JPS6238401B1 - - Google Patents

Info

Publication number
JPS6238401B1
JPS6238401B1 JP2967168A JP2967168A JPS6238401B1 JP S6238401 B1 JPS6238401 B1 JP S6238401B1 JP 2967168 A JP2967168 A JP 2967168A JP 2967168 A JP2967168 A JP 2967168A JP S6238401 B1 JPS6238401 B1 JP S6238401B1
Authority
JP
Japan
Prior art keywords
temperature
compaction
container
powder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2967168A
Other languages
Japanese (ja)
Inventor
V Thompson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crucible Inc
Original Assignee
Crucible Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crucible Inc filed Critical Crucible Inc
Publication of JPS6238401B1 publication Critical patent/JPS6238401B1/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Description

【図面の簡単な説明】[Brief explanation of the drawing]

第1Aおよび1B図は本発明による焼結製品の
顕微鏡写真を示し、第2図は従来法による同じく
顕微鏡写真を示し、第3図は圧粉温度と所要加熱
時間との関係を示し、そして第4図は加熱温度と
圧粉工程との関係を示す。 第1図は、圧粉温度と所要加熱時間との関係を
示し、第2図は加熱および圧粉工程を示す。
1A and 1B show micrographs of the sintered product according to the invention, FIG. 2 shows the same micrograph according to the conventional method, FIG. 3 shows the relationship between compaction temperature and required heating time, and FIG. Figure 4 shows the relationship between heating temperature and powder compaction process. FIG. 1 shows the relationship between powder compacting temperature and required heating time, and FIG. 2 shows the heating and powder compacting process.

【発明の詳細な説明】[Detailed description of the invention]

