JPS6237561B2 - - Google Patents

Info

Publication number
JPS6237561B2
JPS6237561B2 JP55132458A JP13245880A JPS6237561B2 JP S6237561 B2 JPS6237561 B2 JP S6237561B2 JP 55132458 A JP55132458 A JP 55132458A JP 13245880 A JP13245880 A JP 13245880A JP S6237561 B2 JPS6237561 B2 JP S6237561B2
Authority
JP
Japan
Prior art keywords
spider
reinforcement
reflecting mirror
reflector
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55132458A
Other languages
Japanese (ja)
Other versions
JPS5757006A (en
Inventor
Tetsuo Yasaka
Katsuhiko Nakajima
Kyoshi Muto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Electric Corp
Priority to JP13245880A priority Critical patent/JPS5757006A/en
Publication of JPS5757006A publication Critical patent/JPS5757006A/en
Publication of JPS6237561B2 publication Critical patent/JPS6237561B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/141Apparatus or processes specially adapted for manufacturing reflecting surfaces
    • H01Q15/142Apparatus or processes specially adapted for manufacturing reflecting surfaces using insulating material for supporting the reflecting surface

Description

【発明の詳細な説明】 この発明は、例えば人工衛星に塔載するアンテ
ナ構造体の特に反射鏡の構造に係り、打上時にロ
ケツトより加わる動的荷重、音響荷重に対し、高
い剛性及び強度を有し、かつ軽量化した反射鏡を
備えたアンテナ構造体を提供することを目的とす
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an antenna structure mounted on an artificial satellite, particularly the structure of a reflector, which has high rigidity and strength against dynamic loads and acoustic loads applied by a rocket during launch. An object of the present invention is to provide an antenna structure including a reflective mirror that is lightweight and has a light reflector.

従来、この種の構造体として第1図に示すもの
があつた。第1図において、1は電波の入、反射
のための反射鏡であり、2はこの反射鏡1を所定
の角度に保持するためのサポートである。3はサ
ポート下部フランジで、サポートを衛星本体に取
付けるための構造である。反射鏡1は回転放物殻
の一部分を楕円板状に切り出した形状を有し、中
央層1bとしてアルミニユームハニカムコア(図
示例)あるいはフレキシブルコアを使用し、炭素
繊維製薄板(CFRP)積層材からなる両表層1a
を中央層1bの両側に圧着したサンドイツチ構造
体からなる。中央層1bと両表層1aは圧着また
は接着により結合される。反射鏡1とサポート2
とは、サポート上部のエツヂ内周あるいは外周に
沿つてオーバーハングしているサポート上部フラ
ンジ2aの面で相互に接着剤またはボルトによつ
て結合される。サポート2はCFRP、ケブラー等
の積層板からなる開口部を有する円錐殻からな
り、すでに述べたサポート上部フランジ2aの
他、衛星と結合するためのサポート下部フランジ
3を下部外周面に有する。
Conventionally, there has been a structure of this type as shown in FIG. In FIG. 1, 1 is a reflecting mirror for receiving and reflecting radio waves, and 2 is a support for holding this reflecting mirror 1 at a predetermined angle. 3 is a support lower flange, which is a structure for attaching the support to the satellite body. The reflector 1 has a shape in which a part of the paraboloid of revolution is cut out into an elliptical plate shape, and the central layer 1b is made of an aluminum honeycomb core (as shown) or a flexible core, and is made of carbon fiber thin plate (CFRP) laminated material. Both surface layers 1a consisting of
It consists of a sandwich structure in which the layers are crimped onto both sides of the central layer 1b. The central layer 1b and both surface layers 1a are bonded by pressure bonding or adhesive bonding. Reflector 1 and support 2
and are connected to each other by adhesive or bolts at the surface of the support upper flange 2a overhanging along the inner circumference or outer circumference of the upper edge of the support. The support 2 is made of a conical shell with an opening made of a laminated plate of CFRP, Kevlar, etc., and has a support lower flange 3 on its lower outer peripheral surface in addition to the above-mentioned support upper flange 2a for coupling with a satellite.

このアンテナ構造体は、サポート下部フランジ
3を介して人工衛星の本体あるいは機器に取付け
られ、人工衛星本体は、打上ロケツトの先端部で
衛星分離装置を介して最終段のロケツトと結合さ
れる。打上時には打上ロケツトの燃焼時および燃
焼終了後のロケツトを分離する際に生ずる機械的
音響的振動力を受け、これがロケツトの構造を経
て、衛星本体、反射鏡へと伝達される。この振動
はサポート2の取付点で数G、反射鏡先端で数+
Gの過大な加速度であるため、反射鏡を構成して
いる部材に過大な力がかかることがある。この力
は反射鏡の剛性に依存する。動的剛性はアンテナ
構造体の最低次固有振動数が低い程低下が大き
い。
This antenna structure is attached to the main body or equipment of the artificial satellite via the support lower flange 3, and the main body of the artificial satellite is connected to the final stage rocket via a satellite separation device at the tip of the launch rocket. During launch, the rocket receives mechanical and acoustic vibration forces generated during combustion of the launch rocket and when the rocket is separated after combustion, and this is transmitted to the satellite body and the reflector through the structure of the rocket. This vibration is several G at the attachment point of support 2, and several + at the tip of the reflector.
Due to the excessive acceleration of G, an excessive force may be applied to the members making up the reflecting mirror. This force depends on the stiffness of the reflector. The lower the lowest natural frequency of the antenna structure, the greater the decrease in dynamic stiffness.

