JPS623771B2 - - Google Patents

Info

Publication number
JPS623771B2
JPS623771B2 JP57149707A JP14970782A JPS623771B2 JP S623771 B2 JPS623771 B2 JP S623771B2 JP 57149707 A JP57149707 A JP 57149707A JP 14970782 A JP14970782 A JP 14970782A JP S623771 B2 JPS623771 B2 JP S623771B2
Authority
JP
Japan
Prior art keywords
tantalum
dielectric
producing
mol
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57149707A
Other languages
Japanese (ja)
Other versions
JPS5939725A (en
Inventor
Junichi Kato
Yoichiro Yokoya
Yoshihiro Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57149707A priority Critical patent/JPS5939725A/en
Publication of JPS5939725A publication Critical patent/JPS5939725A/en
Publication of JPS623771B2 publication Critical patent/JPS623771B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は緻密で欠陥の少ない厚膜コンデンサ磁
器を得るための厚膜用誘電体粉末の製造法に関す
るものである。 従来例の構成とその問題点 コンデンサ素子を小型化、大容量化するため、
誘電体層と電極層を交互に積層した厚膜誘電体磁
器が実用化されている。小型大容量のコンデンサ
素子を得る方法としては、比誘電率の大きい誘電
体を用いる方法と、誘電体層の厚さを薄くする方
法が考えられる。しかしながら室温において比誘
電率が大きい誘電体材料は温度変化が大きい場合
実用に供し得ない。一方、誘電体の厚さを薄くす
る方法では耐電圧が低下するという問題があり、
厚膜コンデンサにおいて50Vの定格電圧を得るた
めには25〜30μmの膜厚が必要であると言われて
いる。一般に、高い耐電圧を有する厚膜磁器は気
孔が少なく、均一で小さい焼成粒径を持つ。この
ような磁器を得るには、原料粉末の粒度が細か
く、且つ粒度分布幅が小さいことが望ましい。従
来より使用されている固相反応から得られる原料
粉末では粒径は1μm以下にすることは困難であ
り、粒度分布幅も大きい。微細で粒度分布幅が小
さい誘電体粉末は金属アルコキシドの加水分解に
よつて得られ、SrTiO3やBaTiO3の合成について
文献等で公知である。SrTiO3は比誘電率が200程
度であるため、小型大容量のコンデンサには適さ
ない。BaTiO3は比誘電率が1800程度と高いが、
焼成した磁器は微細構造として一部に20〜30μm
に異常粒成長した粒子を持つ二重構造を取り易
く、膜厚が30μm以下で高い耐電圧を有する厚膜
コンデンサを作成するのは困難である。従つて、
優れた厚膜コンデンサを得るためには均一で小さ
い焼成粒径を持ち、比誘電率が1500以上ある磁気
を実現する原料粉末が必要とされる。 発明の目的 本発明は金属アルコキシドの加水分解により、
前述の条件を満たす誘電体材料の微粉末の製造法
を提供するものであり、この微粉末を原料にする
ことによつて室温における比誘電率が1500以上で
あり、且つ焼成粒径を均一で1μm以下にでき
る。従つて、10μmの膜厚にしたときにも耐電圧
が150V以上ある小型大容量の厚膜磁器コンデン
サーを作成することを可能とした。 発明の構成 上記目的を達成するため、本発明の厚膜用誘電
体粉末の製造法は、金属アルコキシドの加水分解
により酸化物の微粉末を得る方法において、
48.50〜49.92モル%のバリウムジアルコキシド、
45.5〜49.78モル%のチタンテトラアルコキシ
ド、0.3〜6モル%のタンタルペンタアルコキシ
ドをそれらの5倍以上の重量のイソプロピルアル
コールに溶解、混合させ、その混合溶液を40〜85
℃の温度に保持し撹拌しながらその溶液中に水―
イソプロピルアルコール混合溶液(重量比1:10
〜2:1)を滴下し、タンタルドープBaTiO3
沈澱物を生成させた後、水―アルコール混合溶液
から沈澱物を分離、乾燥させ、400〜1000℃の温
度で加熱処理するものである。 実施例の説明 以下本発明の実施例について、図面に基づいて
説明する。BaTiO3にBa1/2TaO3が少量固溶した系 を合成するため、バリウムジプロポキシド、チタ
ンテトラブトキシド又はチタンテトラプロポキシ
ド、タンタルペンタブトキシド又はタンタルペン
タプロポキシドを所定量秤量し、その合計重量の
20倍の重量のイソプロピルアルコールを加え、80
℃に保持して撹拌する。約2時間の撹拌により、
固形のバリウムジプロプキシドが溶解する。更に
4〜8時間撹拌を続けた後、80℃に保持したまま
水とイソプロピルアルコールを1対1に混合した
溶液を滴下する。滴下する溶液の量は全ての金属
アルコキシドが加水分解するのに必要な水の量の
3倍量が加わるように設定した。水―イソプロピ
ルアルコール溶液の滴下により、金属アルコキシ
ドの溶液には沈澱物が生じて不透明になる。設定
量の水―イソプロピルアルコール溶液を滴下した
後、80℃に保持しながら更に6時間撹拌を続け、
未反応な金属アルコキシドが残留しないように熟
成する。熟成を終えた後、沈澱物と溶液を遠心分
離機又は蒸発乾燥によつて分離する。沈澱物はペ
ロヴスカイト構造を有していることをX線により
確認した。又沈澱物粒子の粒子径は数十Åであ
り、5〜10重量%のアルコール類を吸蔵している
ので、400〜1000℃で加熱処理を行なつた。加熱
処理によつて沈澱物は数百〜千Åの粒径を持つ微
粒子になる。 次に微粉末の合成条件について種々検討した結
果について述べる。金属アルコキシドをイソプロ
ピルアルコール中に溶解させるとき、溶液の温度
を40℃以下で撹拌した場合、バリウムジプロポキ
シドは2時間後にも溶解せず残存するため、40℃
以上に加熱することが必要である。又イソプロピ
ルアルコールの沸点が85℃であるから、この温度
以上にすることは好ましくない。加水分解時の温
度を40℃以下にした場合、沈澱物は非晶質を多く
含み、水配基が5〜10重量%存在するので、加水
分解時の温度も40〜85℃にする必要がある。イソ
プロピルアルコール中の金属アルコキシドの重量
%が20%以上になると溶解させるのが著じるしく
困難であるため、金属アルコキシドの濃度は20重
量%以下にする必要がある。加水分解反応のため
に滴下する水―イソプロピルアルコール溶液の水
の濃度が67重量%以上になると非晶質が生成す
る。又10%以下では加水分解反応の進行中に金属
アルコキシドの濃度変化が無視し得なくなり、沈
澱物の粒度分布幅が広がる。従つて水―イソプロ
ピルアルコールの重量比は2:1〜1:10が適当
である。加水分解反応後の熟成を行なわない場
合、ドープしたタンタルの均一性が得られない。
沈澱、乾燥粉末の加熱処理温度が400℃以下では
吸蔵されているアルコール類が残留し、焼成した
ときに気孔率が増加する。又1000℃を越えると粒
子径の成長が著しく、反応性が低下するため、金
属アルコキシドの加水分解により微粒子を作成す
るという目的にそぐわなくなる。 以上述べた合成条件をまとめる。金属アルコキ
シドの溶解及び加水分解反応は40〜85℃で行な
う。加水分解反応に用いる水のイソプロピルアル
コール溶液の濃度は10〜67%であり、この溶液を
所定量滴下した後、40〜85℃で熟成させる。沈澱
物の乾燥後、400〜1000℃の加熱処理を行なう。 加熱処理した微粉末にポリビニルアルコール水
溶液を加えて造粒し、デイスク状にプレス成形し
た後、1300℃で2時間焼成した。焼成後の誘電体
磁器の微細構造を走査電子顕微鏡で観察した結
果、タンタルアルコキシドの量が0.1モル%以下
では、タンタルをドープしないBaTiO3のように
異常粒成した粒子を含む二重構造を有しており、
タンタルのドープ量が増加すると共に焼成粒径が
小さくなり、0.3モル%以上で1μm以下とな
る。又0.15〜0.25モル%では誘電体が半導体化す
るため、コンデンサとしては使用できない。焼成
したデイスク状試料の両面に銀電極を焼付けて誘
電率とその温度変化を測定した。比較例を含む
種々の組成から得たこれらの結果を次表及び第1
図に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing thick film dielectric powder for obtaining dense film capacitor porcelain with few defects. Conventional configuration and its problems In order to miniaturize the capacitor element and increase its capacity,