本発明は一般に粉末治金術に関し、更に詳細に
は、粉末治金の実施で細かに分けられた金属粉末
を緻密な物品に圧粉することが、液圧容器、通常
「オートクレーブ」と称せられている容器を用い
ることにより成し遂げられることに関する。 多くの金属物品、特に工具鋼物品の製造におい
て、きめの細かい地相で非常に小さい、良好な分
布の炭化物を特徴とした製品を得ることは大変に
望ましい。工具鋼物品において、この構造はオー
ステナイト化する温度からの焼入れで最大の硬さ
を与える。前記の性質は、工具鋼物品において大
変に望ましいけれども、高合金工具鋳鋼は凝固中
に共晶型炭化物偏析を非常に生じ易い。この効果
は冷却速度の減退でより著しくさえなる。その結
果、この効果を最小にするために小型インゴツト
が所望される。これらの共晶炭化物はオーステナ
イト化の際に溶かすことは大変困難であり、もし
この様なことが長いオーステナイト化時間を用い
て試みられるならば、過度の粒子生長が待うける
結果であろう。共晶型炭化物偏析を特徴とする鋳
造インゴツトが圧延される場合、その偏析物は均
一に分散されるよりむしろ細長く延ばされる。そ
れ故このような材料は圧延前にそこに存する偏析
をこわし分散するために金属を鍛造することが通
常の方法である。然し乍ら、この技術でさえ、炭
化物の完全にランダムな分散を成し遂げることは
可能でない。 本発明の実施においては、高合金工具鋼物品で
の炭化物の所望のランダムな完全な分散が、所望
のランダムに分散した炭化物を有するアトマイズ
(噴霧法)した粒子を用い、実質的な炭化物の凝
集なしに結合と実質的に完全な緻密化とを生ずる
に十分な温度と圧で均一な加圧を行ふことによる
これらの粒子を圧粉することにより生成されるこ
とが見出された。 本発明によれば炭化物が均一に分散した鋼粒子
から成る圧粉化すべき装入物を容器に充填し、該
容器内の粉末金属装入物をその溶融温度以下の、
選ばれた圧粉化温度以上の高温に加熱し、該容器
及び粉末金属装入物を流体圧容器内に置き、該粉
末金属装入物をその金属の理論密度の少なくとも
95%の密度に圧粉するに充分な水準に該容器内の
流体圧を高め、この密度への圧粉化は該粉末金属
装入物が前記の選ばれた圧粉化温度以下の温度に
冷却する前に完了させることを特徴とする粉末金
属からの硬化可能な鋼製物品の製造方法が提供さ
れる。 一般に「オートクレーブ」と称せられている流
体圧容器において、高圧はヘリウムのようなガス
の使用により得られる。オートクレーブ内のガス
圧は、圧粉のために容器内におかれた金属粉末充
填物全体に均一に作用する。この方法で金属粉末
充填物に伝達される圧は、炭化物の所望の完全に
ランダムな分散を破壊することなしに圧粉するた
めに必要である金属流れを生ずる。もつと詳細に
は、流体圧の適用によつて、粒子表面は固体状態
の結合を生じさせるに十分な時間接触に保たれ
る。然し乍ら、結合を達成するためには、粒子は
高温度およびその温度による最低水準より以上の
加圧下にあることが必要である。もし温度が余り
高いと、炭化物は焼結により凝集する傾向があ
り、その結果オートクレーブ内で均一な圧適用の
条件下でも、所望のランダムな炭化物の分散は達
成されない。このようなことが特定の金属に起き
る温度はその溶融温度と称せられる。一方、温度
が余り低いと、十分な結合および100%近い密度
えの圧粉は達成されない。実質的に100%の密度
に後に圧粉し、一方圧粉される金属粉末の為の容
器の壁の縮み即ち不規則な内向け折り目をさける
ために、圧粉前の粉末の密度は比較的に高く、例
えば、少くとも約60%でなければならない。この
目的に対して、金属粒子は実質的に球状でありか
つ30メツシユより大でない大きさであることが好
ましい。容器は、圧粉が完了した後酸洗するかま
たは機械にかけるかして、圧粉体から取り除かれ
ねばならないので、圧粉する間の容器のすべての
実質的な内向け折り目はさけられねばならない。
そうでなければ圧粉体の相当な量が容器の除去の
際に取去られるだろう。もし満足な圧粉に必要な
程度に粒子が実質的に球状でないならば、100%
近い密度に完全に圧粉するにはオートクレーブに
そのものを置く前に、その粉末を前圧粉すること
により或る程度克服される。この予備的な圧粉即
ち前圧粉は、粉末を詰めた容器を圧粉のためにラ
ムを使用して金型の中に入れるようになつている
金型の使用のような機械的な操作により達成され
る。迅速な工業的方法の圧粉操作では、圧粉のた
めにオートクレーブ内にそのものを置く前に、容
器内で十分な圧粉温度に金属粉末充填物を加熱す
る必要がある。圧粉前の加熱は、適当な結合と圧
粉密度を達成するのに2時間以上が必要であり、
十分な「浸透」が有利である。それは金属粉末の
温度が容器中すべて実質的に均一でなければなら
ないからである。それ故、室温でオートクレーブ
内に容器を置き、次いで圧粉のために流体圧を適
用する前に、必要な長時間加熱することは実際的
でない。それ故に、本発明方法においては、粉末
を詰めた容器を炭化物の凝集が生ずる以下の温度
でしかも、金属粉末の温度が適当な結合と圧粉に
対して必要な温度以下に低下する前に、オートク
レーブえの移動、オートクレーブでの加圧、実質
的に最終密度えの圧粉が達成されるに十分に高い
温度に加熱することが必要である。圧粉前の加熱
工程に可成の時間をかけていることに付加する要
件は、容器から実質的に酸素除去するために圧粉
前に、粉末を詰めた容器が完全に「ガス排除」さ
れねばならないことである。容器内の金属粉末の
加熱の間に生成するガス状反応生成物の除去のた
めに、容器内部と適当な真空ポンプとの連結が要
求される。ガス排除が達成されないならば、その
結果生ずる圧粉体は、金属粉末の結合および最終
生成物の品質に不利に影響する有害な酸化物およ
び他の表面不純物の存在により特色づけられる。 これらの目的は、金属粉末充填物を選択した圧
粉温度、通常金属粉末の0.7対応(homologous)
溶融温度以上でしかも金属粉末の溶融温度以下の
温度に加熱することにより達成されることを見出
した。これらの温度範囲内に保持された時、金属
粉末は約700Kg/cm2ないし約2100Kg/cm2(10000な
いし30000psi)の範囲内で、圧粉される物質の温
度と反比例的に変わる圧力の適用により満足に圧
粉することができる。もし圧粉が完了されるまで
の温度保持が困難に遭遇する場合には、オートク
レーブ内に加熱手段を設けてオートクレーブの加
圧およびその中での圧粉中、温度を保持しまた材
料の温度低下の速度を実質的に減ずることができ
る。 本発明の目的に対して、対応溶融温度は金属粉
末の実際の絶対温度、例えばランキン度
(degrees Renkin)を金属粒子の溶融の絶対温度
で除したものとして定義される。工具鋼のような
材料に対して、典型的にこれは約704℃(約1300
〓)の下限温度と約1204℃(約2200〓)の上限温
度を生ずる。上記に指摘した如く、所望の密度と
適当な結合に対する圧粉を達成するに必要な圧
は、約700Kg/cm2ないし2100Kg/cm2(10000ないし
30000psi)の範囲内で、圧粉される材料の温度と
反比例的に変わる。 本発明のより完全な理解が次の記述、特定例の
考慮から、および付図を参照することにより得ら
れる。ここにおいて、 第3図は、充填した容器の種々な横断面積にお
ける金属粉末を必要な圧粉温度に加熱するに要求
される加熱時間を示すグラフである。 第4図は、金属粉末に対する加熱および圧粉工
程を示す他のグラフである。 例 容器内の金属粉末充填物を満足な圧粉温度に加
熱するに伴う長い加熱時間を説明するために、次
の実験がなされた。径約20cm(8インチ)、長さ
約20cm(8インチ)の寸法の管状炭素鋼容器が約
100メツシユより小のM2S工具鋼粉末で充填され
た。湿気は容器から除去せられ、容器は大気から
封鎖された。熱電対が中心および中心線に向つて
延びる2.54、5.08、7.62、8.89および10.16cm
(1,2,3,3.5および4インチ)の半径上に置
かれた。この容器は冷グローバー炉に置かれ、熱
電対の導線は記録計に連結された。 第3図から判る如く、容器の全内容物が約1204
℃(約2200〓)の温度に達するには約5時間要し
た。上記に説明した如く、容器内の中心の材料が
満足な温度にあることを保証する必要がある。さ
もなければ生じた圧粉体の中心における材料の密
度が十分でないであろう。予期され、かつ第3図
から分かる如く、容器のもつとも外側の部分の材
料は、容器の中心に比較的により近い材料よりも
ずつと速く所望の圧粉温度に達した。これらのデ
ーターは、圧粉前に必要な長い加熱時間を示し、
そしてそれは、圧紛前にオートクレーブ内で圧粉
に必要な高温度えの金属粉末の加熱を無くするも
のである。 例 追加試験が、外径約8.89cm(3.5インチ)、長さ
約15.24cm(6インチ)の軟鋼の容器に上記と同
種の充填物を準備して行われた。この調製された
試料では熱電対をその幾何学的中心近くに置い
た。この位置における温度の読みは、第4図に示
された加熱工程中に参考として使用された。この
試料は、約1204℃(約2200〓)の温度に加熱さ
れ、この時に約700Kg/cm2(10000psi)の程度に
オートクレーブ内の流体圧を高めた。熱電対によ
り測定された如く、この試料の温度は、流体圧適
用により圧粉前に約982℃(約1800〓)低下した
ことが、第4図から知られる。この結果生じた圧
粉体のその後の金属組織学的分析は、その密度
が、本願発明の限界内でより高い温度で圧粉する
ことにより達成されるより高い密度の圧粉体に対
比して、全体に比較的に低かつたことを示した。 例 下記の合金組成をもつた―325メツシユ(米国
標準フルイ)の鋼粉末充填物を調製した。 炭 素 1.01 マンガン 0.24 ケイ素 0.16 硫 黄 0.16 タングステン 6.1 モリブデン 6.1 クロム 4.13 バナジウム 1.96 鉄 残部 この合金の粉を使つて4″(直径)×6″の円筒状
の軟鋼製容器に充填した。この粉末を充填した容
器は約2時間にわたつて約593℃(1100〓)の温
度で加熱してガスを追い出し、次いで排気してガ
ス状反応生成物を除いた。 次に、容器を密封し、加熱炉に移してから約4
時間にわたつて約1218℃(2225〓)に加熱し、次
いでガス圧力容器に移して200トンのオーダの圧
力をかけて最終密度にまで圧粉化した。この材料
の焼きなまし組織を第1A図および第1B図に示
す。それらは炭化物が縁部から中心部まで均一に
分散されている様子を示す。これと対照的に、従
来法である鋳造・圧延法により得た同様の合金組
成をもつた材料には第2図に示すように比較的大
形の炭化物が極端に大きく分離しているのがみら
れる。
TECHNICAL FIELD This invention relates generally to powder metallurgy, and more particularly, the practice of powder metallurgy involves compacting finely divided metal powder into compact articles in a hydraulic vessel, commonly referred to as an "autoclave." Concerning what can be accomplished by using a container that In the manufacture of many metal articles, especially tool steel articles, it is highly desirable to have a product characterized by very small, well-distributed carbides in a fine-grained phase. In tool steel articles, this structure provides maximum hardness upon quenching from austenitizing temperatures. Although the above properties are highly desirable in tool steel articles, high alloy tool cast steels are highly susceptible to eutectic carbide segregation during solidification. This effect becomes even more pronounced with a reduction in the cooling rate. As a result, small ingots are desired to minimize this effect. These eutectic carbides are very difficult to dissolve during austenitization, and if this were attempted using long austenitization times, excessive grain growth would result. When a cast ingot