JPS6238938B2 - - Google Patents

Info

Publication number
JPS6238938B2
JPS6238938B2 JP59174761A JP17476184A JPS6238938B2 JP S6238938 B2 JPS6238938 B2 JP S6238938B2 JP 59174761 A JP59174761 A JP 59174761A JP 17476184 A JP17476184 A JP 17476184A JP S6238938 B2 JPS6238938 B2 JP S6238938B2
Authority
JP
Japan
Prior art keywords
signal
switch
monitoring
circuit
calling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59174761A
Other languages
Japanese (ja)
Other versions
JPS6154829A (en
Inventor
Saneji Ootsuki
Masami Kushida
Hiroyuki Fudo
Shunji Suzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Kansai Denryoku KK filed Critical Mitsubishi Electric Corp
Priority to JP59174761A priority Critical patent/JPS6154829A/en
Publication of JPS6154829A publication Critical patent/JPS6154829A/en
Publication of JPS6238938B2 publication Critical patent/JPS6238938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Selective Calling Equipment (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、高圧配電線に散在する区分用およ
び連系用開閉器を配電線搬送により遠隔監視する
線路用開閉器遠隔監視方式に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a line switch remote monitoring system for remotely monitoring segmentation and interconnection switches scattered on high-voltage distribution lines by means of distribution line transportation. .

〔従来技術〕[Prior art]

一般に、配電線搬送による信号伝送は伝送帯域
の制約および雑音の影響により、伝送速度は速く
することができず、しかも高圧配電線の区分用お
よび連系用開閉器(以下、開閉器と呼ぶ)は事故
および計画的な工事のときのみに操作され、操作
頻度としては非常に小さいために開閉器の状態監
視は中央側からのサイクリツクなポーリング方式
とするより、常時は状態変化のあつた開閉器側か
らの自動送信によるコーリング方式とし、必要な
場合にのみポーリング方式と併用する方式が有効
である。
In general, signal transmission through distribution lines cannot achieve high transmission speeds due to transmission band restrictions and noise effects, and high-voltage distribution line segmentation and interconnection switches (hereinafter referred to as switches) is operated only in the event of an accident or planned construction, and the frequency of operation is very small. Therefore, the status of the switch is monitored by monitoring the status of the switch constantly, rather than by cyclic polling from the central side. It is effective to use a calling method that uses automatic transmission from the side, and to use it in combination with a polling method only when necessary.

第1図に高圧配電線の金属回路を信号伝送路と
する配電線搬送方式による開閉器遠隔監視の概念
図を示す。高圧配電線の金属回路を利用して信号
伝送する場合には電源端が最もインピーダンスが
低いことから、電源端から負荷側への搬送信号は
電圧信号を、また、負荷側から電源端への搬送信
号は電流信号を用いるのが一般的である。
FIG. 1 shows a conceptual diagram of remote monitoring of switches using a distribution line conveyance system in which the metal circuit of a high-voltage distribution line is used as a signal transmission path. When transmitting signals using the metal circuits of high-voltage distribution lines, the power supply end has the lowest impedance, so the carrier signal from the power supply end to the load side is the voltage signal, and the carrier signal from the load side to the power supply end is the voltage signal. Generally, a current signal is used as the signal.

同図において、1は配電用主変圧器、2はフイ
ーダしや断器、3はフイーダ変流器、4は高圧母
線、5は高圧配電線、6a〜6hは開閉器、7は
親機、8a〜8hは開閉器6a〜6hとそれぞれ
リンクした子機である。
In the figure, 1 is a main distribution transformer, 2 is a feeder switch, 3 is a feeder current transformer, 4 is a high voltage bus, 5 is a high voltage distribution line, 6a to 6h are switches, 7 is a main unit, Reference numerals 8a to 8h are slave units linked to the switches 6a to 6h, respectively.

たとえば、開閉器6aが現場操作されて状態変
化があつた場合には、当該子機8aからコーリン
グ信号が高圧配電線5へ送出され、フイーダ変流
器3を介して親機7で受信され、開閉器6aに状
態変化があつたことが監視される。
For example, when the switch 6a is operated on-site and the state changes, a calling signal is sent from the slave unit 8a to the high-voltage distribution line 5, received by the base unit 7 via the feeder current transformer 3, A change in state of the switch 6a is monitored.

