JPS6238315B2 - - Google Patents

Info

Publication number
JPS6238315B2
JPS6238315B2 JP5843683A JP5843683A JPS6238315B2 JP S6238315 B2 JPS6238315 B2 JP S6238315B2 JP 5843683 A JP5843683 A JP 5843683A JP 5843683 A JP5843683 A JP 5843683A JP S6238315 B2 JPS6238315 B2 JP S6238315B2
Authority
JP
Japan
Prior art keywords
weight
tile
hydration expansion
low
hydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5843683A
Other languages
Japanese (ja)
Other versions
JPS59184761A (en
Inventor
Yukito Muraguchi
Seiji Shinkai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP5843683A priority Critical patent/JPS59184761A/en
Publication of JPS59184761A publication Critical patent/JPS59184761A/en
Publication of JPS6238315B2 publication Critical patent/JPS6238315B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、低水和膨脹多孔質タイルに関する。[Detailed description of the invention] The present invention relates to low hydration expanded porous tiles.

低水和膨脹多孔質タイルを製造するには、原料
としてアルカリ成分含有率の低い粘土及び蝋石等
用いる必要があるとされていた。その理由は、水
和膨脹の大きなアルカリガラス質がアルカリ成分
により生成されるのを防止するためである。低水
和膨脹多孔質タイルに通常要求される水和膨脹率
0.1%以下を満足させるためには、アルカリ成分
含有率を原料の全重量に対して1.0重量%以下に
する必要がある。
In order to manufacture low hydration expanded porous tiles, it was believed that it was necessary to use clay, Rouseki, etc. with low alkali component content as raw materials. The reason for this is to prevent the alkali components from producing alkali glass that exhibits large hydration expansion. Hydration expansion rate typically required for low hydration expansion porous tiles
In order to satisfy 0.1% or less, the alkali component content needs to be 1.0% by weight or less based on the total weight of the raw materials.

しかし、多孔質タイル用原料については、アル
カリ成分含有率の低い粘土及び蝋石等の埋蔵量が
年々減少しているため、埋蔵量の多いアルカリ成
分含有率の高いもの、即ちアルカリ成分含有率が
1.0重量%以上のものを近い将来において用いね
ばならぬ必然性がある。
However, with regard to raw materials for porous tiles, the reserves of clay and Rouseki, which have low alkali content, are decreasing year by year.
There is a necessity to use 1.0% by weight or more in the near future.

本願発明者は、アルカリ成分含有率の低い原料
が得難くなる将来に対応すべく、アルカリ成分含
有率の高い原料を用いて低水和膨脹タイルを製造
するための幾多の実験を繰返した。その結果、本
願発明者は、アルカリ成分含有率の高い原料とバ
リユウム塩を調合したものを焼成すると前記アル
カリガラス質の発生と極端に抑制することが出来
ることを発見し、かかる知見に基づいて本発明を
完成するに至つた。
The inventor of the present invention has repeatedly conducted numerous experiments to produce low hydration expansion tiles using raw materials with a high alkali content, in order to cope with the future when it will be difficult to obtain raw materials with a low alkali content. As a result, the inventor of the present application discovered that the generation of alkali glass can be extremely suppressed by firing a mixture of raw materials with a high alkali component content and barium salt, and based on this knowledge, the present inventor The invention was completed.

以下、本発明に係る低水和膨脹多孔質タイル
(以下、本発明タイルという)を説明する。本発
明タイルは、全重量に対してアルカリ成分を1.0
重量%以上含有する多孔質タイル成形用原料(例
えば、陶石及び粘土の混合物をミル細磨で泥漿状
態にした後、粉状に乾燥したもの)へ全重量の3
乃至30重量%に相当するバリユウム塩(例えば、
炭酸バリユウム、硫酸バリユウム、塩化バリユウ
ム等)を配合したものを、乾式プレス成型又は湿
式押出し成型等により適宜タイル素地に成型した
後、900乃至1350℃で焼成することにより製造で
きる。
Hereinafter, the low hydration expanded porous tile according to the present invention (hereinafter referred to as the tile of the present invention) will be explained. The tiles of the present invention have an alkaline content of 1.0% based on the total weight.
3% by weight or more of the total weight of raw materials for forming porous tiles (for example, a mixture of chinastone and clay made into a slurry by mill grinding and then dried into a powder)
30% by weight of barium salts (e.g.
Barium carbonate, barium sulfate, barium chloride, etc.) can be formed into a suitable tile base by dry press molding or wet extrusion molding, and then fired at 900 to 1350°C.