characterized by eutectic carbide segregation is rolled, the segregation is elongated rather than being uniformly distributed. It is therefore common practice for such materials to forge the metal before rolling to break up and disperse any segregation present. However, even with this technique it is not possible to achieve a completely random distribution of carbides. In the practice of the present invention, the desired random and complete dispersion of carbides in high alloy tool steel articles is achieved using atomized particles having the desired randomly dispersed carbides and substantial carbide agglomeration. It has been found that these particles can be produced by compacting these particles by applying uniform pressure at a temperature and pressure sufficient to produce bonding and substantially complete densification without bonding. According to the invention, a charge to be compacted consisting of steel particles with uniformly dispersed carbides is filled into a container, and the powder metal charge in the container is heated to a temperature below its melting temperature.
heating to an elevated temperature above a selected compaction temperature, placing the container and powder metal charge in a hydraulic vessel, and heating the powder metal charge to a temperature at least as high as the theoretical density of the metal.
The fluid pressure within the vessel is increased to a level sufficient to compact the powder to a density of 95%, and compaction to this density occurs when the powdered metal charge is brought to a temperature below the selected compaction temperature. A method of manufacturing a hardenable steel article from powdered metal is provided, the method being completed prior to cooling. In fluid pressure vessels, commonly referred to as "autoclaves," high pressures are obtained through the use of gases such as helium. The gas pressure in the autoclave acts uniformly over the entire metal powder charge placed in the container for compaction. The pressure transmitted to the metal powder charge in this manner produces the metal flow necessary to compact without destroying the desired completely random distribution of carbides. More specifically, by application of fluid pressure, the particle surfaces are maintained in contact for a sufficient period of time to cause solid state bonding. However, in order to achieve bonding, it is necessary that the particles be under elevated temperature and pressure above the minimum level due to the temperature. If the temperature is too high, the carbides tend to agglomerate due to sintering, so that even under conditions of uniform pressure application in the autoclave, the desired random dispersion of carbides is not achieved. The temperature at which this occurs for a particular metal is called its melting temperature. On the other hand, if the temperature is too low, a compact with sufficient bonding and density close to 100% will not be achieved. In order to avoid shrinkage or irregular inward creases in the walls of the container for the metal powder being compacted, while the density of the powder before compaction is relatively low, the density of the powder is relatively low. For example, it should be at least about 60%. For this purpose, it is preferred that the metal particles are substantially spherical and have a size of no more than 30 mesh. Since the container must be removed from the compact by pickling or machining after compaction is complete, all substantial inward folds in the container during compaction must be avoided. It won't happen.
Otherwise, a considerable amount of the compact would be removed during removal of the container. 100% if the particles are not substantially spherical to the extent necessary for satisfactory compaction.
Complete compaction to near density can be overcome to some extent by precompacting the powder before placing it in the autoclave. This preliminary or pre-compacting involves mechanical operations such as the use of a mold in which a container filled with powder is placed into the mold using a ram for compaction. This is achieved by In rapid industrial compaction operations, it is necessary to heat the metal powder charge in the container to a sufficient compaction temperature before placing it in the autoclave for compaction. Heating before compaction requires at least 2 hours to achieve proper bonding and compaction density;
Adequate "penetration" is advantageous. This is because the temperature of the metal powder must be substantially uniform throughout the container. Therefore, it is impractical to place the container in an autoclave at room temperature and then heat it for the required length of time before applying fluid pressure for compaction. Therefore, in the process of the present invention, the container filled with the powder is heated to a temperature below which carbide agglomeration occurs, but before the temperature of the metal powder has fallen below the temperature required for proper bonding and compaction. It is necessary to move the autoclave, pressurize it in the autoclave, and heat it to a temperature high enough to achieve a compact of substantially the final density. In addition to the considerable time required for the heating process prior to compaction, an additional requirement is that the container containing the powder be completely "outgassed" prior to compaction to substantially remove oxygen from the container. This is something that must be done. For the removal of the gaseous reaction products formed during the heating of the metal powder in the container, connection of the interior of the container with a suitable vacuum pump is required. If gas exclusion is not achieved, the resulting green compact is characterized by the presence of harmful oxides and other surface impurities that adversely affect the bonding of the metal powder and the quality of the final product. These objectives are to ensure that the metal powder filling is selected at a compaction temperature that typically corresponds to 0.7 for metal powders (homologous).
