. 1 is an explanatory diagram of the configuration of a conventional starting method, Fig. 2 is an explanatory diagram of the configuration showing an embodiment of the present invention, Fig. 3 is a front view of the linear motor rotor in Fig. 2, and Figs. FIG. 5 is a characteristic diagram. 1... Inertia machine, 2, 2a... Drive/operation motor, 7... Starting motor.

Claims (1)

【特許請求の範囲】[Claims] 1 回転する大きな慣性機械を運転用モータによ
り減速運転するものにおいて、減速回転する前記
慣性機械にロートル径は前記運転用モータのロー
トル径より大きく且つステータは前記ロートル周
囲の一部分のみを囲んで構成されたリニアモータ
で成る始動用モータを配設し、まず始動用モータ
により加速し任意回転のところより前記運転用モ
ータによつて定常回転数まで回転させることを特
徴とする高慣性モーメント回転機械の始動方法。
1. In a device in which a large rotating inertial machine is decelerated by a driving motor, the rotor diameter of the decelerating inertial machine is larger than the rotor diameter of the driving motor, and the stator is configured to surround only a part of the rotor. 1. Starting a high-inertia rotating machine, characterized in that a starting motor consisting of a linear motor is provided, the starting motor first accelerates the machine, and from an arbitrary rotation point, the operating motor rotates the machine to a steady rotation speed. Method.
JP7220778A 1978-06-16 1978-06-16 Method of starting high inertial moment rotary machine Granted JPS54163312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7220778A JPS54163312A (en) 1978-06-16 1978-06-16 Method of starting high inertial moment rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7220778A JPS54163312A (en) 1978-06-16 1978-06-16 Method of starting high inertial moment rotary machine

Publications (2)

Publication Number Publication Date
JPS54163312A JPS54163312A (en) 1979-12-25
JPS6238954B2 true JPS6238954B2 (en) 1987-08-20

Family

ID=13482554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7220778A Granted JPS54163312A (en) 1978-06-16 1978-06-16 Method of starting high inertial moment rotary machine

Country Status (1)

Country Link
JP (1) JPS54163312A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235115A (en) * 1988-07-22 1990-02-05 Mitsuya Zouen:Kk Slope protection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235115A (en) * 1988-07-22 1990-02-05 Mitsuya Zouen:Kk Slope protection method

Also Published As

Publication number Publication date
JPS54163312A (en) 1979-12-25

Similar Documents

Publication Publication Date Title
US6177734B1 (en) Starter/generator for an internal combustion engine, especially an engine of a motor vehicle
US4346773A (en) Apparatus for operating a motor vehicle
EP1481463B1 (en) Electromechanical converter
JP3292688B2 (en) Rotating electric machine, hybrid drive device including the same, and operation method thereof
EP1565337A1 (en) System for storage of power
WO2013097766A1 (en) Permanent magnet harmonic motor
JP2002325412A (en) Axial-gap type motor, generator and motor-generator
GB2314128A (en) An epicyclic variable transmission controlled by an electric coupling
CN1141775C (en) Directly driven synchronous dragger with Nd-Fe-B permanent magnetic rotor
JPS6238954B2 (en)
CN86201099U (en) Electromegnetic automatic stepless gearbox
JP2000515093A (en) Axle hub mounted energy converter
JPS6152140A (en) Three-phase pole change motor
SU1385187A1 (en) Asynchronous motor hollow rotor
CN211880206U (en) Novel pole-changing multi-speed three-phase asynchronous motor
JP3661247B2 (en) Abduction type rotating electrical machine
JPH0116386Y2 (en)
JPS63162957A (en) Starter motor
JPS6234931Y2 (en)
JPH0514710Y2 (en)
SU1734167A1 (en) Electric machine
JP3185936B2 (en) Electric rotating machine for vehicles
CN2175215Y (en) Hoister with electric motor in it
CN116722684A (en) Stable motor stator and rotor of brushless barrier motor
RU2088033C1 (en) Controlled electromagnetic clutch