JPS623741Y2 - - Google Patents

Info

Publication number
JPS623741Y2
JPS623741Y2 JP320678U JP320678U JPS623741Y2 JP S623741 Y2 JPS623741 Y2 JP S623741Y2 JP 320678 U JP320678 U JP 320678U JP 320678 U JP320678 U JP 320678U JP S623741 Y2 JPS623741 Y2 JP S623741Y2
Authority
JP
Japan
Prior art keywords
doppler frequency
output
circuit
signal
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP320678U
Other languages
Japanese (ja)
Other versions
JPS54108664U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP320678U priority Critical patent/JPS623741Y2/ja
Publication of JPS54108664U publication Critical patent/JPS54108664U/ja
Application granted granted Critical
Publication of JPS623741Y2 publication Critical patent/JPS623741Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

【考案の詳細な説明】 本考案は誘導飛翔体に搭載される近接信管の作
動制御装置の改良に関する。
[Detailed Description of the Invention] The present invention relates to an improvement of an operation control device for a proximity fuse mounted on a guided flying vehicle.

従来のこの種の制御装置は、誘導飛翔体におけ
る目標検知レベルが所定値以上であり、かつ目標
と飛翔体との相対速度に依存して目標検知信号に
含まれるドプラ周波数成分の周波数が零近傍にな
つたとき(即ち目標と誘導飛翔体との最接近時点
である。)に、信管を作動させるように制御して
いた。
Conventional control devices of this type detect that the target detection level of the guided flying object is above a predetermined value, and that the frequency of the Doppler frequency component included in the target detection signal is close to zero depending on the relative speed between the target and the flying object. The fuse was controlled to be activated when the target and the guided projectile reached their closest point.

然るに上記ドプラ周波数成分の検出出力に不要
な雑音信号が混入した場合、この信号を検知し誤
つてドプラ周波数零近傍時点と判定するおそれが
あつた。
However, if an unnecessary noise signal is mixed into the detected output of the Doppler frequency component, there is a risk that this signal will be detected and erroneously determined to be at a point near zero Doppler frequency.

本考案は上記の事情に鑑みてなされたもので、
誘導飛翔体と目標との接近に伴つてドプラ周波数
は次第に低下する現象に着目し、ドプラ周波数が
次第に低下することを検知して信管作動制御信号
を発生することによつて、ドプラ周波数抽出出力
に含まれる雑音信号により誤つて信管を作動制御
しないようにし得る近接信管作動制御装置を提供
するものである。
This idea was made in view of the above circumstances.
Focusing on the phenomenon that the Doppler frequency gradually decreases as the guided flying object approaches the target, the Doppler frequency extraction output can be adjusted by detecting the gradual decrease in the Doppler frequency and generating a fuse activation control signal. An object of the present invention is to provide a proximity fuse activation control device that can prevent a fuze from being erroneously activated due to a noise signal contained therein.

以下図面を参照して本考案の一実施例を詳細に
説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図において、11は誘導飛翔体に搭載され
たアンテナであり、レーダ送信機12の出力がサ
ーキユレータ13を通じ上記アンテナ11から目
標(図示せず)に向つて送信される。この送信信
号が目標に当たり反射した信号は、誘導飛翔体と
目標との相対速度に対応した周波数だけドプラ周
波数偏移を受けている。この反射信号は前記アン
テナ11により受信され、サーキユレータ13を
通り混合回路14に導かれ、ここで前記送信機1
2の出力信号の一部との間で混合される。この混
合により得られる両信号の周波数差成分、即ちド
プラ周波数成分は帯域増幅器15に導かれて抽出
されると共に増幅される。
In FIG. 1, 11 is an antenna mounted on a guided flying object, and the output of a radar transmitter 12 is transmitted through a circulator 13 from the antenna 11 toward a target (not shown). The signal that is reflected by this transmitted signal when it hits the target is subjected to a Doppler frequency shift by a frequency that corresponds to the relative velocity between the guided flying object and the target. This reflected signal is received by the antenna 11 and guided through the circulator 13 to the mixing circuit 14 where the transmitter 1
It is mixed with a part of the output signal of 2. The frequency difference component of both signals obtained by this mixing, ie, the Doppler frequency component, is guided to the bandpass amplifier 15, where it is extracted and amplified.