しかしながら、配電線搬送方式は、伝送品質が
十分に高くないために、時には、コーリング信号
を親機7が正常受信できない場合もありうる。
However, since the transmission quality of the distribution line carrier method is not sufficiently high, there may be cases where the base unit 7 cannot normally receive the calling signal.

以上のような背景にあつて、従来は第2図に示
す親機と第3図に示す子機でもつて第4図に示す
手順例により、コーリング信号を送信した子機を
突き止めて状態変化を監視していた。
Against the above background, conventionally, the base unit shown in Figure 2 and the slave unit shown in Figure 3 have been able to locate the slave unit that sent the calling signal and detect the status change using the procedure example shown in Figure 4. I was watching.

第2図において、9は子機8a〜8hからの搬
送信号をフイーダ変流器3を介して受信する受信
回路、10は受信信号に含まれたアドレス情報お
よび開閉器状態情報の内容を検出する受信内容検
出回路、11は親機7の動作のすべてを制御する
制御回路、12は各子機8a〜8hから送られて
きた最新の開閉器状態のすべてを記憶しておく開
閉器状態記憶回路、13は受信したある開閉器の
状態と当該開閉器の開閉器状態記憶回路12に記
憶されている状態とを比較して変化を判別する比
較判別回路、14は開閉器状態監視の必要が生じ
た当該子機を呼び出すためのポーリング信号を発
生する個別監視信号発生回路、15は個別監視信
号を高圧母線4へ注入するための送信回路であ
る。
In FIG. 2, 9 is a receiving circuit that receives carrier signals from slave units 8a to 8h via feeder current transformer 3, and 10 is a receiving circuit that detects the contents of address information and switch status information included in the received signal. Received content detection circuit, 11 is a control circuit that controls all operations of the base unit 7, and 12 is a switch status memory circuit that stores all the latest switch statuses sent from each slave unit 8a to 8h. , 13 is a comparison/determination circuit that compares the received state of a certain switch with the state stored in the switch state storage circuit 12 of the switch and determines a change, and 14 is a circuit where the need for switch state monitoring has arisen. 15 is a transmission circuit for injecting the individual monitoring signal into the high-voltage bus 4.

第3図において、16は親機7からのポーリン
グ信号を受信する受信回路、17は受信したポー
リング信号が自機に該当する個別監視信号である
ことを検出する個別監視信号検出回路、18は子
機8a〜8hの動作のすべてを制御する制御回
路、19は開閉器状態を読込む開閉器状態読込回
路、20は開閉器状態を記憶する開閉器状態記憶
回路、21は、開閉器状態記憶回路20に記憶さ
れた状態と開閉器状態読込回路19に読込まれた
最新状態を比較して変化を判別する状態変化判別
回路、22は親機7からの個別監視信号の返信信
号として、または開閉器に状態変化があり、コー
リング信号として送信する送信信号を発生する送
信信号発生回路、23は送信信号を高圧配電線5
へ注入する送信回路である。
In FIG. 3, 16 is a receiving circuit that receives a polling signal from the base device 7, 17 is an individual monitoring signal detection circuit that detects that the received polling signal is an individual monitoring signal that corresponds to the own device, and 18 is a slave device. A control circuit that controls all operations of the machines 8a to 8h, 19 a switch state reading circuit that reads the switch state, 20 a switch state memory circuit that stores the switch state, and 21 a switch state memory circuit. A state change determination circuit that compares the state stored in 20 with the latest state read in the switch state reading circuit 19 to determine a change; A transmission signal generation circuit 23 generates a transmission signal to be transmitted as a calling signal when there is a state change in the high voltage distribution line 5.
It is a transmitting circuit that injects into

第4図は開閉器に状態変化があつた場合に、こ
れを親機7が監視を完了するまでの手順の一例を
示すタイムチヤートであり、同図は親機7の送
受信タイムチヤート、同図は開閉器6dに状態
変化があつた場合の子機8dの送受信タイムチヤ
ート、同図は開閉器6gに状態変化があつた場
合の子機8gの送受信タイムチヤートである。ま
た同図において、Cはコーリング信号、PMは個
別監視信号、ABは返信信号である。
FIG. 4 is a time chart showing an example of the procedure for the base unit 7 to complete monitoring when there is a change in the status of the switch; is a transmission/reception time chart of the handset 8d when there is a state change in the switch 6d, and this figure is a transmission/reception time chart of the handset 8g when there is a state change in the switch 6g. Further, in the figure, C is a calling signal, PM is an individual monitoring signal, and AB is a reply signal.

