JPS6238282B2 - - Google Patents
Info
- Publication number
- JPS6238282B2 JPS6238282B2 JP57139206A JP13920682A JPS6238282B2 JP S6238282 B2 JPS6238282 B2 JP S6238282B2 JP 57139206 A JP57139206 A JP 57139206A JP 13920682 A JP13920682 A JP 13920682A JP S6238282 B2 JPS6238282 B2 JP S6238282B2
- Authority
- JP
- Japan
- Prior art keywords
- monosilane
- type
- zeolite
- arsine
- phosphine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 38
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 26
- 239000010457 zeolite Substances 0.000 claims description 26
- 229910021536 Zeolite Inorganic materials 0.000 claims description 20
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 20
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 claims description 16
- 229910052709 silver Inorganic materials 0.000 claims description 9
- 239000004332 silver Substances 0.000 claims description 9
- -1 silver ions Chemical class 0.000 claims description 8
- 150000001768 cations Chemical class 0.000 claims description 4
- JYIMWRSJCRRYNK-UHFFFAOYSA-N dialuminum;disodium;oxygen(2-);silicon(4+);hydrate Chemical compound O.[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Na+].[Al+3].[Al+3].[Si+4] JYIMWRSJCRRYNK-UHFFFAOYSA-N 0.000 claims description 3
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 16
- 238000005342 ion exchange Methods 0.000 description 12
- 238000001179 sorption measurement Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 239000002808 molecular sieve Substances 0.000 description 7
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 7
- 239000012535 impurity Substances 0.000 description 6
- 238000005273 aeration Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical group [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910017090 AlO 2 Inorganic materials 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicon Compounds (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Description
【発明の詳細な説明】
本発明は半導体用原料として有用なモノシラン
の精製法に関する。更に詳しく述べるならば、本
発明はモノシラン中に含まれる不純物であるフオ
スフインとアルシンを吸着除去する方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying monosilane useful as a raw material for semiconductors. More specifically, the present invention relates to a method for adsorbing and removing phosphine and arsine, which are impurities contained in monosilane.
モノシラン(SiH4)は、半導体用原料として、
エピタキシヤル成長、窒化珪素膜成長、酸化珪素
膜成長や非晶質珪素の製造、結晶珪素の製造等に
広く用いられている。半導体用原料は一般に高純
度であることが要求される。上記の如き目的に用
いられるモノシランの場合においても例外ではな
く、でき得る限りの高純度モノシランが要求され
ることから、フオスフイン、ジボラン、アルシン
等の不純物の含有量を極微量にすることが必要で
ある。これらのうち、特にフオスフインは容器材
料等から混入することもあつて、その混入量も無
視できないために、モノシラン中における主要な
不純物となつており、その除去が不可欠である。 Monosilane (SiH 4 ) is used as a raw material for semiconductors.
It is widely used for epitaxial growth, silicon nitride film growth, silicon oxide film growth, manufacturing of amorphous silicon, manufacturing of crystalline silicon, etc. Raw materials for semiconductors are generally required to be highly pure. Monosilane used for the above purposes is no exception; monosilane of the highest possible purity is required, so it is necessary to minimize the content of impurities such as phosphine, diborane, arsine, etc. be. Among these, phosphine in particular may be mixed in from the container material, etc., and the amount of mixed in cannot be ignored, so it is a major impurity in monosilane, and its removal is essential.
かかるモノシランの精製には、蒸留、吸着等の
手法を用いることができるけれども、極微量精製
であるために実際には吸着法が多く提案されてい
る。例えば、活性炭による方法(英国特許831216
号明細書)、A型又はX型ゼオライトによる方法
(特公昭36−1774号公報)、イオン交換処理したA
型ゼオライトによる方法(特公昭48−41437号公
報及び特公昭48−41439号公報)等である。 Although methods such as distillation and adsorption can be used to purify monosilane, many adsorption methods have actually been proposed because it purifies a very small amount. For example, activated carbon method (UK patent 831216
specification), method using A-type or X-type zeolite (Japanese Patent Publication No. 36-1774), ion-exchange treated A
These methods include methods using type zeolite (Japanese Patent Publication No. 48-41437 and Japanese Patent Publication No. 48-41439).