一方、Fo〜F1は第2図に示すすようにそれぞ
れ中心周波数が順次低くなり所定の通過帯域を有
し、例えば全体として所要のドプラ周波数変化範
囲に対応する帯域を有するフイルタであり、この
うちフイルタF1は零近傍の周波数の信号を抽出
可能になつている。そして上記各フイルタFo
F1には、前記帯域増幅器15の出力、即ちドプ
ラ周波数信号が導かれる。この各フイルタFo
F1の抽出出力はそれぞれ検波器Do〜D1に導かれ
て検波され直流化される。この各直流出力はそれ
ぞれ比較器Co〜C1に導かれて予め設定された基
準レベルと比較され、ここで例えば入力レベルが
基準レベルより大きいときに、検波器出力ありと
して出力パルスが発生する。この各出力パルスは
ドプラ周波数の低下につれて順次発生し、それぞ
れモノマルチ回路Mo〜M1のトリガ入力として導
かれる。このモノマルチ回路Mo〜M1は、各出力
パルスの時間幅として、零近傍のドプラ周波数が
得られる時点まで続くように時定数が設定されて
いる。即ちドプラ周波数の変化が第3図に示すよ
うに、時刻t0〜toに対応してドプラ周波数o
が得られるとすれば、モノマルチ回路Mo
M1の各出力パルスの時間幅は第3図に示すよう
にto−t0〜to−to-1より大きくなるように設
定されている。モノマルチ回路Mo〜M1の各出力
パルスをアンド回路Aに導けば、ドプラ周波数
o0が得られる場合に上記各出力パルスのアン
ド論理により上記アンド回路Aから第3図に示す
ようなアンド出力が得られる。即ちモノマルチ回
路M1〜Moの各出力パルスをアンド回路Aに導く
ことによつて、ドプラ周波数o0が得られる
場合に第3図に示すようなアンド出力が得られ
る。
On the other hand, as shown in FIG. 2, F o to F 1 are filters each having a predetermined pass band whose center frequency decreases in sequence, for example, having a band corresponding to the required Doppler frequency change range as a whole, Of these, the filter F1 is designed to be able to extract signals with frequencies near zero. And each of the above filters F o ~
The output of the bandpass amplifier 15, that is, the Doppler frequency signal is guided to F1 . Each of these filters F o ~
The extracted outputs of F1 are guided to detectors D o to D1 , where they are detected and converted into direct current. Each of these DC outputs is led to a comparator C o to C 1 and compared with a preset reference level, and for example, when the input level is higher than the reference level, an output pulse is generated as a detector output is present. . These output pulses are generated sequentially as the Doppler frequency decreases, and are respectively guided as trigger inputs of the monomulti circuits M o to M 1 . The time constants of the monomulti circuits M o to M 1 are set so that the time width of each output pulse continues until a Doppler frequency near zero is obtained. That is, as shown in FIG. 3, the Doppler frequency changes from time t 0 to t o to
If 0 is obtained, the monomulti-circuit M o ~
As shown in FIG. 3, the time width of each output pulse of M1 is set to be larger than t o -t 0 to t o -t o-1 . If each output pulse of the monomulti circuit M o ~ M 1 is led to the AND circuit A, the Doppler frequency
When o to 0 is obtained, an AND output as shown in FIG. 3 is obtained from the AND circuit A by the AND logic of each of the output pulses. That is, by guiding each output pulse of the monomulticircuits M1 to M0 to the AND circuit A, when Doppler frequencies o to 0 are obtained, an AND output as shown in FIG. 3 is obtained.

そして上記各アンド回路Aの出力は信管作動制
御信号として用いられる。
The output of each AND circuit A is used as a fuse activation control signal.

上記したような近接信管作動制御装置によれ
ば、フイルFo〜F1により形成される所要の周波
数帯域内でドプラ周波数がある周波数から零近傍
0まで連続的に低下するとき、モノマルチ回路
o〜M1から順次出力しそれぞれドプラ周波数が
零近傍になる時点まで連続する各出力パルスをア
ンド回路Aによりアンド処理を行つている。
According to the proximity fuse actuation control device as described above, the Doppler frequency ranges from a certain frequency to near zero within the required frequency band formed by the films F o to F 1 .
When the Doppler frequency decreases continuously to 0 , the AND circuit A performs AND processing on each successive output pulse that is sequentially output from the monomulticircuits M o to M 1 until the Doppler frequency becomes near zero.

したがつてドプラ周波数が連続的に低下して零
近傍になつた時点、即ち誘導飛翔体と目標とが最
も接近した時点が確実に検知される。そして前記
帯域増幅器15の出力、即ちフイルタFo〜F1
入力に雑音信号が混入した場合でもこの雑音目標
がドプラ周波数と同様な周波数変化を伴う確率は
非常に低いので、雑音信号により誤つて最接近時
点を検知するようなおそれは殆んどない。
Therefore, the point in time when the Doppler frequency continuously decreases to near zero, that is, the point in time when the guided flying object and the target are closest to each other, can be reliably detected. Even if a noise signal is mixed into the output of the band amplifier 15, that is, the input of the filters F o to F 1 , the probability that this noise target will have a frequency change similar to the Doppler frequency is very low. There is almost no possibility of detecting the point of closest approach.

なお上記実施例ではフイルタの数F1〜Foをn
としたが、フイルタの数は、正規のドプラ周波数
変化信号の識別ができる範囲内で適当に選べば良
い。
In the above embodiment, the number of filters F 1 to F o is n
However, the number of filters may be appropriately selected within a range that allows identification of regular Doppler frequency change signals.

例えば、ある周波数範囲内において、複数のフ
イルタの通過周波数は必ずしも連続する必要はな
く、ある周波数間隔で分布する場合でもよい。即
ち、ドプラ周波数の減少傾向を検知し、これによ
り動作させるものである。
For example, within a certain frequency range, the passing frequencies of a plurality of filters do not necessarily need to be continuous, but may be distributed at certain frequency intervals. That is, it detects a decreasing tendency of the Doppler frequency and operates based on this.