つぎに動作について、第4図のタイムチヤート
に基づいて説明する。
Next, the operation will be explained based on the time chart shown in FIG.

各開閉器6a〜6hの初期状態が、開閉器6a
〜6fは閉状態、開閉器6gおよび6hは開状態
との前提において、まず、開閉器6dが閉から開
状態に変化した場合、当該子機8dの状態変化検
出回路21で、状態変化が検出され、制御回路1
8からコーリング信号Cの送信が指令され(第4
図)、送信信号発生回路22で生成されたコー
リング信号Cが送信回路23から高圧配電線5へ
送出される。この信号はフイーダ変流器3を経て
親機7の受信回路9で受信され(第4図)、受
信内容検出回路10で子機8dからのコーリング
信号Cであることが検出されて、信号に含まれた
アドレスと開閉器状態の内容が、開閉器状態記憶
回路12に記憶されている内容と比較判別回路1
3で比較されて変化があることが確認されたうえ
で制御回路11へ送られる。これらの内容は開閉
器状態記憶回路12に更新記憶されて、所定の監
視動作は完了する。
The initial state of each switch 6a to 6h is the switch 6a
-6f is in the closed state, and the switches 6g and 6h are in the open state. First, when the switch 6d changes from the closed state to the open state, the state change detection circuit 21 of the slave device 8d detects the state change. and control circuit 1
The transmission of the calling signal C is commanded from 8 (the 4th
), the calling signal C generated by the transmission signal generation circuit 22 is sent from the transmission circuit 23 to the high voltage distribution line 5. This signal is received by the receiving circuit 9 of the base unit 7 via the feeder current transformer 3 (Fig. 4), and the received content detection circuit 10 detects that it is the calling signal C from the slave unit 8d, and converts it into a signal. The included address and contents of the switch status are compared with the contents stored in the switch status storage circuit 12 and the determination circuit 1
3, and after confirming that there is a change, the data is sent to the control circuit 11. These contents are updated and stored in the switch state storage circuit 12, and the predetermined monitoring operation is completed.

つぎに、開閉器6gが開から閉状態に変化する
と、同様に当該子機8gからコーリング信号Cが
送信される(第4図)。この信号を親機7が正
常受信できなかつた場合には、受信内容検出回路
10から制御回路11に対し、受信不良を伝える
(第4図)。制御回路11はこの受信不良を受け
て、各子機8a〜8gを順次個別監視するために
個別監視信号発生回路14を起動する。個別監視
信号発生回路14は、まず、子機8aを個別監視
するポーリング信号PMを生成して送信回路15
を介して高圧母線4へ送出する。子機8aでは、
このポーリング信号PMを受信回路16で受信
し、個別監視信号検出回路17で検出して、制御
回路18へ伝える。制御回路18はこの個別監視
要求に応じて送信信号発生回路22で返信信号
ABを生成させ送信回路23を介して高圧配電線
5へ送出させる。この返信信号ABは親機7で受
信されて子機8aの個別監視は終了する。続いて
親機7は順次、子機8bから子機8hに対して同
様な個別監視を行つて、コーリング信号Cの受信
不良に対する救済処理を完了する(第4図)。
個別監視処理の途中で伝送不良が発生した場合に
は、当該子機へのポーリングを繰り返すことによ
つて所定の個別監視をもれなく行なう。
Next, when the switch 6g changes from the open state to the closed state, a calling signal C is similarly transmitted from the handset 8g (FIG. 4). If the base unit 7 cannot normally receive this signal, the reception content detection circuit 10 notifies the control circuit 11 of the reception failure (FIG. 4). In response to this poor reception, the control circuit 11 activates the individual monitoring signal generation circuit 14 in order to individually monitor each slave unit 8a to 8g in sequence. The individual monitoring signal generation circuit 14 first generates a polling signal PM for individually monitoring the handset 8a, and sends it to the transmission circuit 15.
It is sent to the high voltage bus 4 via. In the handset 8a,
This polling signal PM is received by the reception circuit 16, detected by the individual monitoring signal detection circuit 17, and transmitted to the control circuit 18. The control circuit 18 generates a reply signal using the transmission signal generation circuit 22 in response to this individual monitoring request.
AB is generated and sent to the high voltage distribution line 5 via the transmission circuit 23. This reply signal AB is received by the base unit 7, and the individual monitoring of the slave unit 8a is completed. Subsequently, the base unit 7 sequentially performs similar individual monitoring on the slave units 8b to 8h, and completes the relief process for poor reception of the calling signal C (FIG. 4).
If a transmission failure occurs during individual monitoring processing, the predetermined individual monitoring is performed without fail by repeating polling of the child device.

