JPS6237567B2 - - Google Patents

Info

Publication number
JPS6237567B2
JPS6237567B2 JP16583581A JP16583581A JPS6237567B2 JP S6237567 B2 JPS6237567 B2 JP S6237567B2 JP 16583581 A JP16583581 A JP 16583581A JP 16583581 A JP16583581 A JP 16583581A JP S6237567 B2 JPS6237567 B2 JP S6237567B2
Authority
JP
Japan
Prior art keywords
circuit
parallel
resistor
connection point
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16583581A
Other languages
Japanese (ja)
Other versions
JPS5868316A (en
Inventor
Hajime Harada
Seisaku Hagiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP16583581A priority Critical patent/JPS5868316A/en
Publication of JPS5868316A publication Critical patent/JPS5868316A/en
Publication of JPS6237567B2 publication Critical patent/JPS6237567B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • H03H11/126Frequency selective two-port networks using amplifiers with feedback using a single operational amplifier

Landscapes

  • Networks Using Active Elements (AREA)

Description

【発明の詳細な説明】 本発明は、入力信号中の特定の周波数成分を除
去するノツチ特性のQを一定の伝達比の基に調整
できるC―R能動型のノツチフイルタに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a CR active type notch filter that can adjust the Q of a notch characteristic that removes a specific frequency component in an input signal based on a fixed transmission ratio.

第1図は、周知のこの種のCRの並列T型回路
を用いたノツチフイルタを示すものであり、出力
信号を抵抗器R1及びR2により分圧してバツフ
ア増幅器A2を介して正帰還することによりノツ
チ特性のQを設定でき、また分圧比を調整するこ
とにより伝達比を一定に保持したままでQを調整
することが可能である。しかしながら、このノツ
チフイルタでは並列T型回路1の総容量が大き
く、ハイブリツドIC化して形状を小型化する場
合に不都合であり、コスト的にも問題であつた。
また、ノツチ周波数を2段階に切換えるために並
列T型回路1の抵抗値Rを切換える場合3個所に
直列抵抗器及びこれに並列のアナログスイツチを
追加する必要があるだけでなく、バツフア増幅器
A1の入力インピーダンスは並列T型回路1の出
力インピーダンスに対して充分大きくしておかね
ばならないために、バツフア増幅器A1の入力側
に追加されるアナログスイツチは、対応して高イ
ンピーダンスで駆動し得るものを使用せねばなら
なかつた。さらに、ノツチフイルタはしばしば帯
域フイルタと組合わせて使用する場合があり、例
えば生体信号の増幅回路にノツチフイルタをハム
除去用に使用するとステツプ応答が第2図の如く
振動的になるために第1図で点線で示すようにロ
ーパスフイルタを追加する必要があり、フイルタ
の小型化を増々困難にしていた。
Fig. 1 shows a notch filter using a well-known parallel T-type circuit of this type of CR. The characteristic Q can be set, and by adjusting the partial pressure ratio, it is possible to adjust the Q while keeping the transmission ratio constant. However, in this notch filter, the total capacity of the parallel T-type circuit 1 is large, which is inconvenient when miniaturizing the design by making it into a hybrid IC, and also poses a problem in terms of cost.
Furthermore, when switching the resistance value R of the parallel T-type circuit 1 in order to switch the notch frequency into two stages, it is not only necessary to add series resistors at three locations and analog switches parallel to these, but also to Since the input impedance must be sufficiently large compared to the output impedance of the parallel T-type circuit 1, the analog switch added to the input side of the buffer amplifier A1 must be one that can be driven with a correspondingly high impedance. I had to. Furthermore, a notch filter is often used in combination with a bandpass filter. For example, when a notch filter is used in a biological signal amplification circuit to remove hum, the step response becomes oscillatory as shown in Fig. It was necessary to add a low-pass filter as shown by the dotted line, making it increasingly difficult to miniaturize the filter.