しかし、これらの方法では、フオスフイン等の
不純物とともにモノシランも吸着される不都合が
ある。A型又はX型ゼオライトによる方法では吸
着操作を減圧下で行うことによりモノシランの吸
着量を少なくする工夫がなされているけれども、
半導体用原料を得るために必要な極微量精製にお
いてはこの方法によつても十分な結果は得られな
い。また、特公昭48−41437号及び特公昭48−
41439号に提案された如きイオン交換処理したA
型ゼオライトによる方法では、イオン交換量が多
すぎるとモノシランの吸着が起り、逆に少なすぎ
るとモノシランの吸着は起らないが不純物も吸着
されなくなる。従つて、特定の不純物のみを選択
的に吸着させるためには、イオン交換量が所定の
範囲内になるように厳密なコントロール下にイオ
ン交換処理を行うことが必要となる。 However, these methods have the disadvantage that monosilane is also adsorbed together with impurities such as phosphine. In methods using A-type or X-type zeolites, the adsorption operation is carried out under reduced pressure to reduce the amount of monosilane adsorbed.
Even with this method, sufficient results cannot be obtained in the extremely small amount of purification required to obtain raw materials for semiconductors. Also, Special Publication No. 48-41437 and Special Publication No. 48-48-
A treated with ion exchange as proposed in No. 41439
In the method using type zeolite, if the amount of ion exchange is too large, adsorption of monosilane will occur; conversely, if the amount of ion exchange is too small, adsorption of monosilane will not occur, but impurities will also not be adsorbed. Therefore, in order to selectively adsorb only specific impurities, it is necessary to perform ion exchange treatment under strict control so that the amount of ion exchange is within a predetermined range.
従つて、本発明の目的は、上記の如き従来のモ
ノシラン精製方法の欠点を解消し、容易かつ確実
にモノシランを精製することのできる方法を提供
することにある。 Therefore, an object of the present invention is to provide a method that can eliminate the drawbacks of the conventional monosilane purification methods as described above and can purify monosilane easily and reliably.
本発明によれば即ちモノシランの精製法が提供
されるのであつて、この方法はイオン交換可能な
陽イオンの少なくとも一部を銀イオンで交換した
A型ゼオライトを用いてモノシラン中のフオスフ
イン及び/又はアルシンを吸着除去することを特
徴とする。 According to the present invention, a method for purifying monosilane is provided, which uses zeolite A in which at least a portion of ion-exchangeable cations are exchanged with silver ions to purify phosphine and/or It is characterized by adsorbing and removing arsine.
即ち、本発明の方法は、イオン交換可能な構成
陽イオンの一部又は全部を銀イオンで置換したA
型ゼオライトでの吸着によるモノシランの精製法
である。本発明に係るこの方法では、モノシラン
を吸着することなく、モノシラン中のフオスフイ
ン及びアルシンを極微量にまで容易に除去するこ
とができる。 That is, the method of the present invention uses A in which part or all of the ion-exchangeable constituent cations are replaced with silver ions.
This is a method for purifying monosilane by adsorption on type zeolite. In this method according to the present invention, phosphine and arsine in monosilane can be easily removed to minute amounts without adsorbing monosilane.
A型ゼオライトは、「A型モレキユラーシーブ
ス」の商品名のもとに、米国のユニオンカーバイ
ド社より世界的に市販、供給されている。このA
型モレキユラーシーブスはナトリウム塩として合
成され、一般にはNa12(AlO2)12(SiO2)12・
29H2Oの化学組成を有するとされている。このナ
トリウム塩は「モレキユラーシーブス4A」とし
て市販されており、またこのナトリウム塩のナト
リウムをカリウムで置換したカリウム塩が「モレ
キユラーシーブス3A」として、更にナトリウム
をカルシウム塩で置換したカルシウム塩が「モレ
キユラーシーブス5A」として市販されている。
そして、これら3種のゼオライトは、骨格構造を
同一にするけれども、骨格中心への空洞の窓口径
が5A型(Ca塩)>4A型(Na塩)>3A型(K塩)
の如く異なつており、そのためそれぞれ吸着特性
を異にしている。即ち、これらのA型ゼオライト
は、常温、常圧の条件下においては、5A型では
モノシラン、フオスフイン及びアルシンのいずれ
をも吸着するが、4A型及び3A型ではいずれも吸
着しないという、異なる吸着能を有するのであ
る。従つて、これらのA型ゼオライトをそのまま
モノシラン中に含まれるフオスフインとアルシン
との選択除去に用いることはできない。 Type A zeolite is marketed and supplied worldwide by Union Carbide Company of the United States under the trade name "Type A Molecular Sieves." This A
Type molecular sieves are synthesized as sodium salts, generally Na 12 (AlO 2 ) 12 (SiO 2 ) 12 .