従来の開閉器遠隔監視は以上のような方式で行
なつていたので、開閉器の状態変化に伴うコーリ
ング信号に受信不良が発生すると、すべての子機
に対して開閉器状態を監視して確認する必要があ
り、開閉器が多い場合には当該子機を突き止め
て、状態変化を検知するまでに、多くの時間を要
す欠点があつた。
Conventional switch remote monitoring was performed using the method described above, so if poor reception occurs in the calling signal due to a change in switch status, the switch status is monitored and confirmed for all slave units. If there are many switches, it takes a lot of time to locate the handset and detect a change in status.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来の方式の欠点を除
去するためになされたもので、子機を、グループ
化し、コーリング信号の受信不良が発生した場合
には、グループ単位のポーリングを行なつて、先
に、コーリング信号を送出した当該子機からのみ
返信を受けるようにすることによつて、当該子機
を短時間のうちに突き止めることができる線路用
開閉器遠隔監視方式を提供することを目的として
いる。
This invention was made in order to eliminate the drawbacks of the conventional system as described above.The handset is grouped, and when poor reception of the calling signal occurs, polling is performed for each group. An object of the present invention is to provide a remote control system for track switches that can locate a slave unit in a short time by receiving a reply only from the slave unit that first sent a calling signal. It is said that

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例について説明する。
第5図および第6図はそれぞれこの発明に係る線
路用開閉器遠隔監視方式の一例における親機およ
び子機の構成を示すブロツク図で、第2図および
第3図と同一部所には同一符号を付して説明を省
略する。
An embodiment of the present invention will be described below.
5 and 6 are block diagrams showing the configurations of a master unit and a slave unit in an example of the railway switch remote monitoring system according to the present invention, and the same parts as in FIGS. Reference numerals are given and explanations are omitted.

第5図において、24はコーリング信号の受信
を失敗したとき送信する群監視信号を生成する群
監視信号発生回路、25はコーリング信号内に含
まれていた内容を一時記憶するコーリング内容一
時記憶回路である。
In FIG. 5, 24 is a group monitoring signal generation circuit that generates a group monitoring signal to be transmitted when reception of a calling signal fails, and 25 is a calling content temporary storage circuit that temporarily stores the content contained in the calling signal. be.

第6図において、26は親機7から送られてき
た群監視信号が自機に該当するか否かを検出する
群監視信号検出回路、27は開閉器に状態変化が
あり、コーリング信号を送信したときに、送信し
た旨を記憶する目的でフラグを立てるコーリング
信号送信記憶回路である。
In Fig. 6, 26 is a group monitoring signal detection circuit that detects whether the group monitoring signal sent from the base unit 7 corresponds to the own unit, and 27 is a circuit that sends a calling signal when there is a change in the status of the switch. This is a calling signal transmission storage circuit that sets a flag to remember that the calling signal has been sent when the calling signal is sent.

第7図は開閉器に状態変化があつた場合に、こ
れを親機7が監視を完了するまでの手順の一例を
示すタイムチヤートであり、同図は親機7の送
受信タイムチヤート、同図は開閉器6dに状態
変化があつた場合の子機8dの送受信タイムチヤ
ート、同図は開閉機6gに状態変化があつた場
合の子機8gの送受信タイムチヤート、GMは群
監視信号である。
FIG. 7 is a time chart showing an example of the procedure for the base unit 7 to complete monitoring when there is a change in the status of the switch; is a transmission/reception time chart of the handset 8d when there is a change in the status of the switch 6d, and this figure is a transmission/reception time chart of the handset 8g when there is a change in the status of the switch 6g. GM is a group monitoring signal.

つぎに動作について、第7図のタイムチヤート
に基づいて説明する。
Next, the operation will be explained based on the time chart shown in FIG.