本願発明者は、下記の条件の基いて、アルカリ
成分含有率の高い原料からそのまま製造して得た
高水和膨脹タイルAの水和膨脹率の測定並びに、
アルカリ成分含有率の高い原料へバリユウム塩を
配合したものから製造して得た低水和膨脹タイル
Bの水和膨脹率の測定及び回折X線測定を行ない
次の如き結果を得た。
The inventor of the present application measured the hydration expansion rate of high hydration expansion tile A obtained by directly manufacturing it from raw materials with high alkali component content under the following conditions, and
The hydration expansion rate of low hydration expansion tile B produced from a raw material with a high alkali component content mixed with barium salt was measured and the diffraction X-ray measurement was performed, and the following results were obtained.

(1) 原料 80重量%の陶石と20重量%の粘土を混合した
ものをミル細磨により泥漿にした後、粉末状に
乾燥して原料aを得る。該原料aの化学組成
(重量%)は次の通りである。
(1) Raw material A mixture of 80% by weight pottery stone and 20% by weight clay is milled into a slurry and then dried into a powder to obtain raw material a. The chemical composition (weight %) of the raw material a is as follows.

SiO2 =76.4 Al2O2=15.3 Fe2O3=0.6 CaO =0.1 MgO =0.2 K2O =0.1 Na2O =0.1 TiO2 =0.3 Ig−loss=3.2 (アルカリ成分であるK2O及びNa2Oの全含
有率は3.3重量%である。) 高水和膨脹タイルAに対しては、原料aをそ
のまま用いる。
SiO 2 = 76.4 Al 2 O 2 = 15.3 Fe 2 O 3 = 0.6 CaO = 0.1 MgO = 0.2 K 2 O = 0.1 Na 2 O = 0.1 TiO 2 = 0.3 Ig-loss = 3.2 (alkaline components K 2 O and The total content of Na 2 O is 3.3% by weight.) For high hydration expansion tile A, raw material a is used as is.

低水和膨脹タイルBに対しては、原料aに全
重量の5重量%、10重量%又は15重量%に相当
する炭酸バリユウムを配合した原料bを用い
る。
For low hydration expansion tile B, raw material b is used, in which raw material a is blended with barium carbonate corresponding to 5%, 10% or 15% by weight of the total weight.

(2) タイル素地成形及び焼成方法 前記原料a及び原料bを乾式プレス成形(加
圧力=290Kgf/cm2)してタイル素地を得た
後、最高温度が900、1000、1100、1200、1300
℃となる焼成温度で夫々焼成する。
(2) Tile base forming and firing method After obtaining the tile base by dry press molding the raw material a and raw material b (pressing force = 290 Kgf/cm 2 ), the maximum temperature is 900, 1000, 1100, 1200, 1300.
Each is fired at a firing temperature of ℃.

(3) 水和膨脹率の測定方法 焼成して得た高水和膨脹タイルA及び低水和
膨脹タイルBをJISA5209に基づくオートクレ
ープ試験に従つて水和膨脹率を求める。
(3) Method for measuring hydration expansion rate The hydration expansion rate of high hydration expansion tile A and low hydration expansion tile B obtained by firing is determined according to an autoclave test based on JISA5209.

(4) 水和膨脹率の測定結果 第1図は、各焼成温度で焼成して得たタイル
の水和膨脹率の測定結果を示すものである。
(4) Measurement results of hydration expansion coefficients Figure 1 shows the measurement results of hydration expansion coefficients of tiles fired at various firing temperatures.

図中イは、高水和膨脹タイルAの測定結果を
示す。
A in the figure shows the measurement results for the high hydration expansion tile A.

図中ロは、5重量%の炭酸バリユウムを配合
した低水和膨脹タイルBの測定結果を示す。
Box (b) in the figure shows the measurement results of low hydration expansion tile B containing 5% by weight of barium carbonate.

