JPS6237510B2 - - Google Patents

Info

Publication number
JPS6237510B2
JPS6237510B2 JP2832080A JP2832080A JPS6237510B2 JP S6237510 B2 JPS6237510 B2 JP S6237510B2 JP 2832080 A JP2832080 A JP 2832080A JP 2832080 A JP2832080 A JP 2832080A JP S6237510 B2 JPS6237510 B2 JP S6237510B2
Authority
JP
Japan
Prior art keywords
cathode ray
ray tube
socket
electrode
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2832080A
Other languages
Japanese (ja)
Other versions
JPS56126281A (en
Inventor
Kusuya Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2832080A priority Critical patent/JPS56126281A/en
Publication of JPS56126281A publication Critical patent/JPS56126281A/en
Publication of JPS6237510B2 publication Critical patent/JPS6237510B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はスパークギヤツプを備えるブラウン管
ソケツトの改良に係り、特にブラウン管の管内放
電に起因する放電々流や、アース電位の変動に基
づく回路素子(特にIC、トランジスタ等の半導
体能動素子)の損傷、劣化を防止することを意図
したブラウン管ソケツトに関する。 ブラウン管は、ブラウン管内に混入したちりや
電極の傷などが原因となつて、電極間で放電を生
ずることがある。 最もこの種の放電の多い部分はフオーカス電極
と高圧電極の間で、放電時には数100nsecの時間
に数100Aの放電々流がフオーカス電極からアー
ス回路へと流れることが確認されており、斯る放
電々流に起因する電磁誘導などによつて半導体部
品に短時間で高エネルギーのパルス(数
10nsec)が印加される為、致命的な損傷を与え
る事になる。 斯る点について電子銃を含むブラウン管2及
びその周辺部分の接続関係を示す第1図及び電極
間放電時の等価回路図を表わす第2図を参照しつ
つ説明する。 いま、上述の例の如く、フオーカス電極G4
高圧電極G3,G5との間で放電が生じたとする
と、ブラウン管2のフアンネル部3に至るコーン
部分の内、外面にそれぞれコーテイングされてい
る内装カーボン被膜4と外装カーボン被膜5とに
よつて形成される高圧容量Cに蓄積されていた電
荷は、G5,G3電極→G4電極→スパークギヤツプ
6→アース端子7のルートで放電し、瞬時乍ら大
電流路を形成する訳である。なお8は高圧HVを
印加するアノード電極を示す。 また、最近のテレビセツトに多用されるデイジ
タル処理回路はパルス雑音によつて誤動作を生じ
やすい為充分な保護回路が必要となる。このよう
なブラウン管内放電時の放電々流を抑える方法と
して内装カーボン被膜4の抵抗を増加して使用す
る方法が考えられている。しかしこの方法では高
圧を印加する容量(千数百PF)が内装カーボン
被膜全面をプラス極とした分布容量である為高圧
電極G5に近い部分の容量からは低抵抗で電流が
流れ、パルス幅はせまくなるが立上がりの電流値
はほとんど下がらず、通過するアース回路のイン
ピーダンスによつてアース電位が変動するという
欠点がある。 また、第2図は点線で図示せる如く、アース端
子7に直列に抵抗9を挿入し、放電々流の減少を
計ることも考えられるが、その場合には、スパー
クギヤツプ6のアース側電極10の電位があまり
低下しないという欠点が残る。 更に、斯る点を考慮して第2図に点線で図示せ
る如く、電子銃のフオーカス電極G4とスパー
クギヤツプ6との間、若しくは内装カーボン被膜
4と接続リード11と高圧電極G5との間に抵抗
12或は13を挿入することによつて、放電電流
を減少せしめ、アース電位の変動をなくすること
も考えられるが、ブラウン管2の製造コストの上
昇を余儀なくされるばかりでなく、このような抵
抗を内蔵していないブラウン管には全く適用の余
地がないという欠点を余儀なくされる。また、ブ
ラウン管に内蔵した抵抗が万一破損した場合には
抵抗だけの交換ができず、高価なブラウン管を交
換すると同時に各種調整も行なわねばならないと
いう欠点があつた。 本発明は、このような従来例の持つ諸欠点に鑑
みなされたものである。 以下本発明のブラウン管ソケツトの詳細を第3
図乃至第8図を参照しつつ説明する。第3図は本
発明のブラウン管ソケツトを使用した場合におけ
るブラウン管内異常放電時の等価回路、第4図は
本発明のブラウン管ソケツトの正面図、第5図は
同じく縦断面図、第6図は要部部品の斜視図、第
7図は従来例における管内(G5,G3→G4)放電々
流のオシログラム、第8図は本発明を使用した場
合の管内(G5,G3→G4)放電々流のオシログラム
である。以後の説明の便宜上、第3図乃至第6図
の各図面中において、同じ構成部品には共通の符
号を付しておく。 第4図、第5図において図番20は、絶縁成型
体として形成されるブラウン管ソケツト本体であ
る。 このソケツト本体の中央には、ブラウン管2の
封口部(図示せず)に嵌合する鍵形の透孔21が
成型してある。 前記透孔21の周囲には、ブラウン管の接続ピ
ンP1,P2………Pnの受口Q1Q2………Qnを同心円
的軌跡上に埋設する。 各接続ピン受口Q1,Q2………Qnは、第6図に
図示せる如き導電ピン30の端部に一体に設けら
れる。この導電ピン30は、クランク状に折曲さ
れてなり、外部端子Oに連らなつている。前記導
電ピン30の第1折曲部31は、ソケツト本体
0の接続ピン受口収納凹所22の肩部23に当接
固定され、接続ピン受口Qの中心部が接続ピン収
納細孔h,h………の中心と一致するように適確
に位置決め保持する。 前記第1折曲部31の長辺、垂下部24の構造
は各導電ピンによつて異る。即ち、フオーカスピ
ンPnの如く、管内放電を生ずる電極に接続され
た接続ピンの受口QFで終端する導電ピンの垂下
部34には、電気的に受口Qと外部端子Oに直列
に抵抗R(例えば20KΩ程度)を電気、機械的に
接続し、その他の場合は単なる導電部材によつて
一体に成型する。後述の如く、前記抵抗Rの接続
位置は前記垂下部に限定されることはないが、ス
パークギヤツプ電極35の前であることが不可欠
である。 前記スパークギヤツプ電極35は、上記導電ピ
30の水平延出部36の略中央に突出成型さ
れ、上記ブラウン管ソケツト本体中に同心的に配
置されるスパーク室内25,25………において
アースリング26と相俟つてスパークギヤツプを
構成する。 前記導電ピン30の各水平延出部36は、第2
折曲部32において再び下方に折曲されてソケツ
ト本体20の外方に至り、外部接続端子Oを構成
する。前記アースリング26はスパーク室25内
を縦貫するC字状のアース電極部27とその一端
で折曲されソケツト本体20の外部に至るアース
端子28の一体成形体で、特にスパーク特性の性
能の均一化が要求される場合には、スパーク電極
に対向する部分を下方に弧状に成型しておいても
よい。 ブラウン管ソケツトの組立に当つては、一例と
して、ソケツト本体20を第5図一点鎖線の位置
で2分割、嵌合自在の構成とし、各導電ピン30
とアースリング26を仮固定した後に絶縁分割体
D1,D2を嵌合固着(ネジ止、接着等)する。 斯るブラウン管ソケツトを使用した場合のブラ
ウン管の異常放電時における等価回路は第3図に
図示せる如くなる。同図において点線枠S内は、
ブラウン管ソケツト内部の構成を表わす。 斯る構成で、いま、ブラウン管2内において、
高圧電極G5,G3からフオーカス電極G4に向けて
放電が生じたとすると、ブラウン管2のコーン部