各開閉器6a〜6hの初期状態が、開閉器6a
〜6fは閉状態、開閉器6gおよび6hは開状態
であり、また、開閉器6a,6bおよび6g(子
機8a,8bおよび8g)がAグループ、開閉器
6c,6dおよび6h(子機8c,8dおよび8
h)がBグループ、開閉器6eおよび6f(子機
8eおよび8f)がCグループとの前提におい
て、まず、開閉器6dが閉から開状態に変化した
場合、当該子機8dの状態変化検出回路21で、
状態変化が検出され、制御回路18からコーリン
グ信号Cの送信が指令される(第7図)。送信
信号発生回路22で生成されたコーリング信号C
が送信回路23から高圧配電線5へ送出されると
同時に、コーリング信号送信記憶回路27でフラ
グを立てててコーリング信号Cを送出した旨が記
憶される。
The initial state of each switch 6a to 6h is the switch 6a
~6f is in the closed state, switches 6g and 6h are in the open state, and switches 6a, 6b and 6g (slave units 8a, 8b and 8g) are in the A group, switches 6c, 6d and 6h (slave units 8c) , 8d and 8
h) is group B, and switches 6e and 6f (slave units 8e and 8f) are group C. First, when switch 6d changes from closed to open, the status change detection circuit of the corresponding slave unit 8d At 21,
A state change is detected, and the control circuit 18 instructs the transmission of the calling signal C (FIG. 7). Calling signal C generated by transmission signal generation circuit 22
At the same time that the signal C is sent from the transmission circuit 23 to the high-voltage distribution line 5, a flag is set in the calling signal transmission storage circuit 27 to memorize that the calling signal C has been sent.

この信号Cはフイーダ変流器3を経て親機7の
受信回路9で受信され(第7図)、受信内容検
出回路10で子機8dからのコーリング信号Cで
あることが検出されて、アドレスと開閉器状態の
内容が制御回路11を介してコーリング内容一時
記憶回路25へ記憶される。これと同時に制御回
路11から確認の目的で子機8dに対する個別監
視信号PMが送信されるように個別監視信号発生
回路14へ指令がなされる。この指令を受けて生
起された個別監視信号PMは送信回路15を経て
高圧母線4へ送出される(第7図)。この個別
監視信号PMは子機8dで受信され(第7図)、
個別監視信号検出回路17で検出されて、制御回
路18へ渡される。制御回路18はコーリング信
号送信記憶回路27へリセツト信号を送つてフラ
グを降ろさせるとともに、送信信号発生回路22
へ返信信号ABの送信を指令し、返信信号ABは送
信回路23を経て送出される(第7図)。親機
7はこの返信信号ABを受けて(第7図)、受信
内容検出回路10で検出し、この検出内容と先に
送られてコーリング内容一時記憶回路25に記憶
された内容が、比較判別回路13で比較され一致
していることが確認されると、この内容は制御回
路11を介して開閉器状態記憶回路12に更新記
憶されて所定の監視動作は完了する。
This signal C is received by the receiving circuit 9 of the base unit 7 via the feeder current transformer 3 (Fig. 7), and the received content detection circuit 10 detects that it is the calling signal C from the slave unit 8d, and the address is and the contents of the switch status are stored in the calling contents temporary storage circuit 25 via the control circuit 11. At the same time, the control circuit 11 issues a command to the individual supervisory signal generation circuit 14 to transmit the individual supervisory signal PM to the handset 8d for the purpose of confirmation. The individual monitoring signal PM generated in response to this command is sent to the high voltage bus 4 via the transmission circuit 15 (FIG. 7). This individual monitoring signal PM is received by the handset 8d (Fig. 7),
It is detected by the individual monitoring signal detection circuit 17 and passed to the control circuit 18. The control circuit 18 sends a reset signal to the calling signal transmission storage circuit 27 to lower the flag, and also sends a reset signal to the calling signal transmission storage circuit 27 to lower the flag.
The response signal AB is sent out via the transmission circuit 23 (FIG. 7). The base unit 7 receives this reply signal AB (FIG. 7), detects it with the received content detection circuit 10, and compares and discriminates this detected content with the content sent earlier and stored in the calling content temporary storage circuit 25. When the comparison is made in the circuit 13 and it is confirmed that they match, the contents are updated and stored in the switch state storage circuit 12 via the control circuit 11, and the predetermined monitoring operation is completed.

