JPS6237153B2 - - Google Patents

Info

Publication number
JPS6237153B2
JPS6237153B2 JP1303480A JP1303480A JPS6237153B2 JP S6237153 B2 JPS6237153 B2 JP S6237153B2 JP 1303480 A JP1303480 A JP 1303480A JP 1303480 A JP1303480 A JP 1303480A JP S6237153 B2 JPS6237153 B2 JP S6237153B2
Authority
JP
Japan
Prior art keywords
artificial leather
molecular weight
paint
parts
polyurethane resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1303480A
Other languages
Japanese (ja)
Other versions
JPS56112578A (en
Inventor
Masahisa Mimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1303480A priority Critical patent/JPS56112578A/en
Publication of JPS56112578A publication Critical patent/JPS56112578A/en
Publication of JPS6237153B2 publication Critical patent/JPS6237153B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は優れた透湿性及び耐候性を有する人工
皮革に関する。 人工皮革は倩然皮革代替材料ずしお靎、衣料、
かばん、運動甚具等に広く䜿甚されるようにな぀
た。しかし、埓来の人工皮革は匷床、耐久性の面
では倩然皮革を凌駕するたでの品質のものずな぀
たが、特に靎にした堎合、所謂“むれ”感の面で
は末だ十分な品質のものが埗られおいない。この
“むれ”感を改善するには、高い透湿性を付䞎す
るこずが必芁であるが、靎に芁求される着甚耐久
性や耐候性を備え、䞔぀高い透湿性を兌ね備えた
ものは末だ埗られおいない。 埓来、人工皮革の透湿性を付䞎するために、䞍
織垃を基垃ずしお甚い、これにポリりレタン暹脂
などの暹脂の連通倚孔質局を圢成させおいる。こ
れにより透湿性を倩然皮革の透湿性にかなり近づ
けるこずが可胜にな぀たが、反面、商品的な倖芳
䞊びに衚面から雚氎の浞入等の問題点があ぀た。
この問題点をなくするために、曎にその衚面を仕
䞊げ塗料を塗垃するこずが行われおいるが、これ
により著しく透湿性を䜎䞋させるので、その䜎䞋
を防ぐ仕䞊げ塗料が皮々開発されるようにな぀
た。 この仕䞊げ塗料ずしおの暹脂ずしお、䟋えば芪
氎性アクリル暹脂、セルロヌズ系暹脂、ポリアル
ミド系暹脂、ポリりレタン系暹脂などがあるが、
耐ブロツキング性、耐候性、耐クラツク性、䜎枩
耐屈曲性などの総合特性の面からポリりレタン系
暹脂が最も奜たしい。 透湿性を向䞊させる方法ずしお、゜フトセグメ
ントずしおポリオキシ゚チレン鎖を有するポリ゚
ヌテル系りレタン暹脂を仕䞊げ塗料ずしお䜿甚す
るこずが開発された特公昭54−961号公報。し
かし、該ポリ゚ヌテル系りレタン暹脂䞭のポリオ
キシ゚チレン鎖の含有量が倚くなるず、日光など
による光劣化が倧きくなり、クラツクが生じ易
く、たた倉色が激しい問題点があ぀た。 本発明者はこの問題点を解決するために、曎に
研究の結果、前蚘の人工皮革基䜓の衚面仕䞊げ塗
料ずしお、 (1) 有機ゞむ゜シアネヌト (2) 分子量400以䞋の䜎分子鎖䌞長剀 (3) 分子量900〜3500の炭玠数〜のアルキレ