等の内外のカーボン被膜4,5(第1図、第3
図)間に形成されている容量Cに蓄積されていた
電荷が、内装カーボン被膜4→高圧電極G5,G3
→フオーカス電極G4→接続ピンPn→接続ピン受
口QF→抵抗体R→スパークギヤツプ(電極6→
アースリング)→アース電極10→アース端子7
→アースリードG→外装カーボン被膜5のルート
で放電する。従つて、放電電流は、直列抵抗Rを
介して流れるので、十分減衰されると同時に、放
電電流の高周波成分がアースリードGを流れるこ
とによつて誘起されるアース端子7の電位の上昇
も、上記抵抗Rによつて小さく抑えられることに
なる。この点を従来例と本発明の放電電流のオシ
ログラムを表わす第7図及び第8図を参照しつつ
確認する。第7図は横軸に時間1nsec/DIV、縦
軸に放電電流(200A/DIV)をとつて表わして
おり、略ピーク値で450Aの放電電流が流れてい
ることが判る。第8図は縦軸に放電電流(2A/
DIV)を取つて表わしており、略ピーク値で1A
(但し、抵抗値20KΩの場合)に大巾に減少して
いることが判る。又実験に依れば、アース端子7
の電位は、抵抗Rを設けない場合には、
12.8KV、抵抗(20KΩ)を挿入した本発明のブ
ラウン管ソケツトを使用した場合には1.2KVまで
低減することが確認された。 上記抵抗体Rの挿入位置は、ソケツト本体20
内部に組込まれる導電ピン30の接続ピン受口Q
と、スパークギヤツプ電極6との間に限定しなけ
ればならない点に注意を要する。放電電流の減少
を計るのみであれば抵抗Rをスパークギヤツプ電
極6以降アース端子7或はアースリードGに直列
に挿入すれば良い訳であるが、その場合には、フ
オーカス電極端子F側のインピーダンスに対して
アース端子7側のインピーダンスが大巾に大とな
るために危険であり、又後者の場合には、アース
側のインピーダンスが上昇するのみでなく、放電
発生時にアース端子7の電位が上昇する為、該端
子に接続されている信号系のアース電位も上昇
し、回路のIC等に悪影響を及ぼす。又、スパー
クギヤツプ電極6とフオーカス電極端子Gとの間
に抵抗Rを挿入したのでは、問題とする放電電流
を抑制する効果は期待できず、フオーカス電圧供
給回路側に一定の抵抗を介挿した場合と何等変る
ところはない。 本発明は上述の如き構成であるから、ブラウン
管内の異常放電に起因する放電電流若しくはそれ
に基づいて誘起される各部の異常電圧によつて半
導体素子等の破壊、損傷、劣化が惹起される等の
おそれがなくなり、受像機の信類性が大巾に向上
するのみならず、デジタル信号処理系の誤動作が
著しく減少するので、相俟つてブラウン管使用機
器の品質を大巾に向上し得るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a cathode ray tube socket equipped with a spark gap, and particularly relates to the improvement of a cathode ray tube socket equipped with a spark gap. This invention relates to a cathode ray tube socket intended to prevent damage and deterioration of components. In cathode ray tubes, discharge may occur between the electrodes due to dust entering the tube or scratches on the electrodes. The area where this type of discharge is most common is between the focus electrode and the high-voltage electrode, and it has been confirmed that during discharge, a discharge current of several 100 A flows from the focus electrode to the ground circuit in a period of several 100 nanoseconds. High-energy pulses (several
10nsec) is applied, causing fatal damage. This point will be explained with reference to FIG. 1, which shows the connection relationship between the cathode ray tube 2 including the electron gun 1 and its surrounding parts, and FIG. 2, which shows an equivalent circuit diagram at the time of interelectrode discharge. Now, as in the above example, if a discharge occurs between the focus electrode G 4 and the high voltage electrodes G 3 and G 5 , the inner and outer surfaces of the cone portion leading to the funnel portion 3 of the cathode ray tube 2 are coated, respectively. The electric charge accumulated in the high voltage capacitance C formed by the interior carbon coating 4 and the exterior carbon coating 5 is discharged along the route of the G 5 and G 3 electrodes → G 4 electrode → spark gap 6 → ground terminal 7. This means that a large current path is formed instantaneously. Note that 8 indicates an anode electrode to which high voltage HV is applied. Furthermore, the digital processing circuits often used in recent television sets are prone to malfunction due to pulse noise, and therefore require a sufficient protection circuit. A method of increasing the resistance of the interior carbon coating 4 has been considered as a method of suppressing the discharge flow during the discharge inside the cathode ray tube. However, in this method, the capacitance for applying high voltage (several hundred PF) is a distributed capacitance with the entire surface of the interior carbon coating as a positive pole, so current flows with low resistance from the capacitance near the high voltage electrode G5 , and the pulse width Although it becomes narrower, the rising