It has been found that this can be achieved by heating to a temperature above the melting temperature of the metal powder and below the melting temperature of the metal powder. When held within these temperature ranges, the metal powder is subjected to the application of pressures ranging from about 700 Kg/cm 2 to about 2100 Kg/cm 2 (10,000 to 30,000 psi) that vary inversely with the temperature of the material being compacted. This enables satisfactory powder compaction. If it is difficult to maintain the temperature until the powder compaction is completed, a heating means may be installed in the autoclave to maintain the temperature and reduce the temperature of the material during pressurization of the autoclave and compaction in the autoclave. can substantially reduce the speed of For the purposes of the present invention, the corresponding melting temperature is defined as the actual absolute temperature of the metal powder, eg degrees Renkin, divided by the absolute temperature of melting of the metal particles. For materials like tool steel, typically this is about 704°C (about 1300°C
It produces a lower limit temperature of 〓) and an upper limit temperature of about 1204℃ (about 2200〓). As pointed out above, the pressure required to achieve the desired density and compaction for proper bonding is approximately 700 Kg/cm 2 to 2100 Kg/cm 2 (10,000 to 2100 Kg/cm 2 ).
30,000psi) and varies inversely with the temperature of the material being compacted. A more complete understanding of the invention can be obtained from the following description, consideration of specific examples, and reference to the accompanying drawings. Here, FIG. 3 is a graph showing the heating time required to heat the metal powder to the required compacting temperature at various cross-sectional areas of a filled container. FIG. 4 is another graph showing the heating and compacting process for metal powder. EXAMPLE The following experiment was performed to illustrate the long heating times involved in heating a metal powder charge in a container to a satisfactory compaction temperature. A tubular carbon steel container with dimensions of approximately 20 cm (8 inches) in diameter and approximately 20 cm (8 inches) in length.
Filled with M2S tool steel powder smaller than 100 mesh. Moisture was removed from the container and the container was sealed from the atmosphere. 2.54, 5.08, 7.62, 8.89 and 10.16 cm with thermocouple extending towards center and centerline
(1, 2, 3, 3.5 and 4 inches) radius. The vessel was placed in a cold Grover furnace and the thermocouple leads were connected to a recorder. As can be seen from Figure 3, the total contents of the container are approximately 1204
It took about 5 hours to reach a temperature of about 2200°C. As explained above, it is necessary to ensure that the core material within the container is at a satisfactory temperature. Otherwise, the density of the material in the center of the resulting compact will not be sufficient. As expected, and as can be seen in FIG. 3, material in the outermost portions of the container reached the desired compaction temperature progressively faster than material relatively closer to the center of the container. These data indicate the long heating times required before compaction,
And it eliminates the need to heat the metal powder to the high temperatures required for compaction in an autoclave prior to compaction. EXAMPLE Additional tests were conducted using a similar type of filling as described above in a mild steel container approximately 3.5 inches outside diameter and 6 inches long. In this prepared sample, the thermocouple was placed near its geometric center. The temperature reading at this location was used as a reference during the heating process shown in FIG. The sample was heated to a temperature of about 1204°C (about 2200°C), at which time the fluid pressure within the autoclave was increased to about 700 Kg/cm 2 (10000 psi). It can be seen from FIG. 4 that the temperature of this sample, as measured by a thermocouple, was reduced by approximately 982° C. (approximately 1800° C.) prior to compaction due to the application of fluid pressure. Subsequent metallographic analysis of the resulting green compact reveals that its density is comparable to the higher density green compacts achieved by compacting at higher temperatures within the limits of the present invention. , showed that the overall value was relatively low. Example A -325 mesh (US standard sieve) steel powder charge with the following alloy composition was prepared. Carbon 1.01 Manganese 0.24 Silicon 0.16 Sulfur 0.16 Tungsten 6.1 Molybdenum 6.1 Chromium 4.13 Vanadium 1.96 Iron Balance The powder of this alloy was used to fill a 4″ (diameter) x 6″ cylindrical mild steel container. The container filled with this powder was heated to a temperature of about 593°C (1100°C) for about 2 hours to drive off gases, and then evacuated to remove gaseous reaction products. Next, seal the container and transfer it to a heating furnace for about 4 hours.
It was heated to about 1218°C (2225°C) for an hour and then transferred to a gas pressure vessel and compacted to a final density under pressure on the order of 200 tons. The annealed structure of this material is shown in Figures 1A and 1B. They show that the carbides are evenly distributed from the edges to the center. In contrast, materials with similar alloy compositions obtained by conventional casting and rolling methods have extremely large separations of relatively large carbides, as shown in Figure 2. Be looked at.