よつて本発明は、より小型化することができ、
かつ安価な冒頭に述べた種類のノツチフイルタを
提供することを目的とする。そしてこの目的は、
本発明によれば前述の如く帯域フイルタとの併用
の有用性に観みて小型化・低コスト化のためにウ
イーンブリツジを利用し、さらにQの調整による
伝達比の変化を回避するために帯域フイルタの減
衰量の範囲でQ調整を行わせることにより解決す
る。
Therefore, the present invention can be made more compact,
It is an object of the present invention to provide a notch filter of the kind mentioned at the outset, which is also inexpensive. And this purpose is
According to the present invention, as mentioned above, in view of the usefulness of using it in combination with a bandpass filter, the Vienna bridge is used for downsizing and cost reduction, and the bandpass filter is used to avoid changes in the transmission ratio due to Q adjustment. This problem can be solved by performing Q adjustment within the range of the attenuation amount of the filter.

次に本発明を図示の実施例を基に説明する。 Next, the present invention will be explained based on the illustrated embodiments.

第3図において、抵抗器R11及びコンデンサ
11の直列回路と、コンデンサC12及び抵抗器
R12の並列回路と、抵抗器R13から成る第1
の抵抗回路と、直並列の抵抗器R14〜R16か
ら成る第2の抵抗回路とが、それぞれを辺とする
ウイーンブリツジを構成し、抵抗器R13及び直
列回路R11,C11の辺接続点が信号入力端子
とし、直列回路R11,C11及び並列回路C1
2,R12の辺接続点が差動増幅器A11の−入
力端子にそして抵抗器R13及び直並列の抵抗器
R4の自由端の辺接続点はその+入力端子に接続
し、また並列回路C12,R12及び直並列の抵
抗器R15の自由端の辺接続点には差動増幅器A
11の出力端子が接続している。また、直並列の
抵抗器R14〜R16のうち両並列抵抗器R1
5,R16の自由端間には抵抗器R17及びコン
デンサC13より成る帯域フイルタとしてのロー
パスフイルタ及びバツフア増幅器A12が接続し
ている。そしてこれらの抵抗器R15及びR16
の自由端はそれぞれ増幅器A11,A12の出力
端で低インピーダンスにされ、したがつて直並列
の抗抗器R14〜R16の合成抵抗値が、ウイー
ンブリツジの前述の第2の抵抗回路の辺抵抗値と
なる。
In FIG. 3, a first circuit consisting of a series circuit of resistor R11 and capacitor 11, a parallel circuit of capacitor C12 and resistor R12, and resistor R13 is shown.
and a second resistance circuit consisting of series-parallel resistors R14 to R16 constitute a Wien bridge with each as a side, and the connection point of the side of resistor R13 and series circuits R11 and C11 is a signal As input terminal, series circuit R11, C11 and parallel circuit C1
2, the side connection point of R12 is connected to the - input terminal of the differential amplifier A11, and the side connection point of the free end of the resistor R13 and the series-parallel resistor R4 is connected to its + input terminal, and the parallel circuit C12, R12 and a differential amplifier A at the connection point of the free end of the series-parallel resistor R15.
11 output terminals are connected. Also, among the series and parallel resistors R14 to R16, both parallel resistors R1
A low-pass filter as a bandpass filter consisting of a resistor R17 and a capacitor C13 and a buffer amplifier A12 are connected between the free ends of the resistors R17 and R16. and these resistors R15 and R16
The free ends of are made low impedance at the output ends of amplifiers A11 and A12, respectively, so that the combined resistance value of the series-parallel resistors R14 to R16 is equal to the side resistance of the aforementioned second resistor circuit of the Vienna Bridge. value.