本考案は上述したように、ドプラ周波数が次第
に低下する現象を検知して、信管作動制御信号を
発生することによつて、ドプラ周波数抽出出力に
含まれる雑音信号により誤つて信管を作動制御し
ないようにし得る近接信管作動制御装置を提供で
きる。
As described above, the present invention detects the phenomenon in which the Doppler frequency gradually decreases and generates a fuze activation control signal, thereby preventing the fuze from being erroneously activated due to the noise signal contained in the Doppler frequency extraction output. It is possible to provide a proximity fuze activation control device that can perform

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る近接信管作動制御装置の
一実施例を示す構成説明図、第2図は第1図のフ
イルタ群の特性図、第3図は第1図の動作を説明
するために示すタイミング図である。 Fo〜F1……フイルタ、Do〜D1……検波器、C
o〜C1……比較器、Mo〜M1……モノマルチ回
路、A……アンド回路。
Fig. 1 is a configuration explanatory diagram showing one embodiment of the proximity fuse operation control device according to the present invention, Fig. 2 is a characteristic diagram of the filter group shown in Fig. 1, and Fig. 3 is for explaining the operation of Fig. 1. FIG. F o ~ F 1 ... Filter, D o ~ D 1 ... Detector, C
o ~ C1 ... Comparator, M o ~ M1 ... Mono multi circuit, A... AND circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 誘導飛翔体に搭載され当該飛翔体が近接すべき
目標からの反射信号を受信してこの受信信号に含
まれるドプラ周波数成分を抽出する装置と、この
装置により抽出されたドプラ周波数信号がそれぞ
れ導かれる互いに中心周波数が異なる複数のフイ
ルタと、この各フイルタのドプラ周波数信号抽出
出力を検波する複数の検波器と、この各検波器
夫々に接続され各検波出力で作動し所定時間出力
信号を導出する複数のモノマルチ回路と、この各
モノマルチ回路出力が夫々供給されるアンド回路
とを具備し、前記アンド回路出力により信管を作
動させる近接信管作動制御装置。
A device mounted on a guided flying object that receives a reflected signal from a target to which the flying object should approach and extracts a Doppler frequency component included in the received signal, and a device that guides the Doppler frequency signal extracted by this device. A plurality of filters having different center frequencies, a plurality of detectors that detect Doppler frequency signal extraction outputs of each filter, and a plurality of detectors that are connected to each of the detectors and operate with each detection output to derive an output signal for a predetermined time. A proximity fuse operation control device comprising: a mono multi-circuit; and an AND circuit to which outputs of the mono multi-circuits are respectively supplied, and actuating a fuse by the output of the AND circuit.
JP320678U 1978-01-14 1978-01-14 Expired JPS623741Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP320678U JPS623741Y2 (en) 1978-01-14 1978-01-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP320678U JPS623741Y2 (en) 1978-01-14 1978-01-14

Publications (2)

Publication Number Publication Date
JPS54108664U JPS54108664U (en) 1979-07-31
JPS623741Y2 true JPS623741Y2 (en) 1987-01-28

Family

ID=28806987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP320678U Expired JPS623741Y2 (en) 1978-01-14 1978-01-14

Country Status (1)

Country Link
JP (1) JPS623741Y2 (en)

Also Published As

Publication number Publication date
JPS54108664U (en) 1979-07-31

Similar Documents

Publication Publication Date Title
US3465336A (en) Doppler radar with clutter controlled filter channel
US20070273572A1 (en) Methods and systems providing an adaptive threshold for a beam sharpened pulse radar
US4388867A (en) Circuit arrangement for a combined proximity and impact fuse
US3924233A (en) Active-passive target detection system
GB1301299A (en)
US6834591B2 (en) Proximity fuze
US5317317A (en) Method and device to detect the garbling of pulses received by a secondary radar by phase analysis
US4709142A (en) Target detection in aerosols using active optical sensors and method of use thereof
US3176294A (en) Vehicle radar system
US3858207A (en) Range sensing target detecting device
US4016486A (en) Land mine detector with pulse slope, width and amplitude determination channels
US4646097A (en) Off-channel frequency discriminator circuit for use in a precision distance measuring equipment (DME/P) receiver
US4038656A (en) Helicopter discrimination apparatus for the murine radar
EP0066168B1 (en) Proximity monitor
US4063238A (en) Range tracking apparatus in a doppler radar
US4185560A (en) Fore and aft fuzing system
JPS623741Y2 (en)
EP0049612B1 (en) Apparatus for determining the moment of closest approach of a taxiing aircraft
US3614781A (en) Dual channel doppler frequency-selective fuze system
RU2603687C1 (en) Method for generating actuating command of radio fuse
US4217827A (en) Radar fuzing system
US4968980A (en) Electronic proximity fuse responsive to two signals
US3181148A (en) Selective range detecting system
US3594800A (en) Moving target angle tracking system
JPS6247259B2 (en)