Thick-film dielectric ceramics in which dielectric layers and electrode layers are alternately laminated have been put into practical use. Possible methods for obtaining a small-sized, large-capacitance capacitor element include a method of using a dielectric material with a high relative dielectric constant, and a method of reducing the thickness of the dielectric layer. However, a dielectric material having a large dielectric constant at room temperature cannot be put to practical use if there is a large temperature change. On the other hand, the method of reducing the thickness of the dielectric has the problem of lowering the withstand voltage.
It is said that in order to obtain a rated voltage of 50V in a thick film capacitor, a film thickness of 25 to 30 μm is required. In general, thick-film porcelain that has a high withstand voltage has fewer pores and has a uniform and small fired grain size. In order to obtain such porcelain, it is desirable that the raw material powder has a fine particle size and a narrow particle size distribution width. It is difficult to reduce the particle size to 1 μm or less with the raw material powder obtained from the conventional solid-phase reaction, and the particle size distribution width is also large. Dielectric powders that are fine and have a narrow particle size distribution are obtained by hydrolysis of metal alkoxides, and the synthesis of SrTiO 3 and BaTiO 3 is known in the literature. SrTiO 3 has a dielectric constant of about 200, so it is not suitable for small, large-capacity capacitors. BaTiO 3 has a high dielectric constant of about 1800,
The fine structure of fired porcelain is 20 to 30 μm in some parts.
It is difficult to create a thick film capacitor with a film thickness of 30 μm or less and a high withstand voltage because it tends to have a double structure with abnormally grown particles. Therefore,
In order to obtain excellent thick-film capacitors, a raw material powder that achieves magnetism with a uniform and small fired particle size and a dielectric constant of 1500 or more is required. Purpose of the Invention The present invention provides the following methods:
This provides a method for producing fine powder of dielectric material that satisfies the above conditions, and by using this fine powder as a raw material, the dielectric constant at room temperature is 1500 or more, and the fired particle size is uniform. It can be made less than 1 μm. Therefore, it has become possible to create a small, large-capacity, thick-film porcelain capacitor that has a withstand voltage of 150 V or more even when the film thickness is 10 μm. Structure of the Invention In order to achieve the above object, the method for producing a thick film dielectric powder of the present invention includes a method for obtaining a fine powder of an oxide by hydrolysis of a metal alkoxide.
48.50-49.92 mol% barium dialkoxide,
45.5 to 49.78 mol% of titanium tetraalkoxide and 0.3 to 6 mol% of tantalum pentaalkoxide are dissolved and mixed in isopropyl alcohol of more than 5 times their weight, and the mixed solution is mixed with 40 to 85 mol% of titanium tetraalkoxide.
Water is poured into the solution while stirring and maintained at a temperature of °C.
Isopropyl alcohol mixed solution (weight ratio 1:10
2:1) to form a precipitate of tantalum-doped BaTiO 3 , the precipitate is separated from the water-alcohol mixed solution, dried, and heat-treated at a temperature of 400 to 1000°C. DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described based on the drawings. In order to synthesize a system in which a small amount of Ba1/2 TaO 3 is dissolved in BaTiO 3 as a solid solution, a predetermined amount of barium dipropoxide, titanium tetrabutoxide or titanium tetrapropoxide, tantalum pentabutoxide or tantalum pentapropoxide is weighed, and the total weight of
Add 20 times the weight of isopropyl alcohol to 80
Keep at ℃ and stir. After stirring for about 2 hours,