ンオキサむドからなるポリアルキレンオキサむ
ドグリコヌルの分子鎖䞭に、少くずも個の䞋
蚘に瀺す単䜍の環状基を含有し、か぀ポリアル
キレンオキサむド成分はポリオキシ゚チレン鎖
に基づく成分が50以䞊しめるポリゞオヌル ずからなるポリりレタン暹脂 匏䞭、R1、R2はC1〜C3のアルキル基又は氎
玠、は氎玠、Cl又はBrを瀺す。 を䜿甚するずきは、日光などによる光劣化、クラ
ツクの発生及び黄倉などの倉色が著しく改善し埗
られ、しかも高い透湿性のものが埗られるこずが
分぀た。この知芋に基づいお本発明を完成した。 本発明に甚いる前蚘環状基を含有するポリゞオ
ヌルは、ビスプノヌル誘導䜓又は氎添ビスプ
ノヌル誘導䜓に、゚チレンオキサむド、プロピレ
ンオキサむド、ブチレンオキサむドを開環付加反
応させるこずによ぀お埗られる。この堎合、高い
透湿性を埗るためには、゚チレンオキサむドを付
加させるこずが奜たしい。しかし、プロピレンオ
キサむド等の炭玠数個たでのアルキレンオキサ
むドを50より少ない範囲内で混合付加させおも
よい。これらのポリアルキレンオキサむドを50
以䞊混合付加させるず透湿性が䜎䞋する。 本発明に甚いる仕䞊げ塗料甚ポリりレタン暹脂
は、芁求される塗膜の硬さモゞナラス、塗料
の濃床、粘床を塗垃䜜業䞊奜適にする必芁があ
り、そのため重合床等を適正にするこずが必芁で
ある。 埓぀お、本発明に甚いる環状基を含有するポリ
マヌゞオヌルの分子量は、900〜3500の範囲であ
る必芁があり、奜たしくは1500〜2800の範囲であ
る。この分子量が900より小さいずポリマヌゞオ
ヌルの鎖䞭にしめるポリ゚チレンオキサむドセグ
メントが少くなる結果、゜フトセグメントの剛盎
性が増し、䜎枩時のモゞナラスが高くなり、たた
䜎枩耐屈曲性及び透湿性が䜎䞋する。この分子量
が3500より倧きいず、ポリマヌゞオヌル鎖䞭にし
めるビスプノヌル基の割合が少くなり、ポリ゚
チレンオキサむドセグメント成分が倚くなる結
果、光による劣化、黄倉などの倉色がおこる。環
状基のしめる割合は、環状基の分子量に察する環
状基を陀いたポリアルキレン゚ヌテル郚分の分子
量の比が〜13の範囲にあるこずが奜たしい。そ
れがより小さいず䜎枩特性が悪化し、13より倧
きくなるず光による劣化・倉色の防止効果がなく
なる。 有機ゞむ゜シアネヌトずしおは、䟋えば・
4′メチレンビスプニルむ゜シアネヌト、キシレ
ンゞむ゜シアネヌト等の芳銙族ゞむ゜シアネヌ
ト、メチレンビスシクロヘキシルむ゜シアネヌ
ト、む゜ホロンゞむ゜シアネヌト等の脂環族ゞむ
゜シアネヌト、ヘキサメチレンゞむ゜シアネヌト
等の脂肪族ゞむ゜シアネヌトなどが挙げられる。
しかし倉色の小さいこず及び淡色を垌望する堎合
は芳銙族ゞむ゜シアネヌトよりも脂環族又は脂肪
族のゞむ゜シアネヌトが奜たしい。 鎖䌞長剀ずしおは、分子量が400より小さいむ
゜シアネヌトず反応しうる掻性氎玠を有するゞオ
ヌル、ゞアミン、アルカノヌルアミン、ヒドラゞ
ンヒドラゞドたたはアミノヒドラゞド等が挙げら
れる。具䜓的には䟋えば゚チレングリコヌル、プ
ロピレングリコヌル、・ブタンゞオヌル、
・ベンタゞオヌル、・ヘキサンゞオヌル
等のゞオヌル類、゚チレンゞアミン、・プロ
ピレンゞアミン、ヘキサメチレンゞアミン、ゞア
ミノゞプニルメタン、ゞアミノビシクロヘキシ
ルメタン等のゞアミン、モノ゚タノヌルアミン、
ゞ゚タノヌルアミン等のアルカノヌルアミン、修
酞ヒドラゞド、マレむン酞ヒドラゞド、フマル酞
ヒドラゞド等のゞカルボン酞ヒドラゞド、グリシ
ンヒドラゞド、βアラニンヒドラゞド等のアミノ
カルボン酞ヒドラゞド等が挙げられる。鎖䌞長剀
は、仕䞊塗料甚暹脂ずしお必芁な塗膜の硬さ、耐
熱性、耐溶剀性等を満たすために分子量が400以
䞋の䜎分子のものである必芁があり、400より倧
きい堎合は塗膜の耐熱性、耐溶剀性が劣るので奜