It is said to have a chemical composition of 29 H 2 O. This sodium salt is commercially available as "Molecular Sieves 4A", and the potassium salt of this sodium salt in which the sodium is replaced with potassium is called "Molecular Sieves 3A", and the calcium salt in which the sodium is further replaced with a calcium salt. is commercially available as "Molecular Thieves 5A".
Although these three types of zeolites have the same skeleton structure, the diameter of the cavity to the center of the skeleton is 5A type (Ca salt) > 4A type (Na salt) > 3A type (K salt).
They are different, and therefore have different adsorption properties. In other words, these A-type zeolites have different adsorption abilities: under normal temperature and pressure conditions, the 5A type adsorbs monosilane, phosphine, and arsine, but the 4A type and 3A type do not adsorb any of them. It has. Therefore, these type A zeolites cannot be used as they are for the selective removal of phosphine and arsine contained in monosilane.
しかるに、本発明によれば、4A型ゼオライト
の陽イオンを銀イオンで交換することにより、モ
ノシランを吸着せず、フオスフイン及びアルシン
を選択的に吸着するゼオライトを得ることができ
るということが見出されたのである。 However, according to the present invention, it has been discovered that by exchanging the cations of type 4A zeolite with silver ions, it is possible to obtain a zeolite that selectively adsorbs phosphin and arsine without adsorbing monosilane. It was.
4A型ゼオライトの陽イオン交換は銀イオンを
含む溶液で処理することにより容易に実施するこ
とができる。銀イオンを含む溶液としては種々の
銀塩の水溶液を用いるのがよく、銀塩としては硝
酸塩が実用的である。イオン交換処理操作は、ゼ
オライトを上記の如き銀イオンを含む溶液中に単
に浸漬することにより行うことができる。この場
合、均一にイオン交換させるためには、金属イオ
ンが濃度が約0.2N程度の水溶液を用い、浸漬時
間を20時間以上とすることが望ましい。このよう
にしてイオン交換処理されたゼオライトは、次い
で、水洗及び乾燥した後、活性化処理に付され
る。 Cation exchange of type 4A zeolite can be easily carried out by treating it with a solution containing silver ions. As the solution containing silver ions, aqueous solutions of various silver salts are preferably used, and nitrates are practical as the silver salt. The ion exchange treatment operation can be carried out by simply immersing the zeolite in a solution containing silver ions as described above. In this case, in order to uniformly exchange ions, it is desirable to use an aqueous solution containing metal ions with a concentration of approximately 0.2N, and to set the immersion time to 20 hours or more. The zeolite treated with ion exchange in this manner is then washed with water and dried, and then subjected to activation treatment.
活性化処理は、常法に準じて、真空下に又は不
活性ガス雰囲気中で加熱処理することにより行う
ことができる。加熱温度は250℃以上、好ましく
は300〜400℃である。 The activation treatment can be performed by heat treatment under vacuum or in an inert gas atmosphere according to a conventional method. The heating temperature is 250°C or higher, preferably 300 to 400°C.
上記の如く処理したA型ゼオライトをフオスフ
インやアルシンを含むモノシランと接触せしめる
と、このゼオライト上にフオスフインとアルシン
が選択的に吸着されるのである。ここで、銀イオ
ンの交換量により、得られるゼオライトのフオス
フイン及びアルシンの吸着能が異なるけれども、
モノシランの吸着にはこの銀イオン交換量は無関
係であつて、いかなる銀イオン交換量にあつても
モノシランは吸着されないのである。 When type A zeolite treated as described above is brought into contact with monosilane containing phosphine and arsine, phosphine and arsine are selectively adsorbed onto the zeolite. Although the adsorption ability of the obtained zeolite for phosphin and arsine varies depending on the amount of silver ions exchanged,
The amount of silver ion exchanged is irrelevant to the adsorption of monosilane, and no matter what amount of silver ion exchanged, monosilane will not be adsorbed.
即ち、本発明の方法に用いるゼオライトは容易
なイオン交換操作より得ることができ、かつ確実
にフオスフイン及びアルシンを選択吸着すること
ができるから、本発明の方法は極めて有利なモノ
シランの精製方法を与えることができるのであ
る。 That is, since the zeolite used in the method of the present invention can be obtained through a simple ion exchange operation and can reliably selectively adsorb phosphine and arsine, the method of the present invention provides an extremely advantageous method for purifying monosilane. It is possible.
尚、本発明の方法に用いるゼオライトは、以上
に説明した如きモノシランの精製のみに限定され
るものではなく、4A型及び3A型ゼオライトでは
吸着されず、5A型ゼオライトで吸着されるよう
なガス群中から極性ガスのみを選択的に除去する
のに有利に用いることができる。 The zeolite used in the method of the present invention is not limited to the purification of monosilane as explained above, but can also be used for gases that are not adsorbed by type 4A and type 3A zeolites but are adsorbed by type 5A zeolites. It can be advantageously used to selectively remove only polar gases.