current value hardly decreases, and the ground potential fluctuates depending on the impedance of the ground circuit that it passes through. Furthermore, as shown by the dotted line in FIG. 2, it is possible to insert a resistor 9 in series with the ground terminal 7 to reduce the discharge current, but in that case, the ground side electrode 10 of the spark gap 6 The drawback remains that the potential does not drop much. Furthermore, in consideration of this point, as shown by the dotted line in FIG . It may be possible to reduce the discharge current and eliminate fluctuations in the ground potential by inserting a resistor 12 or 13 between them, but this would not only increase the manufacturing cost of the cathode ray tube 2, but also A cathode ray tube without such a built-in resistor has the disadvantage that it cannot be applied at all. Another disadvantage is that if the resistor built into the cathode ray tube were to break, the resistor alone could not be replaced, and various adjustments had to be made at the same time as replacing the expensive cathode ray tube. The present invention has been made in view of the various drawbacks of the conventional examples. The details of the cathode ray tube socket of the present invention will be explained in the third section below.
This will be explained with reference to FIGS. 8 to 8. Fig. 3 is an equivalent circuit during abnormal discharge inside a cathode ray tube when using the cathode ray tube socket of the present invention, Fig. 4 is a front view of the cathode ray tube socket of the present invention, Fig. 5 is a longitudinal sectional view, and Fig. 6 is an essential diagram. A perspective view of the parts, FIG. 7 is an oscillogram of the discharge current in the tube (G 5 , G 3 → G 4 ) in the conventional example, and FIG. 8 is an oscillogram of the discharge current in the tube (G 5 , G 3 → G 4 ) when using the present invention 4 ) This is an oscillogram of the discharge current. For convenience of explanation hereinafter, common reference numerals are given to the same components in each drawing of FIGS. 3 to 6. In FIGS. 4 and 5, reference number 20 indicates a cathode ray tube socket body formed as an insulating molded body. A key-shaped through hole 21 is formed in the center of the socket body to fit into a sealing part (not shown) of the cathode ray tube 2. Around the through hole 21, sockets Q 1 Q 2 . . . Qn of connection pins P 1 , P 2 . Each connection pin receptacle Q 1 , Q 2 . . . Qn is integrally provided at the end of the conductive pin 30 as shown in FIG. This conductive pin 30 is bent into a crank shape and is connected to the external terminal O. The first bent portion 31 of the conductive pin 30 is connected to the socket body 2.
It is fixed in contact with the shoulder part 23 of the connection pin socket storage recess 22 of No. Hold position. The long side of the first bent portion 31 and the structure of the hanging portion 24 differ depending on each conductive pin. That is, in the hanging part 34 of a conductive pin that terminates at the socket Q F of a connecting pin connected to an electrode that produces an intraluminal discharge, such as the focus pin Pn, there is a resistor R electrically connected in series with the socket Q and the external terminal O. (For example, about 20KΩ) is connected electrically and mechanically, and in other cases, it is integrally molded with a simple conductive member. As will be described later, the connection position of the resistor R is not limited to the hanging part, but it is essential that it be in front of the spark gap electrode 35. The spark gap electrode 35 is formed to protrude approximately at the center of the horizontally extending portion 36 of the conductive pin 30 , and is in phase with the ground ring 26 in the spark chambers 25, 25, which are arranged concentrically in the cathode ray tube socket body. Together they form the spark gap. Each horizontally extending portion 36 of the conductive pin 30 has a second