抵抗器R11及びR12の抵抗値をR、コンデ
ンサC11及びC12の容量をCとすると、ウイ
ーンブリツジの平衡周波数即ちノツチ周波数f0
1/2πCRであり、また平衡条件を充たすために、抵 抗器R13と直並列の抵抗器R14〜R16との
抵抗値の比は、ノツチ周波数f0に対して直列回路
R11,C11及び並列回路R12,C12の呈
するインピーダンスに対応して周知の如く2:1
に設定されている。また、ローパスフイルタR1
7,C13のしや断周波数f1は、ノツチ周波数f0
の信号成分に減衰を与え得る周波数例えば、f1
f0/2に設定する。
If the resistance value of resistors R11 and R12 is R, and the capacitance of capacitors C11 and C12 is C, then the equilibrium frequency of the Wien bridge, that is, the notch frequency f 0 =
1/2πCR, and in order to satisfy the equilibrium condition, the ratio of the resistance values of the resistor R13 and the series-parallel resistors R14 to R16 is the same as that of the series circuit R11, C11 and the parallel circuit R12 for the notch frequency f0 . , 2:1 as well known, corresponding to the impedance exhibited by C12.
is set to . Also, low pass filter R1
7. The cutting frequency f 1 of C13 is the notch frequency f 0
For example, f 1 =
Set to f 0 /2.

以下、動作を第4図を参照して説明する。 The operation will be explained below with reference to FIG.

入力信号が直流の場合、差動増幅器A11の出
力電圧はローパスフイルタR17,C13で減衰
すること無く抵抗器R16に加わり、したがつて
出力電圧は分圧されること無くそのまま正帰還さ
れ、負帰還率も1であるために伝達比は1にな
る。入力信号の周波数が徐々に高くなりローパス
フイルタR17,C13で減衰が生じ始めると抵
抗器R15及びR16間に電圧降下が生じ、これ
らの分圧比に対応して正帰還電圧が減少するため
に差動増幅器A11の出力は徐々に減少し始め
る。即ち分圧器R15,R16の分圧比を変化さ
せると(直並列回路R14〜R16の合成抵抗値
は常に一定に保持する)、分圧比の小から大、つ
まりQの小から大方向の変化に対して第4図、a
の如く変化し、分圧比が零の状態で周波数f1に対
して充分高い周波数では抵抗器R13及び直並列
の抵抗器R14〜R16の合成抵抗(この場合R
14が接地された状態になる)との比即ち2:1
に対応して伝達比は1/3になる。ローパスフイル
タR17,C13を経由したバツフア増幅器A1
2の出力電圧の周波数応答は第4図、bに示すよ
うに低域が減衰する。この間入力信号の周波数が
ノツチ周波数f0に近ずくと、差動入力は零に近ず
き、ノツチ周波数f0では同相・零入力となり、差
動増幅器A11の出力電圧はデイツプ状に変化す
る。そしてこの周波数f0の領域ではローパスフイ
ルタR17,C13で減衰が与えられているため
に抵抗器R15,R16による分圧比の調整即ち
正帰還率の調整によりQの調整が可能になる。つ
まり、分圧比が大きくなる程、ノツチ周波数f0
両側のレベルが上昇するために高いQが得られ
る。かくして、通過帯域の伝達比を1にしたまま
で、抵抗器R14〜R16の設定によりノツチ特
性のQ調整が可能になる。
When the input signal is DC, the output voltage of the differential amplifier A11 is applied to the resistor R16 without being attenuated by the low-pass filters R17 and C13. Therefore, the output voltage is directly fed back positively without being divided, and then fed back negatively. Since the ratio is also 1, the transmission ratio is 1. When the frequency of the input signal gradually increases and attenuation begins to occur in the low-pass filters R17 and C13, a voltage drop occurs between the resistors R15 and R16, and the positive feedback voltage decreases in response to the voltage division ratio, so the differential The output of amplifier A11 begins to gradually decrease. In other words, when the voltage division ratio of the voltage dividers R15 and R16 is changed (the combined resistance value of the series-parallel circuits R14 to R16 is always kept constant), the voltage division ratio changes from small to large, that is, when Q changes from small to large. Figure 4, a
When the voltage division ratio is zero and the frequency is sufficiently high for the frequency f1 , the combined resistance of resistor R13 and series and parallel resistors R14 to R16 (in this case R
14 is grounded), that is, 2:1.
Correspondingly, the transmission ratio becomes 1/3. Buffer amplifier A1 via low pass filter R17, C13
The frequency response of the output voltage of No. 2 is attenuated in the low range as shown in FIG. 4, b. During this period, when the frequency of the input signal approaches the notch frequency f 0 , the differential input approaches zero, and at the notch frequency f 0 the input signal becomes in-phase and zero input, and the output voltage of the differential amplifier A11 changes in a dip shape. Since attenuation is provided by the low-pass filters R17 and C13 in this frequency f 0 region, Q can be adjusted by adjusting the voltage division ratio, that is, adjusting the positive feedback rate, by the resistors R15 and R16. In other words, as the voltage division ratio becomes larger, the levels on both sides of the notch frequency f 0 rise, so that a higher Q can be obtained. Thus, while the transmission ratio of the pass band remains at 1, it is possible to adjust the Q of the notch characteristic by setting the resistors R14 to R16.