Solid barium dipropoxide is dissolved. After continuing stirring for an additional 4 to 8 hours, a solution of water and isopropyl alcohol mixed at a ratio of 1:1 is added dropwise while maintaining the temperature at 80°C. The amount of solution added dropwise was set so that three times the amount of water required for hydrolyzing all the metal alkoxides was added. When the water-isopropyl alcohol solution is added dropwise, the metal alkoxide solution forms a precipitate and becomes opaque. After dropping the set amount of water-isopropyl alcohol solution, stirring was continued for another 6 hours while maintaining the temperature at 80℃.
Aging is performed so that no unreacted metal alkoxide remains. After aging, the precipitate and solution are separated using a centrifuge or evaporative drying. It was confirmed by X-ray that the precipitate had a perovskite structure. Further, since the particle size of the precipitate particles is several tens of Å and occludes 5 to 10% by weight of alcohol, the heat treatment was performed at 400 to 1000°C. By heat treatment, the precipitate becomes fine particles with a particle size of several hundred to 1,000 angstroms. Next, we will discuss the results of various studies regarding the synthesis conditions for fine powder. When dissolving metal alkoxide in isopropyl alcohol, if the temperature of the solution is stirred at 40℃ or lower, barium dipropoxide will remain undissolved even after 2 hours, so the temperature of the solution will be 40℃ or lower.
It is necessary to heat the product to a higher level. Furthermore, since the boiling point of isopropyl alcohol is 85°C, it is not preferable to raise the temperature above this temperature. If the temperature during hydrolysis is set to 40°C or lower, the precipitate will contain a large amount of amorphous and contain 5 to 10% by weight of water groups, so the temperature during hydrolysis must also be 40 to 85°C. be. If the weight percentage of metal alkoxide in isopropyl alcohol exceeds 20%, it is extremely difficult to dissolve the metal alkoxide, so the concentration of metal alkoxide needs to be below 20% by weight. When the water concentration of the water-isopropyl alcohol solution dropped for the hydrolysis reaction becomes 67% by weight or more, an amorphous substance is formed. Further, if the content is less than 10%, the concentration change of the metal alkoxide cannot be ignored during the progress of the hydrolysis reaction, and the particle size distribution width of the precipitate widens. Therefore, the weight ratio of water to isopropyl alcohol is suitably 2:1 to 1:10. If aging is not performed after the hydrolysis reaction, uniformity of the doped tantalum cannot be obtained.
If the heat treatment temperature of the precipitated and dry powder is below 400°C, occluded alcohols will remain and the porosity will increase when fired. Furthermore, if the temperature exceeds 1000°C, the particle size will grow significantly and the reactivity will decrease, making it unsuitable for the purpose of producing fine particles by hydrolyzing metal alkoxides. The synthesis conditions described above are summarized. The dissolution and hydrolysis reaction of the metal alkoxide is carried out at 40-85°C. The concentration of the isopropyl alcohol solution of water used in the hydrolysis reaction is 10 to 67%, and after dropping a predetermined amount of this solution, it is aged at 40 to 85°C. After drying the precipitate, heat treatment is performed at 400-1000°C. The heat-treated fine powder was granulated by adding a polyvinyl alcohol aqueous solution, press-molded into a disc shape, and then fired at 1300°C for 2 hours. As a result of observing the microstructure of the dielectric ceramic after firing using a scanning electron microscope, it was found that when the amount of tantalum alkoxide is 0.1 mol% or less, it has a double structure containing abnormally sized particles, like BaTiO 3 without tantalum doping. and
As the amount of tantalum doped increases, the fired grain size becomes smaller, and becomes 1 μm or less at 0.3 mol % or more. Moreover, at 0.15 to 0.25 mol %, the dielectric becomes a semiconductor and cannot be used as a capacitor. Silver electrodes were baked on both sides of the fired disk-shaped sample, and the dielectric constant and its temperature change were measured. These results obtained from various compositions, including comparative examples, are shown in the following table and in Section 1.
As shown in the figure.