At the bending part 32, it is bent downward again to reach the outside of the socket main body 20 , thereby forming an external connection terminal O. The earth ring 26 is an integrally molded body consisting of a C-shaped earth electrode part 27 that runs vertically through the spark chamber 25 and a ground terminal 28 that is bent at one end and extends to the outside of the socket body 20 , and is particularly designed to achieve uniform spark characteristics. If this is required, the portion facing the spark electrode may be formed into a downward arc. When assembling a cathode ray tube socket, for example, the socket main body 20 is divided into two parts at the position of the dashed-dotted line in FIG.
After temporarily fixing the earth ring 26 and
Fit and secure D 1 and D 2 (screws, adhesive, etc.). When such a cathode ray tube socket is used, the equivalent circuit at the time of abnormal discharge of the cathode ray tube is shown in FIG. In the same figure, inside the dotted line frame S,
This shows the internal configuration of a cathode ray tube socket. With such a configuration, now inside the cathode ray tube 2,
If a discharge occurs from the high-voltage electrodes G 5 and G 3 toward the focus electrode G 4 , the carbon coatings 4 and 5 inside and outside the cone of the cathode ray tube 2 (Fig. 1, 3
Figure) The charge accumulated in the capacitance C formed between the inner carbon coating 4 and the high voltage electrodes G 5 and G 3
→ Focus electrode G 4 → Connection pin Pn → Connection pin socket Q F → Resistor R → Spark gap (electrode 6 →
Earth ring) → Earth electrode 10 → Earth terminal 7
→ Earth lead G → Exterior carbon coating 5 route causes discharge. Therefore, since the discharge current flows through the series resistor R, it is sufficiently attenuated, and at the same time, the rise in the potential of the earth terminal 7 induced by the high frequency component of the discharge current flowing through the earth lead G is also suppressed. This can be kept small by the resistance R mentioned above. This point will be confirmed with reference to FIGS. 7 and 8, which show oscillograms of discharge currents of the conventional example and the present invention. In FIG. 7, the horizontal axis represents time 1 nsec/DIV and the vertical axis represents discharge current (200 A/DIV), and it can be seen that a discharge current of approximately 450 A flows at the peak value. Figure 8 shows the discharge current (2A/
DIV), approximately 1A at peak value.
(However, in the case of a resistance value of 20KΩ), it can be seen that there is a large decrease. Also, according to experiments, earth terminal 7
If the resistor R is not provided, the potential of
It was confirmed that the voltage was 12.8KV, and when the cathode ray tube socket of the present invention with a resistor (20KΩ) inserted was used, the voltage was reduced to 1.2KV. The insertion position of the resistor R is the socket body 20 .
Connection pin socket Q for the conductive pin 30 incorporated inside