以下、例によつて本発明を更に説明する。 The invention will now be further explained by way of examples.
実施例 1
硝酸銀15.8gを微酸性の水400mlに溶解した銀
イオン水溶液中に4A型ゼオライト(ユニオンカ
ーバイド社製、モレキユラーシーブス4A)10g
を浸漬した。発生する気泡を間けつ的に除去しな
がら、室温において24時間放置し、イオン交換を
行つた。銀の交換量は4.8gであつた。Example 1 10 g of 4A type zeolite (manufactured by Union Carbide, Molecular Sieves 4A) was added to a silver ion aqueous solution in which 15.8 g of silver nitrate was dissolved in 400 ml of slightly acidic water.
Soaked. While removing generated bubbles intermittently, the mixture was left at room temperature for 24 hours to perform ion exchange. The amount of silver exchanged was 4.8 g.
得られたイオン交換ゼオライトを水洗及び乾燥
後、吸着器に充填して真空状態において350℃で
5時間加熱し、活性化した。 The obtained ion-exchanged zeolite was washed with water and dried, then filled into an adsorbent and heated in a vacuum at 350° C. for 5 hours to activate it.
この活性化されたイオン交換ゼオライトが充填
された吸着器を30℃に保持し、これに100p.p.b.
のフオスフインを含む純モノシランガスを常圧下
に150ml/minの割合で通じた。500時間通気を継
続した後に精製ガス中のフオスフインを測定した
ところ、その含有量は0.2p.p.b.以下であつた。
尚、この測定はFPD方式のガスクロマトグラフ
イにより行つた(以下の例において同じ)。 The adsorber filled with this activated ion-exchanged zeolite is maintained at 30°C, and 100p.pb
Pure monosilane gas containing phosphine was passed under normal pressure at a rate of 150 ml/min. After continuous aeration for 500 hours, the phosphin content in the purified gas was measured to be less than 0.2 ppb.
Note that this measurement was performed using FPD type gas chromatography (the same applies to the following examples).
実施例 2
実施例1に述べた操作を繰り返したが、ここで
はフオスフインの代りに100p.p.b.のアルシンを
含む純モノシランガスを吸着器に通じた。通気を
300時間継続後に精製ガス中のアルシンの含有量
を測定したところ、0.5p.p.b.以下であつた。Example 2 The procedure described in Example 1 was repeated, but instead of phosphine, pure monosilane gas containing 100 p.pb of arsine was passed through the adsorber. ventilation
When the arsine content in the purified gas was measured after 300 hours of continuous use, it was 0.5 ppb or less.
実施例 3
100p.p.b.のフオスフインの代りに50p.p.bのフ
オスフインと50p.p.b.のアルシンとを含む純モノ
シランガスを用いた以外は、実施例1に述べた操
作を繰り返した。通気を300時間継続後、精製ガ
ス中のフオスフイン及びアルシンの含有量はそれ
ぞれ0.2p.p.b.以下及び0.5p.p.b.以下であつた。Example 3 The procedure described in Example 1 was repeated, except that 100 p.pb of phosphine was replaced by pure monosilane gas containing 50 p.pb of phosphine and 50 p.pb of arsine. After continuing the aeration for 300 hours, the contents of phosphin and arsine in the purified gas were 0.2 ppb or less and 0.5 ppb or less, respectively.
比較例 1
4A型ゼオライト(ユニオンカーバイド社製、
モレキユラーシーブス4A)をイオン交換するこ
となく、そのまま実施例1に述べたと同じ方法に
より、活性化し、吸着を行つた。通気開始直後に
精製ガス中のフオスフインの濃度を測定したとこ
ろ、100p.p.b.であつた。Comparative example 1 4A type zeolite (manufactured by Union Carbide,
Molecular sieves 4A) were activated and adsorbed using the same method as described in Example 1 without ion exchange. Immediately after the start of aeration, the concentration of phosphin in the purified gas was measured and found to be 100 p.pb.
比較例 2
5A型ゼオライト(ユニオンカーバイド社製、
モレキユラーシーブス5A)をイオン交換するこ
となく、そのまま実施例1に述べたと同じ方法に
より、活性化し、次いで吸着を行つた。精製ガス
中のフオスフインの濃度を測定したところ、通気
開始6時間後には0.2p.p.b.以下であり、通気開
始13時間後には50p.p.b.であつた。Comparative example 2 5A type zeolite (manufactured by Union Carbide,
Molecular sieves 5A) were activated without ion exchange in the same manner as described in Example 1, and then adsorption was performed. When the concentration of phosphine in the purified gas was measured, it was 0.2 ppb or less 6 hours after the start of aeration, and 50 p.pb 13 hours after the start of aeration.