【表】 又加熱処理した微粉末にポリビニルブチラート
やロジン等の有機バインダ、分散剤、有機溶媒を
加えて混練し、ペースト化させる。このペースト
と電極を形成する白金ペーストとを交互にスクリ
ーン印刷して第2図のように5層の誘電体層1…
を形成し、1300℃で2時間焼成して積層コンデン
サを得た。図において2は白金の内部電極、3は
銀の外部電極、4は無効の誘電体層である。焼成
後の誘電体層1の厚みは10μmである。このコン
デンサの耐電圧特性も表に合わせて示す。表及び
第1図から明らかなように、試料番号14〜19の組
成から得た厚膜用誘電体は比誘電率が1500以上
で、且つ10μmの膜厚にしたときにも150V以上
の耐電圧を有する厚膜コンデンサを得ることがで
きる。 発明の効果 以上述べたように、本発明が提供する製造法に
よつて作成した誘電体粉末から得られる厚膜コン
デンサは、従来法によるものに比で、耐電圧特性
に優れており、比誘電率も1500以上あるので、小
型大容量にすることができる。
[Table] Also, an organic binder such as polyvinyl butyrate or rosin, a dispersant, and an organic solvent are added to the heat-treated fine powder and kneaded to form a paste. This paste and the platinum paste that forms the electrodes are alternately screen printed to form five dielectric layers 1...
was formed and fired at 1300°C for 2 hours to obtain a multilayer capacitor. In the figure, 2 is an internal electrode made of platinum, 3 is an external electrode made of silver, and 4 is an ineffective dielectric layer. The thickness of the dielectric layer 1 after firing is 10 μm. The withstand voltage characteristics of this capacitor are also shown in the table. As is clear from the table and Figure 1, the thick film dielectrics obtained from the compositions of sample numbers 14 to 19 have a dielectric constant of 1500 or more and a withstand voltage of 150 V or more even when the film thickness is 10 μm. It is possible to obtain a thick film capacitor having . Effects of the Invention As described above, the thick film capacitor obtained from the dielectric powder produced by the manufacturing method provided by the present invention has excellent dielectric strength characteristics and dielectric strength compared to those produced by the conventional method. Since the rate is over 1500, it can be made small and large capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図
は本発明の製造法によつて作成した誘電体粉末を
焼成したときの比誘電率と−25℃〜+85℃の温度
変化との関係を示すグラフ、第2図は誘電体粉末
を用いて作つた厚膜積層コンデンサの断面図であ
る。 1…誘電体層、2…内部電極、3…外部電極。
The drawings show one embodiment of the present invention, and Figure 1 shows the relative dielectric constant and temperature change from -25°C to +85°C when dielectric powder produced by the manufacturing method of the present invention is fired. A graph showing the relationship, FIG. 2, is a cross-sectional view of a thick film multilayer capacitor made using dielectric powder. 1... Dielectric layer, 2... Internal electrode, 3... External electrode.