It must be noted that the distance between the spark gap electrode 6 and the spark gap electrode 6 must be limited. If you only want to reduce the discharge current, you can insert a resistor R in series from the spark gap electrode 6 to the ground terminal 7 or the ground lead G, but in that case, the impedance on the focus electrode terminal F side should be On the other hand, it is dangerous because the impedance on the ground terminal 7 side becomes significantly large, and in the latter case, not only the impedance on the ground side increases, but also the potential of the ground terminal 7 increases when discharge occurs. Therefore, the ground potential of the signal system connected to the terminal also rises, which adversely affects the IC of the circuit. Furthermore, if a resistor R is inserted between the spark gap electrode 6 and the focus electrode terminal G, it cannot be expected to have the effect of suppressing the problematic discharge current.If a certain resistance is inserted on the focus voltage supply circuit side, There is nothing different about it. Since the present invention has the above-described configuration, it is possible to avoid destruction, damage, or deterioration of semiconductor elements, etc. due to discharge current caused by abnormal discharge in the cathode ray tube or abnormal voltage in various parts induced based on the discharge current. This eliminates this risk, greatly improving the reliability of the receiver, and significantly reduces malfunctions in the digital signal processing system, which together can greatly improve the quality of equipment that uses cathode ray tubes. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はブラウン管及び周辺回路の接続図、第
2図は従来例における管内放電時の等価回路、第
3図は本発明のブラウン管ソケツト使用時におけ
る管内放電時の等価回路図、第4図は本発明のブ
ラウン管ソケツトの正面図、第5図は同じく縦断
面図、第6図は要部部品の斜視図、第7図は従来
例における管内放電電流のオシログラム、第8図
は本発明を使用した場合の管内放電電流のオシロ
グラムである。 20……ブラウン管ソケツト、G5,G3……高
圧電極、G4……フオーカス電極、Q……接続ピ
ン受口、R……抵抗、35……スパークギヤツプ
電極。
Fig. 1 is a connection diagram of a cathode ray tube and its peripheral circuits, Fig. 2 is an equivalent circuit at the time of discharge in the tube in the conventional example, Fig. 3 is an equivalent circuit diagram at the time of discharge in the tube when using the cathode ray tube socket of the present invention, and Fig. 4 is A front view of the cathode ray tube socket of the present invention, FIG. 5 is a longitudinal cross-sectional view, FIG. 6 is a perspective view of essential parts, FIG. 7 is an oscillogram of the discharge current in the tube in a conventional example, and FIG. 8 is an oscillogram using the present invention. This is an oscillogram of the discharge current in the tube. 20 ... Braun tube socket, G5 , G3 ... High voltage electrode, G4 ... Focus electrode, Q... Connection pin socket, R... Resistor, 35... Spark gap electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 ブラウン管の接続ピンに嵌合する接続ピン受
口と外部接続端子との導体接続部に、独立接地導
体と相俟つてスパークギヤツプを形成するスパー
クギヤツプ電極を形成したブラウン管ソケツトに
おいて、前記接続ピン受口と前記スパークギヤツ
プ電極形成部との間に抵抗を設けたことを特徴と
するブラウン管ソケツト。
1. A cathode ray tube socket in which a spark gap electrode that forms a spark gap together with an independent ground conductor is formed at the conductor connection portion between the connection pin socket and the external connection terminal that fit into the connection pin of the cathode ray tube. A cathode ray tube socket characterized in that a resistor is provided between the spark gap electrode forming portion and the spark gap electrode forming portion.
JP2832080A 1980-03-05 1980-03-05 Braun tube socket Granted JPS56126281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2832080A JPS56126281A (en) 1980-03-05 1980-03-05 Braun tube socket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2832080A JPS56126281A (en) 1980-03-05 1980-03-05 Braun tube socket