第1図に示す従来形反射鏡構造では反射鏡の剛
性が反射鏡1の厚さ(2hf+hc)と両表層1aの
物性のみで決まり、コア材1bに曲げ剛性を分担
させることができないため、重畳の増加を微増に
おさえた状態で動的剛性を高めることは極めて困
難であつた。
In the conventional reflector structure shown in Fig. 1, the rigidity of the reflector is determined only by the thickness of the reflector 1 (2hf+hc) and the physical properties of both surface layers 1a, and the bending rigidity cannot be shared by the core material 1b. It was extremely difficult to increase dynamic stiffness while suppressing the increase in the amount to a slight increase.

この発明は、上記のような従来のものの欠点を
除去するためになされたもので、反射鏡を構成す
るコアを分割体とし、この分割コアをスパイダー
形状の梁構造で結合し、これによつてコア材自身
に曲げ剛性をもたせて、反射鏡の最低次固有振動
数を高くすることにより、高い動的剛性を有する
ように構成したアンテナ構造を提供するものであ
る。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above.The core constituting the reflecting mirror is made into a divided body, and the divided cores are connected by a spider-shaped beam structure. The present invention provides an antenna structure configured to have high dynamic rigidity by imparting bending rigidity to the core material itself and increasing the lowest natural frequency of the reflecting mirror.

次にこの発明の一実施例を図によつて説明す
る。
Next, one embodiment of the present invention will be described with reference to the drawings.

第2図aはこの発明の一実施例を示す反射鏡の
正面図、b,c図はそのB−B線、C−C線の断
面図である。第3図a,bは反射鏡の構成部材の
一つであるスパイダー補強体を示す正面図および
側面図を示す。第2図および第3図において1a
はCFRP等の複合材料を積層した表層である。1
b′は反射鏡の中央部を厚く、外周部を薄くした分
割コアである。1c,1dはスパイダー補強体1
cdの放射梁と角形リングで、これらは相互に接
着剤で結合されている。スパイダー補強体1cd
は表層材と同じくCFRPを用いて作る場合と、熱
硬化性樹脂をかためて成形して作る場合とがあ
り、前者の場合は分割コア1b′とは接着剤で結合
し、後者の場合は熱硬化性樹脂そのものが分割コ
ア1b′との接着をかねる。スパイダー補強体1cd
の厚さbsは数mm以内とし、またその側面には多
くの小孔をもたせて軽量化している。分割コア1
b′は、相隣なる放射梁1cとリング1dで囲まれ
る部分を埋める形状に構成されており、また中心
部の分割コアは、角形リング1d内を埋める形に
構成されている。
FIG. 2A is a front view of a reflecting mirror showing an embodiment of the present invention, and FIGS. 2B and 2C are cross-sectional views taken along line B-B and line C-C. FIGS. 3a and 3b show a front view and a side view of a spider reinforcing body, which is one of the constituent members of the reflecting mirror. 1a in Figures 2 and 3
is a surface layer made of laminated composite materials such as CFRP. 1
b' is a split core in which the central part of the reflector is thicker and the outer peripheral part is thinner. 1c and 1d are spider reinforcement bodies 1
CD's radial beam and rectangular ring, which are glued together. Spider reinforcement 1cd
Like the surface layer material, it can be made using CFRP, or it can be made by hardening and molding thermosetting resin.In the former case, it is bonded to the split core 1b' with adhesive; The thermosetting resin itself serves as an adhesion to the split core 1b'. Spider reinforcement 1cd
The thickness of the bs is within a few mm, and there are many small holes on the side to reduce weight. split core 1
b' is configured to fill the area surrounded by the adjacent radial beam 1c and ring 1d, and the split core at the center is configured to fill the square ring 1d.