【特許請求の範囲】[Claims]

1 炭化物が均一に分散した鋼粒子から成る圧粉
化すべき装入物を容器に充填し、該容器内の粉末
金属装入物をその溶融温度以下の、選ばれた圧粉
化温度以上の高温に加熱し、該容器及び粉末金属
装入物を流体圧容器内に置き、該粉末金属装入物
をその金属の理論密度の少なくとも95%の密度に
圧粉するに充分な水準に該容器内の流体圧を高
め、この密度への圧粉化は該粉末金属装入物が前
記の選ばれた圧粉化温度以下の温度に冷却する前
に完了させることを特徴とする粉末金属からの硬
化可能な鋼製物品の製造方法。
1. Filling a container with the charge to be compacted consisting of steel particles with uniformly dispersed carbides, and heating the powdered metal charge in the container at a high temperature below its melting temperature and above the selected compacting temperature. and placing the container and powdered metal charge in a hydraulic vessel to a level sufficient to compact the powdered metal charge to a density of at least 95% of the theoretical density of the metal. curing from powdered metal, characterized in that the fluid pressure is increased and compaction to this density is completed before the powdered metal charge is cooled to a temperature below said selected compaction temperature. Possible methods of manufacturing steel articles.

JP2967168A 1967-05-24 1968-05-04 Pending JPS6238401B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US64103467A 1967-05-24 1967-05-24