Claims (1)
部を銀イオンで交換したA型ゼオライトを用いて
モノシラン中のフオスフイン及び/又はアルシン
を吸着除去することを特徴とするモノシランの精
製法。1. A method for purifying monosilane, which comprises adsorbing and removing phosphin and/or arsine in monosilane using type A zeolite in which at least a portion of the cations of 4A type zeolite have been exchanged with silver ions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13920682A JPS5930711A (en) | 1982-08-12 | 1982-08-12 | Method for purifying monosilane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13920682A JPS5930711A (en) | 1982-08-12 | 1982-08-12 | Method for purifying monosilane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5930711A JPS5930711A (en) | 1984-02-18 |
JPS6238282B2 true JPS6238282B2 (en) | 1987-08-17 |
Family
ID=15240012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13920682A Granted JPS5930711A (en) | 1982-08-12 | 1982-08-12 | Method for purifying monosilane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5930711A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4772296A (en) * | 1987-05-12 | 1988-09-20 | Eagle-Picher Industries, Inc. | Method of purifying and depositing group IIIa and group Va compounds to produce epitaxial films |
FR2622564B1 (en) * | 1987-10-28 | 1990-02-02 | Rhone Poulenc Chimie | SILANE PURIFICATION PROCESS |
FR2652346B1 (en) * | 1989-09-22 | 1991-11-29 | Air Liquide | PROCESS FOR THE PREPARATION OF DISILANE. |
US5840953A (en) * | 1995-11-16 | 1998-11-24 | Eagle-Picher Industries, Inc. | Purified tetraethoxysilane and method of purifying |
CN1297478C (en) * | 2003-11-28 | 2007-01-31 | 上海家化联合股份有限公司 | Molecular sieve based nano composite anti-ultraviolet material, its preparation method and use |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4841439A (en) * | 1971-10-01 | 1973-06-18 |
-
1982
- 1982-08-12 JP JP13920682A patent/JPS5930711A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4841439A (en) * | 1971-10-01 | 1973-06-18 |
Also Published As
Publication number | Publication date |
---|---|
JPS5930711A (en) | 1984-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0448562B1 (en) | Removal of mercury from fluids by contact with activated zeolite a | |
US4917711A (en) | Adsorbents for use in the separation of carbon monoxide and/or unsaturated hydrocarbons from mixed gases | |
US5051117A (en) | Process for removing gaseous contaminating compounds from carrier gases containing halosilane compounds | |
EP0121339B1 (en) | Method for removal of poisonous gases | |
US4019879A (en) | Selective adsorption of carbon monoxide from gas streams | |
US4786483A (en) | Process for removing hydrogen sulfide and mercury from gases | |
US5868818A (en) | Adsorbent for air separation, production method thereof, and air-separation method using it | |
US3785122A (en) | Process for preparing 4,5a zeolite and method for separating mixtures using same | |
US3982912A (en) | Method for preparation of an improved K-A type zeolite and for separation by adsorption polar and non-polar molecules | |
EP0785170B1 (en) | Process for the purification of a solution of lithium salts contaminated with metallic cations and use of that process in the production of lithium-exchanged zeolites | |
US4045553A (en) | Method of treating silver impregnated activated carbon | |
JPH01201019A (en) | Purification of silane | |
JPS6238282B2 (en) | ||
JP3050147B2 (en) | Adsorbent for air separation, production method thereof and air separation method using the same | |
JPS643805B2 (en) | ||
RU2035975C1 (en) | Method for purification of oxygen-containing gases against iodine impurities and sorbent for its realization | |
JP3849724B2 (en) | Production method of high purity hydrogen peroxide water | |
JPH03229690A (en) | Purifying agent for water purifier using natural zeolite | |
JPH0340902A (en) | Method for refining gaseous hydride | |
JP2004298738A (en) | Boron-containing water treatment method | |
JP3624584B2 (en) | Adsorbent for oxygen PSA, method for producing the same, and method for producing oxygen using the same | |
JP4143707B2 (en) | Method for producing high purity sodium chloride crystals | |
JP3634890B2 (en) | Method for purifying substituted hydrazine gas | |
JPS61101411A (en) | Purification of silane gas | |
JPS6325210A (en) | Method for purifying disilane |