例えば、第3図のノツチフイルタを心電計に利
用する場合、伝達率比を一定にしたまま50及び60
Hzの両周波数のハムを所望のレベルで除去するよ
うなQの設定が可能になり、この際高域が減衰す
ることにより第2図に示すようなステツプ応答の
振動も無くなり、ST波の歪みに起因する誤診も
なくなる。同様な特性が、第1図のノツチフイル
タにおいて点線で示すローパスフイルタを追加す
ることにより得られるが、本発明によればノツチ
フイルタ自身のCR素子の数が2/3になり、特に増
幅器の直流入力抵抗値を同一にした場合容量を全
体で1/4にでき、またバツフア増幅器A2は不要
になる。
For example, when using the notch filter shown in Figure 3 in an electrocardiograph, the transmittance ratio is kept constant at 50 and 60
It is now possible to set the Q to remove hum at both frequencies of Hz at the desired level, and at this time, the high frequency is attenuated, eliminating the oscillation of the step response as shown in Figure 2, and reducing the distortion of the ST wave. Misdiagnosis caused by this will also be eliminated. Similar characteristics can be obtained by adding a low-pass filter indicated by a dotted line to the notch filter in FIG. If the values are made the same, the total capacitance can be reduced to 1/4, and the buffer amplifier A2 becomes unnecessary.

尚、場合によつては直並列回路R14〜R16
のうち、直列の抵抗器R14は廃止し、並列の抵
抗器R15及びR16による分圧器のみで辺抵抗
を形成させることも可能である。ノツチ周波数を
例えば50及び60Hz間で切換える場合、第5図に示
す如く追加の抵抗器R11′及びR12′に並列の
2個のアナログスイツチS11及びS12をそれ
ぞれ低インピーダンス点に接続することができ
る。Qを任意に調整可能にするには、第6図に示
すように前述の第2の抵抗回路を抵抗器R21、
バツフア増幅器A21及び並列抵抗として機能す
る可変抵抗器RV21より構成し、可変抵抗器RV
21の分圧電圧を低インピーダンスで抵抗器R2
1を通して正帰還させる。
In addition, depending on the case, series/parallel circuits R14 to R16
It is also possible to eliminate the series resistor R14 and form the side resistance only with a voltage divider formed by the parallel resistors R15 and R16. If the notch frequency is to be switched between, for example, 50 and 60 Hz, two analog switches S11 and S12 in parallel with additional resistors R11' and R12' can be connected to low impedance points, respectively, as shown in FIG. In order to make Q arbitrarily adjustable, as shown in FIG.
Consisting of a buffer amplifier A21 and a variable resistor RV21 functioning as a parallel resistance, the variable resistor RV
The divided voltage of 21 is connected to resistor R2 with low impedance.
Positive feedback is given through 1.