第2図、第3図に示す一実施例では、Z方向か
らの動的入力に対し反射鏡1がZ方向に曲げ振動
を発生するが、この場合の曲げ振動の固有振動数
fB1は、ほぼスパイダー補強体1cdのないサンド
イツチ板の曲げ剛性Dpとスパイダー補強体1cd
の曲げ剛性Isとの和に比例する。すなわち反射鏡
1の曲げ剛性DRはDR∝(Dp1/2+C・Is) =Ef/12(1−S〓){(2hf+hc)3−hc31/2 +C・bs/2×(h+h/2) となる。
In one embodiment shown in FIGS. 2 and 3, the reflecting mirror 1 generates bending vibration in the Z direction in response to dynamic input from the Z direction, but the natural frequency of the bending vibration in this case is
fB1 is approximately the bending stiffness Dp of the sanderch plate without spider reinforcement 1cd and spider reinforcement 1cd.
It is proportional to the sum of the bending stiffness Is. That is, the bending rigidity DR of the reflecting mirror 1 is DR∝(Dp 1/2 +C・Is) = Ef/12(1−S〓) {(2hf+hc) 3 −hc 3 } 1/2 +C・bs/2×( h 1 + h 2 /2) 3 .

すなわち反射鏡1の曲げ剛性はスパイダー補強
体1cdにより上記の式の第2項分だけ高くな
る。ここにEf、Sfはそれぞれ表層材1aのヤン
グ率とボアソン比を示し、bs、h1、h2はそれぞれ
第3図に示すようにスパイダー補強体1cdの板
厚と高さである。またCはスパイダーの放射梁1
cの数および角形リング1aの形状によつて決ま
る係数である。本実施例では、3方向強化(6
層)のCFRP表層材1aと、中央部および外周部
コアの高さをそれぞれ30mm、10mmとし、スパイダ
ー補強材1cdの厚さを1mmとした場合、スパイ
ダー補強体1cdを用いた場合の剛性増加は、そ
れを用いない場合に比べて約1.9倍となる。
That is, the bending rigidity of the reflecting mirror 1 is increased by the second term of the above equation due to the spider reinforcement 1cd. Here, Ef and Sf respectively represent the Young's modulus and Boisson's ratio of the surface material 1a, and bs, h 1 and h 2 are the thickness and height of the spider reinforcement 1cd, respectively, as shown in FIG. Also, C is the spider's radiation beam 1
This is a coefficient determined by the number c and the shape of the square ring 1a. In this example, 3-direction reinforcement (6
When the heights of the CFRP surface material 1a of the layer) and the central and outer cores are 30 mm and 10 mm, respectively, and the thickness of the spider reinforcement 1cd is 1mm, the increase in rigidity when using the spider reinforcement 1cd is , which is about 1.9 times that of the case without it.

一方スパイダー補強体1cdを用いた場合の質
量の増加は、用いない場合に比べ最大1.05倍程度
に押えることができる。したがつて反射鏡の動的
剛性を代表するその固有振動数fB1は (△D/△M)1/2=(1.9/1.05)1/2 ≒1.35 35%増となる。この値を、例えば従来の反射鏡の
固有振動数35Hz前後と比べれば、スパイダー補強
体1cdの採用により50Hz報度まで増加させるこ
とができ、一挙にアンテナ構造体の動的剛性を高
くできる。また、表層材1aの積層法によつて生
じる線膨張の異方性が反射鏡を歪ませることがあ
るが、このような場合に対しても、スパイダーの
放射梁1cが変形防止作用を有するので、精度の
高い鏡面を得ることができる。
On the other hand, the increase in mass when using 1 cd of spider reinforcements can be suppressed to a maximum of about 1.05 times compared to when not using it. Therefore, the natural frequency fB1 representing the dynamic stiffness of the reflecting mirror is (△D R /△M) 1/2 = (1.9/1.05) 1/2 ≒ 1.35, which is an increase of 35%. If we compare this value to, for example, the natural frequency of a conventional reflector, which is around 35 Hz, it is possible to increase the frequency to 50 Hz by adopting the spider reinforcement 1cd, thereby increasing the dynamic rigidity of the antenna structure at once. In addition, the anisotropy of linear expansion caused by the lamination method of the surface material 1a may distort the reflecting mirror, but even in such cases, the spider's radial beam 1c has a deformation prevention effect. , it is possible to obtain a highly accurate mirror surface.