Publications (1)

Publication Number Publication Date
JPS6238401B1 true JPS6238401B1 (en) 1987-08-18

Family

ID=24570673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2967168A Pending JPS6238401B1 (en) 1967-05-24 1968-05-04

Country Status (6)

Country Link
JP (1) JPS6238401B1 (en)
AT (1) AT334411B (en)
DE (1) DE1758141B2 (en)
FR (1) FR1570740A (en)
GB (1) GB1163390A (en)
SE (1) SE332693B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2459653A (en) * 2008-04-29 2009-11-04 Rolls Royce Plc Manufacture of an article by hot isostatic pressing

Also Published As

Publication number Publication date
GB1163390A (en) 1969-09-04
DE1758141A1 (en) 1971-02-18
AT334411B (en) 1976-01-10
SE332693B (en) 1971-02-15
DE1758141B2 (en) 1972-07-06
FR1570740A (en) 1969-06-13

Similar Documents

Publication Publication Date Title
US3700435A (en) Method for making powder metallurgy shapes
US3689259A (en) Method of consolidating metallic bodies
US4539175A (en) Method of object consolidation employing graphite particulate
US4693863A (en) Process and apparatus to simultaneously consolidate and reduce metal powders
US4640711A (en) Method of object consolidation employing graphite particulate
JPH0130882B2 (en)
JP3884618B2 (en) Method of uniaxial compression of agglomerated spherical metal powder
US4227927A (en) Powder metallurgy
JPH0347903A (en) Density increase of powder aluminum and aluminum alloy
US3704115A (en) High alloy steel powders and their consolidation into homogeneous tool steel
US4391772A (en) Process for the production of shaped parts from powders comprising spheroidal metal particles
EP0165409A1 (en) Method of producing high speed steel products metallurgically
US5445787A (en) Method of extruding refractory metals and alloys and an extruded product made thereby
US3158473A (en) Method for producing composite bodies
US3728111A (en) Method of manufacturing billets from powder
JPS646241B2 (en)
US3450528A (en) Method for producing dispersioned hardenable steel
US3341325A (en) Method for producing alloy-steel articles
GB2084612A (en) Isostatic pressing of sintered crushed spherical particles
US3937630A (en) Method for producing iron-base sintered alloys with high density
JPS6238401B1 (en)
US2823116A (en) Method of preparing sintered zirconium metal from its hydrides
US3859085A (en) Method for producing iron-base sintered alloys with high density
GB1590953A (en) Making articles from metallic powder
US3741756A (en) Metal consolidation