たしくない。又、鎖䌞長剀は、掻性氎玠を぀有
する官胜性のものである必芁があり、盎鎖状ポ
リりレタン暹脂が埗られない官胜以䞊のものは
甚いるこずが出来ない。そしお、塗膜の硬さ、耐
熱性、耐溶剀性等仕䞊塗料甚暹脂ずしお必芁な物
性を満たすためには〔鎖䌞長剀のモル数〕〔ポ
リアルキレンオキサむドグリコヌルのモル数〕の
倀で1.0〜10の範囲で調敎すればよく、ベヌス甚
暹脂ずしおは1.0〜6.0、トツプ甚暹脂ずしおは4.0
〜10の範囲が奜たしい。 これらの原料の重合に際しおはポリりレタン暹
脂の良溶媒であるゞメチルホルムアミド、ゞメチ
ルアセトアミド等のアミド系溶媒を䜿甚するこず
が適圓であり、重合法ずしおは原料を同時に反応
させるワンシペツト法又はポリマヌゞオヌルず有
機ゞむ゜シアネヌトを予め反応させた埌、鎖䌞長
剀を添加しお鎖䌞長反応を行うプレポリマヌ法の
いずれの方法でもよい。その重合床は耐摩耗性、
耐クラツク性等の耐久性を満たすためには高い皋
奜たしいが、仕䞊げ塗料の塗垃䜜業性等を満た
し、䞔぀耐久性を満たすためには適圓な重合床ず
するこずがよい。溶剀の皮類によ぀お若干の差が
あるが、30℃でゞメチルホルムアミド溶剀䞭で枬
定した固有粘床が0.8〜1.0皋床のものが奜たし
い。 埗られたポリりレタン暹脂溶液から仕䞊げ塗料
を埗るには、メチル゚チルケトン、トル゚ン、む
゜プロピルアルコヌル等の溶剀で適床な粘床に調
敎する。この暹脂溶液に着色染料、顔料等の着色
剀、酞化防止剀、玫倖線吞収剀等の安定剀を配合
し埗られるこずは勿論である。 塗膜のモゞナラスは、ベヌス塗料ずしお䜿甚す
るか、トツプ塗料ずしお䜿甚するかにより異なる
が、ベヌス塗料の堎合は䌞長時の応力で0.08
〜0.3Kg/cm2、トツプ塗料の堎合は0.35Kg/mm2以䞊
であるこずが奜たしい。このモゞナラスの調敎は
ポリりレタン暹脂の組成により行う以倖に、ベヌ
ス塗料ずしお䜿甚するに適する䜎モゞナラスのポ
リりレタン暹脂に、ポリりレタン暹脂の光屈折率
ず近䌌する光屈折率を持぀䜓質顔料䟋えば炭酞カ
ルシりム、硫酞バリりム、シリカ等を適量添加し
おモゞナラスを高めるこずができる。 本発明における人工皮革塞䜓は䟋えば次の方法
によ぀お補造される。 人工基䜓の䜜成郚は重量郚で瀺す ポリブチレンアゞペヌト分子量1729216.9
郚ずポリ゚チレングリコヌル分子量156160.0
郚、ポリテトラメチレングリコヌル分子量
1560195.4郚、ビス−βヒドロキシ゚トキシフ
゚ニル−プロパン70.0郚、4.4′ゞプニルメタン
ゞむ゜シアネヌト371.2郚、ずをメチル゚チルケ
トン228.4郚に溶解し、トリ゚チルアミン0.05郚
を添加した埌、65℃で90分反応させた。぀いでメ
チル゚チルケトンで50に垌釈し・ブタンゞ
オヌル86.4郚、トリ゚チルアミン1.5郚を加えお
液枩を68〜72℃に調敎し぀぀メチル゚チルケトン
を远加し時間鎖䌞長反応を行い、最終濃床20
、粘床1200cps70℃、のポリりレタンスラリ
ヌを埗た。぀いで、䞊蚘ポリりレタンスラリヌ
100郚にメチル゚チルケトン郚、む゜パラフむ
ン0.5郚、酞化防止剀0.1郚、酞化チタン郚を加
えおホモミキサヌで均䞀に混合したのち、氎25郚
をホモミキサヌで撹拌を行い぀぀少量ず぀滎䞋
し、2200cps42℃の氎混合分散液を埗た。この
氎混合分散液を、高収瞮性ポリ゚ステル繊維から
なるニヌドルパンチした繊維マツトを枩氎䞭で原
面積の50に収瞮させお含氎したマツトをドラム
加圧也燥機に通し厚さ1.2mm、芋掛密床0.32/cm3
にした䞍織垃に含浞し、也燥させるこずなく、そ
の片面に同じ氎混合分散液を1.0mmの厚さで塗垃
し、40℃、80のRHの倚湿ボツクス䞭で溶剀の
殆んどを蒞発させ、぀いで80℃で残溶剀ず氎の䞀
郚を陀去し、最埌に110℃で也燥を行぀た。埗ら
れた人工皮革甚基䜓の特性倀は䞋蚘の通りであ