Claims (1)

【特許請求の範囲】 1 金属アルコキシドの加水分解により酸化物の
微粉末を得る方法において、48.50〜49.92モル%
のバリウムジアルコキシド、45.5〜49.78モル%
のチタンテトラアルコキシド、0.3〜6モル%の
タンタルペンタアルコキシドをそれらの5倍以上
の重量のイソプロピルアルコールに溶解、混合さ
せ、その混合溶液を40〜85℃の温度に保持し撹拌
しながらその溶液中に水―イソプロピルアルコー
ル混合溶液(重量比1:10〜2:1)を滴下し、
タンタルドープBaTiO3の沈澱物を生成させた
後、水―アルコール混合溶液から沈澱物を分離、
乾燥させ、400〜1000℃の温度で加熱処理する厚
膜用誘電体粉末の製造法。 2 バリウムジアルコキシドがバリウムジプロポ
キシドである特許請求の範囲第1項記載の厚膜用
誘電体粉末の製造法。 3 チタンテトラアルコキシドがチタンテトラプ
ロポキシド又はチタンテトラブトキシドである特
許請求の範囲第1項記載の厚膜用誘電体粉末の製
造法。 4 タンタルペンタアルコキシドがタンタルペン
タプロポキシド又はタンタルペンタブトキシドで
ある特許請求の範囲第1項記載の厚膜用誘電体粉
末の製造法。
[Claims] 1. A method for obtaining a fine powder of an oxide by hydrolysis of a metal alkoxide, comprising 48.50 to 49.92 mol%.
barium dialkoxide, 45.5-49.78 mol%
of titanium tetraalkoxide and 0.3 to 6 mol% of tantalum pentaalkoxide are dissolved and mixed in isopropyl alcohol of more than 5 times their weight, and the mixed solution is maintained at a temperature of 40 to 85 ° C. while stirring. Add a water-isopropyl alcohol mixed solution (weight ratio 1:10 to 2:1) dropwise to
After generating a precipitate of tantalum-doped BaTiO 3 , the precipitate is separated from the water-alcohol mixed solution.
A method for producing dielectric powder for thick films, which is dried and heat treated at a temperature of 400 to 1000°C. 2. The method for producing a thick film dielectric powder according to claim 1, wherein the barium dialkoxide is barium dipropoxide. 3. The method for producing a dielectric powder for thick films according to claim 1, wherein the titanium tetraalkoxide is titanium tetrapropoxide or titanium tetrabutoxide. 4. The method for producing a dielectric powder for thick films according to claim 1, wherein the tantalum pentaalkoxide is tantalum pentapropoxide or tantalum pentabutoxide.
JP57149707A 1982-08-27 1982-08-27 Manufacture of dielectric powder for thick film Granted JPS5939725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57149707A JPS5939725A (en) 1982-08-27 1982-08-27 Manufacture of dielectric powder for thick film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57149707A JPS5939725A (en) 1982-08-27 1982-08-27 Manufacture of dielectric powder for thick film