つぎに、開閉器6gが開から閉状態に変化する
と、同様に当該子機8gからコーリング信号Cが
送信される(第7図)。この信号Cを親機7が
正常受信できなかつた場合には受信内容検出回路
10から制御回路11に対し、受信不良を伝える
(第7図)。
Next, when the switch 6g changes from the open state to the closed state, the calling signal C is similarly transmitted from the handset 8g (FIG. 7). If the base unit 7 cannot normally receive this signal C, the reception content detection circuit 10 notifies the control circuit 11 of the reception failure (FIG. 7).

制御回路11はこの受信不良を受けて、群監視
するために群監視信号発生回路24を起動する。
群監視信号発生回路24は、まずAグループを群
監視するポーリング信号GMを生成し、送信回路
15を介して高圧母線4へ送出する(第7図
)。Aグループに所属する子機8a,8bおよ
び8gはこの群監視信号GMを受信して(第7図
)、群監視信号検出回路26で、自機の所属す
るAグループの群監視信号であることを検出する
が、コーリング信号送信記憶回路27にフラグの
立つている子機8gのみが、返信するように制御
回路18から送信信号発生回路22に指令が出さ
れる。この指令により、返信信号ABは子機8g
からのみ送信されて親機7はこれを受信する。制
御回路11は先のコーリング信号Cが子機8gか
らの信号であつたことを判断し、受信内容をコー
リング内容一時記憶回路25へ記憶させると同時
に、確認のために子機8gに対する個別監視信号
PMを送信するように、個別監視信号発生回路1
4へ指令する。この指令を受けて、個別監視信号
PMは子機8gへ向けて送出される(第7図)。
In response to this poor reception, the control circuit 11 activates the group monitoring signal generation circuit 24 for group monitoring.
The group monitoring signal generating circuit 24 first generates a polling signal GM for group monitoring the A group, and sends it to the high voltage bus 4 via the transmitting circuit 15 (FIG. 7). The handsets 8a, 8b, and 8g that belong to Group A receive this group monitoring signal GM (Fig. 7), and detect in the group monitoring signal detection circuit 26 that it is the group monitoring signal of Group A to which the own machine belongs. However, the control circuit 18 issues a command to the transmission signal generation circuit 22 so that only the handset 8g whose flag is set in the calling signal transmission storage circuit 27 sends a reply. With this command, the reply signal AB is sent to the slave unit 8g.
The main unit 7 receives this. The control circuit 11 determines that the previous calling signal C was a signal from the handset 8g, stores the received content in the calling content temporary storage circuit 25, and at the same time sends an individual monitoring signal to the handset 8g for confirmation.
Individual monitoring signal generation circuit 1 to transmit PM
Command to 4. In response to this directive, individual monitoring signals
The PM is sent to slave unit 8g (Figure 7).

子機8gではこの個別監視信号PMを受けて
(第7図)、コーリング信号送信記憶回路27が
フラグを降ろし、返信信号ABが送信される。親
機7はこの返信信号ABを受信して(第7図)、
この受信内容とコーリング内容一時記憶回路25
に記憶された内容が一致していることを比較判別
回路13で確認させたうえで、上記内容を開閉器
状態記憶回路12に更新記憶させる。続いてBグ
ループとCグループに対し、順次群監視信号GM
が送信されるが、いずれも返信信号がないため、
完了となる(第7図)。
In the handset 8g, upon receiving this individual monitoring signal PM (FIG. 7), the calling signal transmission storage circuit 27 lowers the flag, and the reply signal AB is transmitted. Base unit 7 receives this reply signal AB (Fig. 7),
This received content and calling content temporary storage circuit 25
After confirming in the comparison/discrimination circuit 13 that the stored contents match, the above-mentioned contents are updated and stored in the switch state storage circuit 12. Next, the group monitoring signal GM is sent to groups B and C in sequence.
is sent, but there is no reply signal, so
This is completed (Figure 7).