る。これを次の実斜䟋に䜿甚した。なお、特性倀
の枬定法は以䞋の実斜䟋にも共通である。
The present invention relates to artificial leather having excellent moisture permeability and weather resistance. Artificial leather is used as an alternative material to natural leather for shoes, clothing,
It has come to be widely used in bags, exercise equipment, etc. However, although the quality of conventional artificial leather has surpassed that of natural leather in terms of strength and durability, it is still of insufficient quality in terms of the so-called "stuffy" feeling, especially when used in shoes. is not obtained. In order to improve this "stuffy" feeling, it is necessary to provide shoes with high moisture permeability, but it is extremely advantageous to have shoes that have the wear durability and weather resistance required of shoes, as well as high moisture permeability. It hasn't been done yet. Conventionally, in order to impart moisture permeability to artificial leather, a nonwoven fabric is used as a base fabric, and a continuous porous layer of resin such as polyurethane resin is formed thereon. This has made it possible to bring the moisture permeability to a level that is quite close to that of natural leather, but on the other hand, there are problems such as the product-like appearance and the infiltration of rainwater from the surface.
In order to eliminate this problem, finishing paint is applied to the surface, but this significantly reduces moisture permeability, so various finishing paints have been developed to prevent this reduction. Ta. Examples of resins used as this finishing paint include hydrophilic acrylic resins, cellulose resins, polyalumide resins, and polyurethane resins.