Publications (2)

Publication Number Publication Date
JPS5939725A JPS5939725A (en) 1984-03-05
JPS623771B2 true JPS623771B2 (en) 1987-01-27

Family

ID=15481053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57149707A Granted JPS5939725A (en) 1982-08-27 1982-08-27 Manufacture of dielectric powder for thick film

Country Status (1)

Country Link
JP (1) JPS5939725A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221758A (en) * 1985-07-22 1987-01-30 平野 真一 Manufacture of ceramic dielectric for high frequency
US5152974A (en) * 1987-03-26 1992-10-06 Solvay S.A. Process for the manufacture of a powder of mixed metal oxides, and mixed metal oxide powders
BE1001832A4 (en) * 1987-03-26 1990-03-20 Solvay Method for producing a powder mixed metal oxide and mixed metal oxide powder.
JPS63252909A (en) * 1987-04-09 1988-10-20 Tokuyama Soda Co Ltd Production of spherical compound metallic oxide
US5087437A (en) * 1988-01-15 1992-02-11 E. I. Du Pont De Nemours And Company Process for preparing crystalline mixed metal oxides
US5242674A (en) * 1988-10-27 1993-09-07 E. I. Du Pont De Nemours And Company Process for preparing crystalline mixed metal oxides
US20070049485A1 (en) * 2004-03-29 2007-03-01 Shinji Tanabe Inorganic dielectric powder for composite dielectric material and composite dielectric material

Also Published As

Publication number Publication date
JPS5939725A (en) 1984-03-05

Similar Documents

Publication Publication Date Title
US6162752A (en) Barium titanate powder, semiconducting ceramic, and semiconducting ceramic electronic element
JP2010067418A (en) Conductive paste and method of manufacturing the same
JPH0323504B2 (en)
US6824873B2 (en) Modified raw ceramic powder suitable for a monolithic ceramic electronic component
US6733740B1 (en) Production of dielectric particles
JPS623771B2 (en)
JPS623769B2 (en)
JPS623770B2 (en)
JPH08239266A (en) Ceramic dielectric composition and its production
JP3557623B2 (en) Method for producing dielectric ceramic raw material powder
JPS61275160A (en) Super low temperature sintering ceramic composition
JP3470299B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH0667784B2 (en) Dielectric composition
JPS597664B2 (en) High dielectric constant porcelain composition
JPH06104588B2 (en) Dielectric porcelain composition
JPH0788249B2 (en) Dielectric porcelain composition and method for producing the same
JPH01192762A (en) Dielectric ceramic composition comprising barium titanate as base material
JPH06103814A (en) Dielectric ceramic composition and manufacturing method thereof
JPH06122544A (en) Dielectric material
JPH02210709A (en) Dielectric magnetic component
JPH06104587B2 (en) Dielectric ceramic composition and method for producing the same
JPH031265B2 (en)
JPH031264B2 (en)
JPS63116306A (en) Dielectric magnetic composition
JPS63108612A (en) Dielectric ceramic composition