図中ハは、10重量%の炭酸バリユウムを配合
した低水和膨脹タイルBの測定結果を示す。
In the figure, C shows the measurement results of low hydration expansion tile B containing 10% by weight of barium carbonate.

図中ニは、15重量%の炭酸バリユウムを配合
した低水和膨脹タイルBの測定結果を示す。
D in the figure shows the measurement results of low hydration expansion tile B containing 15% by weight of barium carbonate.

(5) 回折X線測定の結果 第2図Aは、前記高水和膨脹タイルAの回折
X線測定の結果を示す。
(5) Results of X-ray diffraction measurement FIG. 2A shows the results of X-ray diffraction measurement of the high hydration expansion tile A.

第2図Bは、15重量%の炭酸バリユウムを配
合した前記低水和膨脹タイルBのX線回折測定
の結果を示す。
FIG. 2B shows the results of X-ray diffraction measurements of the low hydration expansion tile B containing 15% by weight of barium carbonate.

図中Qは石英、Sはセリサイト及びCは重土
長石(celsian)のピークを示す。
In the figure, Q indicates the peak of quartz, S indicates the peak of sericite, and C indicates the peak of heavy feldspar (celsian).

上記測定結果から明らかな如く、アルカリ成分
含有率の高い原料へ炭酸バリユウムを配合する
と、水和膨脹率の低いタイルを得ることができ
る。これは、原料に含有されているアルカリ成分
であるK2O及びNa2O及びアルカリ土類である
CaO並びにSiO2及びAl2O3と配合されたBaCO3
により、水和膨脹しない結晶質の重土長石
(celsian)〔(BaO・CaO・K2O・NaO)Al2O3
2SiO2〕が生成するからである。
As is clear from the above measurement results, when barium carbonate is blended into raw materials with a high alkali component content, tiles with a low hydration expansion rate can be obtained. This is the alkaline components K 2 O and Na 2 O and alkaline earths contained in the raw materials.
CaO and BaCO 3 blended with SiO 2 and Al 2 O 3 produce crystalline heavy feldspar (celsian) [(BaO・CaO・K 2 O・NaO)Al 2 O 3
2SiO 2 ] is generated.

前記焼成温度は、前述の如く900乃至1350℃が
最適であり、900℃以下では重土長石を生成させ
することがでず、また1350℃以上では重土長石及
びタイル素地全体が熔化した多孔質タイルを得る
ことができない。
As mentioned above, the optimal firing temperature is 900 to 1,350°C; below 900°C, heavy feldspar cannot be formed, and above 1,350°C, the entire tile base and heavy feldspar are melted into a porous structure. Can't get tiles.

バリユウム塩の配合量は、前述の如く全重量の
3及至30重量%に相当する量を配合するのが最適
である。3重量%以下の配合では、原料中に1.0
重量%以上含有されているアルカリ成分の略々全
部を取込んで重土長石を生成することが不可能で
ある。また30重量%以上の配合では、配合された
ものが可塑性を失いタイル素地成形を不可能にす
る。
The optimum amount of barium salt to be blended is an amount corresponding to 3 to 30% by weight of the total weight, as described above. If the formulation is 3% by weight or less, 1.0
It is impossible to generate heavy feldspar by incorporating almost all of the alkaline components contained in the weight percent or more. Furthermore, if the content exceeds 30% by weight, the blended material loses its plasticity, making it impossible to form tile bases.

以上詳述の如く、本発明に係る低水和膨脹多孔
質タイルは、アルカリ成分含有量の高い多孔質タ
イル成形用原料ら製造することができるので、ア
ルカリ成分含有量の低い原料の埋蔵量が減少する
将来においても低水和膨脹多孔質タイルを提供で
きる優れた効果を有する。
As detailed above, the low hydration expanded porous tile according to the present invention can be manufactured from porous tile forming raw materials with a high alkali component content, so the reserves of raw materials with a low alkali component content can be reduced. It has an excellent effect of providing a low hydration expanded porous tile even in the future when the hydration rate decreases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る低水和膨脹多孔質タイル
の水和膨脹率を示すもの、第2図Aは炭酸バリユ
ウムを配合していないものから得たタイルAの回
折X線測定の結果を示すもの、第2図Bは炭酸バ
リユウムを15重量%配合したものから得たタイル
Bの回折X線測定の結果を示すものである。
Figure 1 shows the hydration expansion rate of the low hydration expansion porous tile according to the present invention, and Figure 2 A shows the results of diffraction X-ray measurements of tile A that did not contain barium carbonate. FIG. 2B shows the results of diffraction X-ray measurements of tile B obtained from a tile B containing 15% by weight of barium carbonate.