Polyurethane resins are most preferred from the viewpoint of comprehensive properties such as blocking resistance, weather resistance, crack resistance, and low temperature bending resistance. As a method of improving moisture permeability, the use of a polyether urethane resin having a polyoxyethylene chain as a soft segment as a finishing paint was developed (Japanese Patent Publication No. 54-961). However, when the content of polyoxyethylene chains in the polyether-based urethane resin increases, there are problems in that the photodeterioration caused by sunlight etc. increases, cracks are likely to occur, and discoloration is severe. In order to solve this problem, the present inventor conducted further research and found that as a surface finishing coating for the artificial leather substrate, (1) an organic diisocyanate (2) a low molecular chain extender with a molecular weight of 400 or less (3) a molecular weight The polyalkylene oxide glycol consisting of an alkylene oxide having 900 to 3,500 carbon atoms contains at least one cyclic group of the unit shown below in the molecular chain, and the polyalkylene oxide component is a polyoxyethylene chain. Polyurethane resin consisting of polydiol containing 50% or more of components based on In the formula, R 1 and R 2 represent a C 1 -C 3 alkyl group or hydrogen, and X represents hydrogen, Cl or Br. It has been found that when using this method, photodeterioration caused by sunlight, cracking, and discoloration such as yellowing can be significantly improved, and a product with high moisture permeability can be obtained. The present invention was completed based on this knowledge. The polydiol containing a cyclic group used in the present invention can be obtained by subjecting a bisphenol derivative or a hydrogenated bisphenol derivative to a ring-opening addition reaction with ethylene oxide, propylene oxide, or butylene oxide. In this case, in order to obtain high moisture permeability, it is preferable to add ethylene oxide. However, alkylene oxide having up to 4 carbon atoms such as propylene oxide may be mixed and added within a range of less than 50%. 50% of these polyalkylene oxides
If the above-mentioned amounts are mixed and added, the moisture permeability will decrease. The polyurethane resin for finishing paint used in the present invention needs to have the required hardness (modulus), concentration, and viscosity of the paint film suitable for coating work, and therefore, it is necessary to adjust the degree of polymerization, etc. It is. Therefore, the molecular weight of the polymer diol containing a cyclic group used in the present invention needs to be in the range of 900 to 3,500, preferably in the range of 1,500 to 2,800. If the molecular weight is less than 900, fewer polyethylene oxide segments are included in the chain of the polymer diol, resulting in increased rigidity of the soft segment, higher modulus at low temperatures, and lower low-temperature bending resistance and moisture permeability. When the molecular weight is greater than 3500, the proportion of bisphenol groups in the polymer diol chain decreases, and the polyethylene oxide segment component increases, resulting in deterioration due to light and discoloration such as yellowing. The proportion of the cyclic group is preferably such that the ratio of the molecular weight of the polyalkylene ether portion excluding the cyclic group to the molecular weight of the cyclic group is in the range of 5 to 13. If it is less than 5, the low temperature properties will deteriorate, and if it is larger than 13, the effect of preventing deterioration and discoloration caused by light will be lost. Examples of organic diisocyanates include 4.
Examples include aromatic diisocyanates such as 4'methylene bisphenyl isocyanate and xylene diisocyanate, alicyclic diisocyanates such as methylene biscyclohexyl isocyanate and isophorone diisocyanate, and aliphatic diisocyanates such as hexamethylene diisocyanate.
However, if less discoloration and a lighter color are desired, alicyclic or aliphatic diisocyanates are preferable to aromatic diisocyanates. Examples of the chain extender include diols, diamines, alkanolamines, hydrazine hydrazide, aminohydrazide, etc., which have active hydrogen that can react with isocyanates having a molecular weight of less than 400. Specifically, for example, ethylene glycol, propylene glycol, 1,4-butanediol,
Diols such as 1,5 bentadiol and 1,6 hexanediol, diamines such as ethylene diamine, 1,2 propylene diamine, hexamethylene diamine, diaminodiphenylmethane, and diaminobicyclohexylmethane, monoethanolamine,
Examples include alkanolamines such as diethanolamine, dicarboxylic acid hydrazides such as oxalic acid hydrazide, maleic acid hydrazide, and fumaric acid hydrazide, and aminocarboxylic acid hydrazides such as glycine hydrazide and β-alanine hydrazide. The chain extender must have a low molecular weight of 400 or less in order to satisfy the hardness, heat resistance, solvent resistance, etc. of the coating film required as a resin for finishing paint; This is not preferred because the film has poor heat resistance and solvent resistance. Further, the chain extender must be bifunctional and have two active hydrogens, and trifunctional or higher functional ones that do not yield a linear polyurethane resin cannot be used. In order to satisfy the physical properties required for a finishing paint resin such as hardness, heat resistance, and solvent resistance of the coating film, the value of [number of moles of chain extender]/[number of moles of polyalkylene oxide glycol] is 1.0. It is sufficient to adjust within the range of ~10, 1.0 to 6.0 for base resin and 4.0 for top resin.