Publications (2)

Publication Number Publication Date
JPS56126281A JPS56126281A (en) 1981-10-03
JPS6237510B2 true JPS6237510B2 (en) 1987-08-12

Family

ID=12245314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2832080A Granted JPS56126281A (en) 1980-03-05 1980-03-05 Braun tube socket

Country Status (1)

Country Link
JP (1) JPS56126281A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320176Y2 (en) * 1986-06-09 1991-04-30

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136975U (en) * 1984-08-08 1986-03-07 星電器製造株式会社 cathode ray tube socket
JP2588308Y2 (en) * 1990-08-02 1999-01-06 ソニー株式会社 Unwanted radiation prevention device for cathode ray tube monitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320176Y2 (en) * 1986-06-09 1991-04-30

Also Published As

Publication number Publication date
JPS56126281A (en) 1981-10-03

Similar Documents

Publication Publication Date Title
US3573677A (en) Connector with provision for minimizing electromagnetic interference
US3278886A (en) Electronic device
US4326762A (en) Apparatus and method for spot-knocking television picture tube electron guns
FI70763C (en) BAOGURLADDNINGSSKYDD FOER KATODSTRAOLEROER
JPS6237510B2 (en)
US4253717A (en) CRT Socket
JPS6321884Y2 (en)
US4314302A (en) Communications circuit line protector and method of making the same
JPS6323875Y2 (en)
US3958854A (en) Spark gap apparatus
GB2083945A (en) Excess Voltage Arresters
US3965393A (en) Television X-radiation protection device and circuit
US4345185A (en) Cathode ray tube apparatus
JPS5847641Y2 (en) cathode ray tube
US2963617A (en) Over-voltage protective device
US3619688A (en) Electron gun with connector of alternate electrodes shielding intermediate electrode
JPS6035957Y2 (en) cathode ray tube
GB2086131A (en) Arrangement for supplying the gun potential in a cathode ray tube during spot knocking and during normal operation
US6670746B2 (en) Cathode ray tube electrical connector with through passage and leaf springs
US6746259B2 (en) CRT socket
US3466492A (en) Electron tube socket with spark gap
US4599542A (en) Linear beam tubes
US4600859A (en) Cathode ray tube protection systems
JPH0314862Y2 (en)
EP0178359B1 (en) Linear beam tubes