JPS6238662B2 - - Google Patents

Info

Publication number
JPS6238662B2
JPS6238662B2 JP54083585A JP8358579A JPS6238662B2 JP S6238662 B2 JPS6238662 B2 JP S6238662B2 JP 54083585 A JP54083585 A JP 54083585A JP 8358579 A JP8358579 A JP 8358579A JP S6238662 B2 JPS6238662 B2 JP S6238662B2
Authority
JP
Japan
Prior art keywords
storage battery
load
measuring
load voltage
remaining capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54083585A
Other languages
Japanese (ja)
Other versions
JPS57131077A (en
Inventor
Haruto Maejima
Katsuhisa Kato
Shuichi Kagitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP54083585A priority Critical patent/JPS57131077A/en
Publication of JPS57131077A publication Critical patent/JPS57131077A/en
Publication of JPS6238662B2 publication Critical patent/JPS6238662B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 本発明は蓄電池の残存容量測定法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the remaining capacity of a storage battery.

従来、蓄電池の残存容量を測定する方法とし
て、(イ)実際に放電した電気量を積算電気量計で測
定する方法、(ロ)放電時の電圧降下を測定すること
により残存容量を測定する方法、(ハ)電解液の比重
を測定することにより残存容量を測定する方法等
が知られているが、(イ)の方法は放電率、温度、蓄
電池の劣化等による容量の変化並びに絶えず充放
電が繰り返されるような使用条件にあつては測定
が不正確である。(ロ)の方法は負荷変動の影響を受
けやすく、又放電率の差異および蓄電池の容量の
差異によりそれぞれ補正したり、測定位置を変え
たりしなければならない。(ハ)の方法は蓄電池が劣
化した場合には正確に残存容量を測定できず、又
使用中の保守状態による電解液の濃度変化の影響
を受けやすい。等種々の欠点があつた。
Conventionally, methods for measuring the remaining capacity of a storage battery include (a) a method of measuring the amount of electricity actually discharged using an integrating electricity meter, and (b) a method of measuring the remaining capacity by measuring the voltage drop during discharge. (c) Methods of measuring the remaining capacity by measuring the specific gravity of the electrolyte are known, but methods (b) do not allow for changes in capacity due to discharge rate, temperature, deterioration of the storage battery, etc., as well as constant charging and discharging. Measurements are inaccurate under conditions of use where repeated The method (b) is easily affected by load fluctuations, and requires corrections or changes in measurement positions due to differences in discharge rate and storage battery capacity. The method (c) cannot accurately measure the remaining capacity when the storage battery has deteriorated, and is susceptible to changes in electrolyte concentration due to maintenance conditions during use. There were various drawbacks.

本発明はこれら従来の欠点を解消し、常に正確
に蓄電池の残存容量を測定し得る方法を提供する
ものである。
The present invention eliminates these conventional drawbacks and provides a method that can always accurately measure the remaining capacity of a storage battery.

蓄電池は放電する時の放電率によつて電圧が
様々に変動するが、負荷を開放すると、蓄電池は
その放電状態での一定の起電力に回復する。従つ
て該起電力を測定することにより蓄電池の残存容
量を測定することが考えられるが、この無負荷状
態での起電力即ち無負荷電圧は蓄電池の液温、比
重、劣化の度合等によりそれぞれ異なつた値を示
す為該無負荷電圧を測定しこれを蓄電池の残存容
量として表示するには種々の補正手段を施こす必
要がある。
The voltage of a storage battery varies depending on the discharge rate when discharging, but when the load is released, the storage battery recovers to the constant electromotive force in its discharged state. Therefore, it is possible to measure the remaining capacity of the storage battery by measuring the electromotive force, but the electromotive force in the no-load state, that is, the no-load voltage, varies depending on the storage battery's liquid temperature, specific gravity, degree of deterioration, etc. In order to measure the no-load voltage and display it as the remaining capacity of the storage battery, it is necessary to perform various correction means.

しかしながら発明者はさらに研究を重ねた結果
該無負荷電圧が一定値に回復する前、即ち定常値
値となる前の無負荷電圧は、蓄電池の液温、比
重、劣化の度合等によらず蓄電池の放電状態に応
じた値を示す事を見い出した。
However, as a result of further research, the inventor found that the no-load voltage before the no-load voltage recovers to a constant value, that is, before reaching a steady-state value, is independent of the storage battery's liquid temperature, specific gravity, degree of deterioration, etc. It was found that the value of 100% depends on the discharge state.

本発明はこの事実に基づきなされたもので、蓄
電池の負荷開放後蓄電池の無負荷電圧が定常値に
なる前の無負荷電圧を測定することにより残存容
量を測定することを特徴とするものである。
The present invention has been made based on this fact, and is characterized in that the remaining capacity is measured by measuring the no-load voltage of the storage battery after the load is released and before the no-load voltage of the storage battery reaches a steady value. .