第7図は帯域フイルタの通過帯域を高域にする
ために、第3図においてローパスフイルタR1
7,C13をハイパスフイルタR31,C31で
置換したものである。この場合低域ではバツフア
増幅器A12の出力電圧が減衰するためにしや断
周波数f1がノツチ周波数f0よりも高く、例えば2
倍に設定されていると、第8図に示すようにバツ
フア増幅器A12の出力端では高域の通過帯域に
おける伝達比が一定で、かつQの調整され得る応
答特性が得られる。
Figure 7 shows a low pass filter R1 in Figure 3 in order to make the pass band of the band filter high.
7, C13 is replaced with a high pass filter R31, C31. In this case, in the low range, the output voltage of the buffer amplifier A12 is attenuated, so the cutoff frequency f1 is higher than the notch frequency f0 , for example, 2
If it is set to double, as shown in FIG. 8, at the output end of the buffer amplifier A12, the transmission ratio in the high pass band is constant, and a response characteristic whose Q can be adjusted is obtained.

尚、本発明によるウイーンブリツジ回路は、コ
ンデンサ及び抵抗器の直列回路及び並列回路を相
互に入れ替えるようにして構成することもでき、
この場合、第3図について説明すればこれらの辺
接続点を差動増幅器A11の+入力端子に接続
し、抵抗器R13及び直並列の抵抗器R14〜R
16の抵抗値の比も逆にしてこれらの辺接続点を
−入力端子に接続する。抵抗器R11,R12及
びコンデンサC11,12はそれぞれ異つた値に
してこれらにより定まる平衡状態でのインピーダ
ンス比に他の2辺の抵抗比を設定することもでき
る。
Note that the Vienna bridge circuit according to the present invention can also be configured by replacing the series circuit and parallel circuit of the capacitor and resistor with each other.
In this case, referring to FIG. 3, these side connection points are connected to the + input terminal of the differential amplifier A11, and the resistor R13 and series-parallel resistors R14 to R
The ratio of the resistance values of 16 is also reversed, and these side connection points are connected to the - input terminal. The resistors R11, R12 and the capacitors C11, 12 may have different values, respectively, and the resistance ratios on the other two sides may be set to the impedance ratio in the balanced state determined by these values.