以上のようにこの発明によれば、反射鏡のコア
部材にスパイダー補強体を構成することにより、
動的剛性を飛躍的に高くすることができ、また、
歪の少ない鏡面精度を有する強い強度をもつた軽
量アンテナ構造体を得ることができる。
As described above, according to the present invention, by configuring the spider reinforcement body in the core member of the reflecting mirror,
Dynamic stiffness can be dramatically increased, and
A lightweight antenna structure with high strength and mirror precision with little distortion can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のアンテナ構造体の構造を示す図
で、a図はその側面図、b図はサポートの鳥かん
図、cは反射鏡の構成を示す断面図、第2図はこ
の発明の一実施例によるアンテナ構造体の反射鏡
を示す図で、a図は正面図(一部断面図)、b図
は側面図そのB−B断面図、c図はC−C断面
図、第3図はスパイダー補強体を示す図で、a図
は正面図、b図は側面図である。 1……反射鏡、1a……表層材、1b……コ
ア、1c……スパイダー補強体の放射梁、1d…
…スパイダー補強体の角形リング、1b′……分割
コア、2……サポート、2a……サポート上部フ
ランジ、3……サポート下部フランジなお図中、
同一符号は同一、または相当部分を示す。
FIG. 1 is a diagram showing the structure of a conventional antenna structure, in which FIG. FIG. 3 is a diagram showing a reflector of an antenna structure according to an embodiment, in which FIG. 2A and 2B are views showing the spider reinforcement body, in which figure a is a front view and figure b is a side view. 1...Reflector, 1a...Surface material, 1b...Core, 1c...Radiating beam of spider reinforcement, 1d...
...Square ring of spider reinforcement, 1b'...Split core, 2...Support, 2a...Support upper flange, 3...Support lower flange In the figure,
The same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 一対の表面層の間に中央層を有する反射鏡を
備えたものにおいて、上記中央層を構成する複数
の分割コアと、熱硬化性樹脂あるいは炭素繊維製
薄板からなる放射梁と角形リングとをスパイダ形
に結合し、上記相隣なる放射梁と上記角形リング
とで囲まれる部分および上記角形リング内にそれ
ぞれ上記分割コアを設けて一体化してなるスパイ
ダ形結合体とを具備したことを特徴とするアンテ
ナ構造体。
1. A reflecting mirror having a center layer between a pair of surface layers, which includes a plurality of split cores constituting the center layer, a radial beam made of a thermosetting resin or a thin plate made of carbon fiber, and a rectangular ring. It is characterized by comprising a spider-shaped combined body which is connected in a spider shape and is formed by integrating a portion surrounded by the adjacent radial beams and the square ring, and the split core provided inside the square ring. antenna structure.
JP13245880A 1980-09-24 1980-09-24 Antenna structure Granted JPS5757006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13245880A JPS5757006A (en) 1980-09-24 1980-09-24 Antenna structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13245880A JPS5757006A (en) 1980-09-24 1980-09-24 Antenna structure

Publications (2)

Publication Number Publication Date
JPS5757006A JPS5757006A (en) 1982-04-06
JPS6237561B2 true JPS6237561B2 (en) 1987-08-13

Family

ID=15081823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13245880A Granted JPS5757006A (en) 1980-09-24 1980-09-24 Antenna structure

Country Status (1)

Country Link
JP (1) JPS5757006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645849U (en) * 1987-06-30 1989-01-13
JPS6425947U (en) * 1987-08-06 1989-02-14

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575726A (en) * 1982-08-16 1986-03-11 Rca Corporation Antenna construction including two superimposed polarized parabolic reflectors
JPH0254606A (en) * 1988-08-19 1990-02-23 Nippon Telegr & Teleph Corp <Ntt> Antenna

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503655A (en) * 1973-05-12 1975-01-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503655A (en) * 1973-05-12 1975-01-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645849U (en) * 1987-06-30 1989-01-13
JPS6425947U (en) * 1987-08-06 1989-02-14

Also Published As

Publication number Publication date
JPS5757006A (en) 1982-04-06

Similar Documents

Publication Publication Date Title
CA1226669A (en) Spacecraft-borne electromagnetic radiation reflector structure
US3111187A (en) Diaphragm for electro acoustic transducer
RU2477223C2 (en) Cellular structure for noise absorbing panels
GB2032508A (en) Force distribution element for a sandwich-form structural element
US20200265821A1 (en) Method for producing an acoustic absorption structure comprising a skin forming a plurality of enclosures, acoustic absorption structure obtained according to said method and aircraft comprising said acoustic absorption structure
US4764968A (en) Disk diaphragm for a loudspeaker
JPS6237561B2 (en)
US3694059A (en) Lightweight composite reflector dish
JPS58108896A (en) Speaker film and method of producing same
US20050037224A1 (en) Curved surfaces, particularly reflectors, and methods of forming same
JPS6046196A (en) Diaphragm for speaker
JPH05116267A (en) Production of sandwith panel fitted with insert
CN112874066B (en) Honeycomb structure plate integrating vibration suppression and light weight and high strength and preparation method thereof
JPS6149595A (en) Diaphragm for plane speaker
JPH0212797Y2 (en)
JPS5942800Y2 (en) electrodynamic speaker
JPS60219899A (en) Speaker
JPS60223298A (en) Plane speaker diaphragm
JPS6219032Y2 (en)
JPS60171899A (en) Speaker
JPS60171897A (en) Diaphragm for speaker
JPH09292026A (en) Very high pressure light tank
JPS6149594A (en) Diaphragm for plane speaker
JPH0123998B2 (en)
JPH09145906A (en) Mirror for image display