第1図は鉛蓄電池の負荷開放5秒後の無負荷電
圧と放電量との関係を示す図である。鉛蓄電池の
定格容量は312Ah/5HRで、(イ)は電解液温度30
℃、電解液比重1.280/20℃、放電率5HRの場
合、(ロ)は(イ)において放電率を3HRとした場合、(ハ)
は(イ)において電解液温度を10℃とした場合、(ニ)は
(イ)において電解液比重を1.300/20℃とした場
合、(ホ)は電解液温度10℃、電解液比重1.300/20
℃、放電率5HRの場合のそれぞれの曲線である。
FIG. 1 is a diagram showing the relationship between the no-load voltage and the amount of discharge of a lead-acid battery 5 seconds after the load is released. The rated capacity of the lead acid battery is 312Ah/5HR, and (a) is the electrolyte temperature of 30
℃, electrolyte specific gravity 1.280/20℃, discharge rate 5HR, (B) is (B) when the discharge rate is 3HR, (C)
When the electrolyte temperature is 10℃ in (a), (d) is
In (a), when the electrolyte specific gravity is 1.300/20℃, in (e), the electrolyte temperature is 10℃ and the electrolyte specific gravity is 1.300/20.
℃ and a discharge rate of 5HR.

尚該鉛蓄電池は極板群に含有保持される電解液
量以上の多量の電解液を有するものである。又、
鉛蓄電池の放電電圧が1.7V/セルになつた時点
を放電量100%とした。
The lead-acid battery has a larger amount of electrolyte than the amount of electrolyte contained and held in the electrode plate group. or,
The time when the discharge voltage of the lead-acid battery reached 1.7 V/cell was defined as 100% discharge.

図からも明らかな如く、(ハ)と(ニ)すなわち電解液
温度が低い場合および電解液比重が高い場合にお
いて電圧が多少異なりはするが実用上ほぼ同一で
あり、特に充電を必要とする放電量70%前後で各
曲線は一致する。
As is clear from the figure, although the voltages differ slightly between (c) and (d), that is, when the electrolyte temperature is low and when the electrolyte specific gravity is high, they are practically the same, and in particular, discharges that require charging The curves match at around 70%.

さらに定格容量を変えてもほぼ同一の特性を示
し、定格容量384Ah/5HRの鉛蓄電池において電
解液温度30℃、電解液比重1.280/20℃、放電率
3HRとして前記と同様に負荷開放5秒後の無負荷
電圧と放電量の関係を調べたところ、(イ)の曲線と
ほぼ一致した。又、定格容量の80%まで容量が低
下した鉛蓄電池においても同様の試験をした結
果、(イ)の曲線とほぼ一致した。
Furthermore, even if the rated capacity is changed, the characteristics are almost the same; in a lead-acid battery with a rated capacity of 384Ah/5HR, the electrolyte temperature is 30℃, the electrolyte specific gravity is 1.280/20℃, and the discharge rate is
When the relationship between the no-load voltage and the discharge amount 5 seconds after the load was released was investigated for 3HR in the same manner as above, it almost matched the curve (a). In addition, a similar test was conducted on a lead-acid battery whose capacity had decreased to 80% of the rated capacity, and the results almost matched the curve (a).

したがつて該無負荷電圧を測定することによつ
て、蓄電池の電解液温度、電解液比重、放電率、
容量、劣化の程度等によらず、その放電量を知る
ことができ、蓄電池の残存容量が測定することが
できる。
Therefore, by measuring the no-load voltage, the electrolyte temperature, electrolyte specific gravity, discharge rate,
Regardless of the capacity, degree of deterioration, etc., the amount of discharge can be known, and the remaining capacity of the storage battery can be measured.

尚、鉛蓄電池は負荷開放後2分経過後に無負荷
電圧は定常値に達する。
In addition, in a lead-acid battery, the no-load voltage reaches a steady value 2 minutes after the load is released.

したがつて負荷開放後2分以内に無負荷電圧を
測定することによりその残存容量が正確に測定で
きる。負荷開放後の時間が短かければその無負荷
電圧は低い値を示し、長ければ高い値を示す。
Therefore, by measuring the no-load voltage within 2 minutes after the load is released, the remaining capacity can be accurately measured. The shorter the time after the load is released, the lower the no-load voltage will be, and the longer the time after the load is released, the higher the no-load voltage will be.

したがつて負荷開放後何秒あるいは何分後に測
定するかを決定してやれば該無負荷電圧値により
直ちに残存容量を知ることができる。
Therefore, if it is determined how many seconds or minutes after the load is released, the remaining capacity can be immediately known from the no-load voltage value.

尚アルカリ蓄電池、例えばNi−Cdアルカリ蓄
電池は数秒後に定常値となるが、該定常値となる
前の無負荷電圧を測定すれば上記鉛蓄電池の場合
と同様に残存容量を測定することができる。
Note that an alkaline storage battery, such as a Ni-Cd alkaline storage battery, reaches a steady value after a few seconds, but by measuring the no-load voltage before reaching the steady value, the remaining capacity can be measured in the same way as in the case of the lead-acid battery.