Claims (1)

【特許請求の範囲】[Claims] 1 全重量に対してアルカリ成分を1.0重量%以
上含有する多孔質タイル成形用原料へ全重量の3
乃至30重量%に相当するバリユウム塩を配合して
900乃至1350℃で焼成してなり、前記アルカリ成
分の大部分を重土長石とし、且つ水和膨脹率を
0.1%以下としたことを特徴とする低水和膨脹多
孔質タイル。
1.3 of the total weight to porous tile forming raw materials containing 1.0% by weight or more of alkaline components based on the total weight.
Contains barium salt equivalent to 30% by weight
It is fired at a temperature of 900 to 1350℃, and the alkaline component is mostly heavy feldspar, and the hydration expansion rate is low.
A low hydration expansion porous tile characterized by having a hydration content of 0.1% or less.
JP5843683A 1983-04-01 1983-04-01 Low hydration swelling porous tile Granted JPS59184761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5843683A JPS59184761A (en) 1983-04-01 1983-04-01 Low hydration swelling porous tile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5843683A JPS59184761A (en) 1983-04-01 1983-04-01 Low hydration swelling porous tile

Publications (2)

Publication Number Publication Date
JPS59184761A JPS59184761A (en) 1984-10-20
JPS6238315B2 true JPS6238315B2 (en) 1987-08-17

Family

ID=13084341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5843683A Granted JPS59184761A (en) 1983-04-01 1983-04-01 Low hydration swelling porous tile

Country Status (1)

Country Link
JP (1) JPS59184761A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE78010T1 (en) * 1987-04-24 1992-07-15 Arturo Broggini ARTIFICIAL STONES AND METHOD OF MAKING SAME.
ATE96138T1 (en) * 1988-10-21 1993-11-15 Arturo Broggini PROCESS FOR MAKING ARTIFICIAL STONES.
JP2007204323A (en) * 2006-02-02 2007-08-16 Nikken Sekkei Ltd Ceramics building material and its manufacturing method
CN107930825A (en) * 2017-11-24 2018-04-20 龙岩高岭土股份有限公司 A kind of method that separation colour developing mineral improve product quality from porcelain stone

Also Published As

Publication number Publication date
JPS59184761A (en) 1984-10-20

Similar Documents

Publication Publication Date Title
US3861935A (en) Synthetic crystalline beta-wallastonite product
US5071801A (en) High density leucite based ceramics from zeolite
US3531307A (en) Ceramic article and method for producing same
JPS6359985B2 (en)
TW414785B (en) High strength porcelain and method therefor
KR100447300B1 (en) Method for manufacturing cordierite ceramic honeycomb
US4101330A (en) Leucite-containing porcelains and method of making same
US3967971A (en) Translucent ceramic whiteware products
US3520705A (en) Non-vitreous ceramic ware made from pseudowollastonite
US3312558A (en) Calcium hexaluminate articles
US4219360A (en) Production of bone china
US2898217A (en) Ceramic products
JPS6238315B2 (en)
US3533813A (en) Low density clay ceramic compositions
US3279930A (en) Ceramic product and its preparation
KR20050046727A (en) The use of zeolites in preparing low temperature ceramics
US2220411A (en) Refractory and method of making same
US4980323A (en) High density cordierite ceramics from zeolite
US2678282A (en) Process for manufacturing synthetic inorganic silicates or the like
US2332343A (en) Ceramic material
US2726964A (en) Modified quartz and method of making
US1616525A (en) Article of sillimanite-bonded granular material and method of making the same
US3413132A (en) Lightweight ceramic product and method of making
JPH06211569A (en) Transparent aluminuous sintered compact and its production
SU1247370A1 (en) Charge for producing ceramic material