なお、上記実施例では、開閉器の遠隔監視方式
について示したが、これに遠隔制御の機能を組合
せてもよく、更には、配電線搬送は金属回路方式
に限らず大地帰路方式にも適用できることは明白
である。
In addition, although the above-mentioned embodiment shows a remote monitoring system for the switch, a remote control function may be combined with this, and furthermore, the distribution line transportation can be applied not only to the metal circuit system but also to the ground return system. is obvious.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、コーリング
信号を送信した子機はフラグを立ててその旨を記
憶し、親機が万一受信に失敗した場合、子機のグ
ループ毎に群監視信号を送つて当該子機を突き止
めることができるように構成したので、伝送品質
の多少劣る配電線搬送による開閉器遠隔監視の信
頼性向上とスピードアツプ化が得られる効果があ
る。
As described above, according to the present invention, the handset that has transmitted the calling signal sets a flag and remembers the fact, and if the base unit fails to receive the calling signal, it sends a group monitoring signal for each group of handsets. Since the configuration is configured such that the slave unit can be located by transmitting the information, it is possible to improve the reliability and speed up the remote monitoring of the switch by using the distribution line, which has a somewhat inferior transmission quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は配電線搬送方式による線路用開閉器遠
隔監視の概念図、第2図は従来の線路用開閉器遠
隔監視方式における親機の構成を示すブロツク
図、第3図は同従来方式における子機の構成を示
すブロツク図、第4図は同従来方式の動作を示す
タイムチヤート、第5図はこの発明に係る線路用
開閉器遠隔監視方式の一例における親機の構成を
示すブロツク図、第6図はこの発明の方式におけ
る子機の構成を示すブロツク図、第7図はこの発
明の動作を示すタイムチヤートである。 1……配電用主変圧器、2……フイーダしや断
器、3……フイーダ変流器、4……高圧母線、6
a〜6h……開閉器、7……親機、8a〜8h…
…子機、9……受信回路、10……受信内容検出
回路、11,18……制御回路、12……開閉器
状態記憶回路、13……比較判別回路、14……
個別監視信号発生回路、15……送信回路、16
……受信回路、17……個別監視信号検出回路、
19……開閉器状態読込回路、20……開閉器状
態記憶回路、21……状態変化判別回路、22…
…送信信号発生回路、23……送信回路、24…
…群監視信号発生回路、25……コーリング内容
一時記憶回路、26……群監視信号検出回路、2
7……コーリング信号送信記憶回路。なお、図
中、同一符号は同一もしくは相当部分を示す。
Figure 1 is a conceptual diagram of remote monitoring of track switches using the distribution line carrier method, Figure 2 is a block diagram showing the configuration of the base unit in the conventional remote monitoring system of track switches, and Figure 3 is a diagram showing the configuration of the main unit in the conventional method. FIG. 4 is a time chart showing the operation of the conventional system; FIG. 5 is a block diagram showing the configuration of the main unit in an example of the railway switch remote monitoring system according to the present invention; FIG. 6 is a block diagram showing the configuration of the handset according to the system of the present invention, and FIG. 7 is a time chart showing the operation of the present invention. 1...Distribution main transformer, 2...Feeder switch, 3...Feeder current transformer, 4...High voltage bus, 6
a~6h...Switch, 7...Main unit, 8a~8h...
...Slave device, 9...Receiving circuit, 10...Received content detection circuit, 11, 18...Control circuit, 12...Switch condition storage circuit, 13...Comparison/discrimination circuit, 14...
Individual monitoring signal generation circuit, 15... Transmission circuit, 16
...Receiving circuit, 17...Individual monitoring signal detection circuit,
19...Switch state reading circuit, 20...Switch state storage circuit, 21...Status change determination circuit, 22...
...Transmission signal generation circuit, 23... Transmission circuit, 24...
...Group monitoring signal generation circuit, 25...Calling content temporary storage circuit, 26...Group monitoring signal detection circuit, 2
7...Calling signal transmission storage circuit. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 配電用変電所に設置した親機と該配電用変電
所から給電する高圧配電系統内に散在した線路用
開閉器のそれぞれの近傍に設置した子機からな
り、配電線搬送を利用して開閉器状態を遠隔監視
する線路用開閉器監視方式において、線路用開閉
器に状態変化が発生したことにより当該子機から
送信されたコーリング信号を受信した際、当該子
機を呼び出して開閉器状態の返信を要求する個別
監視信号ならびにグループ分けされた子機に対し
てグループ単位に一括して呼び出して、コーリン
グ信号を送信した子機からのみ返信を要求するた
めの群監視信号をそれぞれ送信する手段を親機に
付加し、線路用開閉器の状態変化を検出してコー
リング信号を送信した際に、フラグを立て、かつ
親機からの当該子機に対する個別監視信号を受け
て該フラグを降ろすとともに送信する手段ならび
に親機からの群監視信号を受けて、前記フラグが
立つているときのみ返信する手段を子機に付加し
て、前記コーリング信号を親機が正常受信できた
場合にはコーリング信号を送信した当該子機に対
し個別監視信号を送信して当該子機のフラグを降
ろさせたうえで返信させ、該返信信号を受けて、
所定の監視処理を完了し、万一コーリング信号の
受信に失敗した場合には、子機のグループ単位の
群監視信号を順次送信して、コーリング信号を送
信した子機を突き止めたうえで、前記正常受信の
場合と同様な個別監視を行なつて、所定の監視を
完了させるように構成したことを特徴とする線路
用開閉器遠隔監視方式。
1 Consists of a master unit installed at a distribution substation and slave units installed near each of the track switches scattered in the high-voltage distribution system that supplies power from the distribution substation, and opens and closes using distribution line transportation. In a track switch monitoring system that remotely monitors the status of a track switch, when a calling signal is received from the slave unit due to a change in the status of the line switch, the slave unit is called and the status of the switch is monitored. Means for transmitting an individual monitoring signal requesting a reply and a group monitoring signal for collectively calling grouped handsets in groups and requesting a reply only from the handsets that have transmitted the calling signal. Attached to the base unit, when it detects a change in the status of the track switch and sends a calling signal, it sets a flag, receives an individual monitoring signal for the slave unit from the base unit, lowers the flag, and sends the flag. and a means for receiving a group monitoring signal from the base unit and sending a reply only when the flag is set, so that when the base unit can normally receive the calling signal, the calling signal is sent. Sends an individual monitoring signal to the slave device that sent it, causes the slave device to lower its flag and reply, and upon receiving the reply signal,
If the prescribed monitoring process is completed and the calling signal fails to be received, the group monitoring signal for each group of handsets is sequentially transmitted to locate the handset that sent the calling signal, and then the above-mentioned A remote monitoring system for a track switch, characterized in that it is configured to complete a predetermined monitoring by performing individual monitoring similar to that in the case of normal reception.
JP59174761A 1984-08-22 1984-08-22 Line switch remote monitor system Granted JPS6154829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59174761A JPS6154829A (en) 1984-08-22 1984-08-22 Line switch remote monitor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59174761A JPS6154829A (en) 1984-08-22 1984-08-22 Line switch remote monitor system