以上の如く本発明は、蓄電池の負荷開放後該蓄
電池の無負荷電圧が定常値になる前の無負荷電圧
を測定することにより残存容量を測定したので、
蓄電池の電解液温度、比重、放電率、容量、劣化
の程度等々によらず何らの補正も必要とせずに残
存容量を正確に測定することができる等の効果を
奏するものである。
As described above, the present invention measures the remaining capacity by measuring the no-load voltage of the storage battery after the load is released and before the no-load voltage of the storage battery reaches a steady value.
This has the advantage that the remaining capacity can be accurately measured without requiring any correction, regardless of the electrolyte temperature, specific gravity, discharge rate, capacity, degree of deterioration, etc. of the storage battery.

【図面の簡単な説明】[Brief explanation of the drawing]

図は蓄電池の負荷開放5秒後の無負荷電圧と放
電量との関係を示す図である。
The figure shows the relationship between the no-load voltage and the discharge amount 5 seconds after the load is released from the storage battery.

Claims (1)

【特許請求の範囲】[Claims] 1 蓄電池の負荷開放後、蓄電池の無負荷電圧が
定常値になる前の無負荷電圧を測定することによ
り蓄電池の残存容量を測定することを特徴とする
蓄電池の残存容量測定法。
1. A method for measuring the remaining capacity of a storage battery, which comprises measuring the remaining capacity of the storage battery by measuring the no-load voltage of the storage battery after the load is released and before the no-load voltage of the storage battery reaches a steady value.
JP54083585A 1979-07-02 1979-07-02 Method for measuring remaining capacity of battery Granted JPS57131077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54083585A JPS57131077A (en) 1979-07-02 1979-07-02 Method for measuring remaining capacity of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54083585A JPS57131077A (en) 1979-07-02 1979-07-02 Method for measuring remaining capacity of battery

Publications (2)

Publication Number Publication Date
JPS57131077A JPS57131077A (en) 1982-08-13
JPS6238662B2 true JPS6238662B2 (en) 1987-08-19

Family

ID=13806565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54083585A Granted JPS57131077A (en) 1979-07-02 1979-07-02 Method for measuring remaining capacity of battery

Country Status (1)

Country Link
JP (1) JPS57131077A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2591353B2 (en) * 1991-01-28 1997-03-19 新神戸電機株式会社 Method for estimating remaining capacity of sealed lead-acid battery
KR100842678B1 (en) * 2005-03-17 2008-06-30 주식회사 엘지화학 Method of implementation reference value of state of charge algorithm verification in battery using ah counting and ocv hysteresis
CN105629174B (en) * 2015-12-28 2018-09-21 中国联合网络通信集团有限公司 A kind of invariable power parameter determination method and device
CN107728075B (en) * 2017-11-10 2020-01-14 珠海市古鑫电子科技有限公司 Method and device for rapidly detecting service life of lithium battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828628A (en) * 1971-08-24 1973-04-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828628A (en) * 1971-08-24 1973-04-16

Also Published As

Publication number Publication date
JPS57131077A (en) 1982-08-13

Similar Documents

Publication Publication Date Title
US3808522A (en) Method of testing the capacity of a lead-acid battery
US6930485B2 (en) Electronic battery tester with battery failure temperature determination
US4390841A (en) Monitoring apparatus and method for battery power supply
US7800344B2 (en) Method of determining the energy capacity of a battery
US11346887B2 (en) Method and apparatus for calculating SOH of battery power pack, and electric vehicle
US8589097B2 (en) Method for diagnosing the state of health of a battery
CN107991623A (en) It is a kind of to consider temperature and the battery ampere-hour integration SOC methods of estimation of degree of aging
WO1990006522A1 (en) State-of-charge indications
CN109663756B (en) Battery core screening method and medium based on self-discharge rate
CN110515012A (en) The method for diagnosing battery health status
US20220082630A1 (en) Soh/soc detecting device for power storage element, and power storage element managing unit
CN102203628B (en) Method for determining the charging state of a battery in a charging or discharging phase
JP3371588B2 (en) Remaining battery capacity display
Çadırcı et al. Microcontroller-based on-line state-of-charge estimator for sealed lead–acid batteries
US5459390A (en) Method of determining the charging state of a zinc-bromine battery and method of charging such battery
JPS6238662B2 (en)
US3787754A (en) Apparatus for controlling charging of storage batteries with sensing the d.c. of the electrolyte
JPS61109264A (en) Storage cell monitoring device
JPS6459179A (en) Battery apparatus equipped with non-volatile memory
Yang et al. Improved estimation of residual capacity of batteries for electric vehicles
JP3346003B2 (en) Method for detecting capacity of ion secondary battery
EP0391242A3 (en) Inspection method of the charging state of a rechargable closed battery
JPH02301974A (en) Residual capacity determination method for sealed lead-acid battery
JPS58117470A (en) Battery monitor
Sun et al. Life Prediction of Lithium Thionyl Chloride Battery Based on Pulse Load Test and Accelerated Degradation Test