以上の説明から明らかなように、ウイーンブリ
ツジへ平衡状態で差動出力が零になるように差動
増幅器を接続し、これに帯域フイルタを後続さ
せ、差動出力と帯域フイルタ出力との差電圧を分
圧帰還させることによりその分圧比に応じたQ調
整が可能になり、この際通過帯域の信号に対する
伝達比は一定にできる。そして帯域フイルタの出
力端では帯域通過及びノツチ特性を備えた伝達特
性が得られ、差動増幅器の出力端にはノツチ特性
に近い伝達特性が得られる。しかも、ノツチフイ
ルタのCR素子の必要な部品数が少く、総容量も
小さくなるため帯域通過特性との複合化にも拘わ
らずハイブリツドIC化が、低コスト・小型で実
現可能となる。ノツチ周波数の切換えも通常の安
価なアナログスイツチで行うことができるように
なる。
As is clear from the above explanation, a differential amplifier is connected to the Vienna Bridge in a balanced state so that the differential output is zero, and a bandpass filter is connected to this, and the difference between the differential output and the bandpass filter output is By feeding back the divided voltage, it is possible to adjust the Q according to the voltage division ratio, and at this time, the transmission ratio for the signal in the pass band can be kept constant. At the output end of the bandpass filter, a transfer characteristic with bandpass and notch characteristics is obtained, and at the output end of the differential amplifier, a transfer characteristic close to the notch characteristic is obtained. Moreover, the number of required parts of the CR element of the notch filter is small, and the total capacity is also small, making it possible to create a hybrid IC at low cost and small size despite the combination with bandpass characteristics. Switching of the notch frequency can also be performed using a common inexpensive analog switch.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は周知の並列T型のノツチフイルタ、第
2図はそのステツプ応答波形、第3図は本発明の
ウイーンブリツジ型のノツチフイルタ例、第4図
は第3図によるノツチフイルタの周波数応答特
性、第5図、第6図及び第7図は第3図によるノ
ツチフイルタの変形例並びに第8図は第7図によ
るノツチフイルタの周波数応答特性を示す。
FIG. 1 shows a well-known parallel T-type notch filter, FIG. 2 shows its step response waveform, FIG. 3 shows an example of the Wien bridge-type notch filter of the present invention, and FIG. 4 shows the frequency response characteristics of the notch filter according to FIG. 3. 5, 6 and 7 show a modification of the notch filter according to FIG. 3, and FIG. 8 shows a frequency response characteristic of the notch filter according to FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 コンデンサ及び抵抗器の直列回路と、コンデ
ンサ及び抵抗器の並列回路と、第1の抵抗回路
と、第2の抵抗回路とを4辺とするウイーンブリ
ツジを構成し、前記直列回路及び前記並列回路の
第1の辺接続点と、前記第1及び第2の抵抗回路
の第2の辺接続点とを差動増幅器の入力端子へ差
動的に接続し、前記直列回路又は前記並列回路と
前記第1の抵抗回路との第3の辺接続点を入力端
子とし、前記並列回路又は前記直列回路と前記第
2の抵抗回路との第4の辺接続点に前記差動増幅
器の出力端子を接続し、前記第4の辺接続点には
前記ウイーンブリツジの平衡周波数の信号に対し
ても減衰を与える帯域フイルタを後続させ、前記
第2の抵抗回路は前記帯域フイルタの出力電圧を
前記第2の辺接続点へ正帰還させる抵抗器を含ん
で形成されていることを特徴とするノツチフイル
タ。
1. A Vienna Bridge is constructed with four sides including a series circuit of a capacitor and a resistor, a parallel circuit of a capacitor and a resistor, a first resistance circuit, and a second resistance circuit, and the series circuit and the parallel A first side connection point of the circuit and a second side connection point of the first and second resistance circuits are differentially connected to an input terminal of a differential amplifier, and the series circuit or the parallel circuit A third side connection point with the first resistance circuit is an input terminal, and an output terminal of the differential amplifier is connected to a fourth side connection point between the parallel circuit or the series circuit and the second resistance circuit. The fourth side connection point is followed by a bandpass filter that also attenuates the signal at the balanced frequency of the Wien Bridge, and the second resistor circuit converts the output voltage of the bandpass filter into the fourth side. 1. A notch filter comprising a resistor that provides positive feedback to a connection point on two sides.
JP16583581A 1981-10-19 1981-10-19 Notch filter Granted JPS5868316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16583581A JPS5868316A (en) 1981-10-19 1981-10-19 Notch filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16583581A JPS5868316A (en) 1981-10-19 1981-10-19 Notch filter

Publications (2)

Publication Number Publication Date
JPS5868316A JPS5868316A (en) 1983-04-23
JPS6237567B2 true JPS6237567B2 (en) 1987-08-13

Family

ID=15819900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16583581A Granted JPS5868316A (en) 1981-10-19 1981-10-19 Notch filter

Country Status (1)

Country Link
JP (1) JPS5868316A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820905B2 (en) * 1988-03-10 1996-03-04 富士通株式会社 Servo positioning device

Also Published As

Publication number Publication date
JPS5868316A (en) 1983-04-23

Similar Documents

Publication Publication Date Title
US5006810A (en) Second order active filters
JPS5811124B2 (en) Frequency characteristic adjustment circuit
US4275357A (en) Active filter
EP0270192A2 (en) Filter
US5264805A (en) Amplifier for limiter
JPS6237567B2 (en)
JP2509165B2 (en) Allpass Filter
US4303889A (en) Filter circuit
US3955150A (en) Active-R filter
US4563652A (en) Dual-stage filter with feedback
US4456885A (en) Filter circuit suitable for being fabricated into integrated circuit
US4994693A (en) Second order active filters
JP3308352B2 (en) Variable delay circuit
JP3225260B2 (en) Filter circuit
JPS6117369B2 (en)
JPS6177408A (en) Polar type low-pass filter
SU1187241A1 (en) Active low-pass rc-filter
EP1003285B1 (en) Loudness device
US6803812B2 (en) Active filter
JPS6342745Y2 (en)
JPS58172009A (en) Active filter
JPH0246107Y2 (en)
JP3148458B2 (en) Active filter
JPH03247110A (en) Four-element ladder filter
JPS602662Y2 (en) Narrowband amplifier circuit