Publications (2)

Publication Number Publication Date
JPS6154829A JPS6154829A (en) 1986-03-19
JPS6238938B2 true JPS6238938B2 (en) 1987-08-20

Family

ID=15984209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59174761A Granted JPS6154829A (en) 1984-08-22 1984-08-22 Line switch remote monitor system

Country Status (1)

Country Link
JP (1) JPS6154829A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105982B2 (en) * 1986-10-27 1995-11-13 株式会社日立製作所 Data transmission method in remote monitoring equipment for distribution lines
JPS63236424A (en) * 1987-03-25 1988-10-03 Hitachi Ltd Remote supervisory and controlling equipment for distribution line

Also Published As

Publication number Publication date
JPS6154829A (en) 1986-03-19

Similar Documents

Publication Publication Date Title
US7868621B2 (en) Power line communication based aircraft power distribution system with real time wiring integrity monitoring capability
EP0964551B1 (en) Device network
JPH0630467A (en) Remote transmitting device
US3872437A (en) Supervisory control system
US5471459A (en) Method and apparatus for supervising access and protecting against unauthorized access in a communication metwork
JPS6238938B2 (en)
CN113612764B (en) Power grid monitoring system data cross-region reliable transmission method based on reply confirmation mechanism
CA2281711A1 (en) System and method of radio frequency control for aircraft electric power distribution contactors
JPS633494B2 (en)
JPS6184928A (en) Fault detection and transmitting system
JPS5946144B2 (en) data transmission equipment
JP3505939B2 (en) Train location display method for power monitoring and control system
JPS6325734B2 (en)
JPS62233035A (en) Distribution line remote monitoring control system
JP2800018B2 (en) Baseband network system
KR101580734B1 (en) Method of interchanging with each other in a HVDC system
JPH0450799B2 (en)
JP2670893B2 (en) Distribution line carrier signal transmission method
JPH04239296A (en) Multiplex transmitter
JPH0535622B2 (en)
AU629379B2 (en) Method for synchronising the transmitters of a plurality of transmission stations of a telecontrol transmission system
JPH07114515B2 (en) Distribution line transport sub controller system
KR910005332B1 (en) Integrated remote data service system
CN118590094A (en) Photovoltaic system communication method, photovoltaic system and power equipment
JPH0431630B2 (en)