A range of ~10 is preferred. When polymerizing these raw materials, it is appropriate to use amide solvents such as dimethylformamide and dimethylacetamide, which are good solvents for polyurethane resins. Polymerization methods include the one-shot method in which the raw materials are reacted simultaneously, or the polymer diol and organic diisocyanate. Any prepolymer method may be used, in which a chain extension agent is added to perform a chain extension reaction after reacting in advance. Its degree of polymerization is wear resistant,
In order to satisfy durability such as crack resistance, a higher degree of polymerization is preferable, but in order to satisfy finish coating workability and durability, an appropriate degree of polymerization is preferred. Although there are some differences depending on the type of solvent, it is preferable that the intrinsic viscosity is about 0.8 to 1.0 when measured in a dimethylformamide solvent at 30°C. To obtain a finishing paint from the resulting polyurethane resin solution, the viscosity is adjusted to an appropriate level using a solvent such as methyl ethyl ketone, toluene, or isopropyl alcohol. Of course, the resin solution can be mixed with colorants such as colored dyes and pigments, and stabilizers such as antioxidants and ultraviolet absorbers. The modulus of a paint film differs depending on whether it is used as a base paint or a top paint, but in the case of a base paint, the stress at 5% elongation is 0.08.
~0.3Kg/cm 2 , preferably 0.35Kg/mm 2 or more in the case of top paint. In addition to adjusting the modulus by adjusting the composition of the polyurethane resin, it is also possible to add extender pigments, such as calcium carbonate and barium sulfate, to a low modulus polyurethane resin suitable for use as a base paint. The modulus can be increased by adding an appropriate amount of silica or the like. The artificial leather closure according to the present invention is produced, for example, by the following method. Preparation of artificial substrate (parts are shown in parts by weight) Polybutylene adipate (molecular weight 1729) 216.9
Part and polyethylene glycol (molecular weight 1561) 60.0
part, polytetramethylene glycol (molecular weight
1560) 195.4 parts, bis(-βhydroxyethoxyphenyl)-propane 70.0 parts, 4.4′ diphenylmethane diisocyanate 371.2 parts, were dissolved in 228.4 parts of methyl ethyl ketone, and after adding 0.05 part of triethylamine, the mixture was heated at 65°C for 90 minutes. Made it react. Next, it was diluted to 50% with methyl ethyl ketone, 86.4 parts of 1,4-butanediol and 1.5 parts of triethylamine were added, and while adjusting the liquid temperature to 68 to 72°C, methyl ethyl ketone was added and a chain elongation reaction was performed for 4 hours, resulting in a final concentration of 20
A polyurethane slurry with a viscosity of 1200 cps/70°C was obtained. Next, the above polyurethane slurry
Add 5 parts of methyl ethyl ketone, 0.5 parts of isoparaffin, 0.1 part of antioxidant, and 1 part of titanium oxide to 100 parts and mix uniformly with a homomixer, then add 25 parts of water little by little while stirring with a homomixer. A water mixed dispersion of 2200 cps/42°C was obtained. This water-mixed dispersion was applied to a needle-punched fiber mat made of highly shrinkable polyester fibers, which was shrunk to 50% of its original area in hot water, and the hydrated mat was passed through a drum pressure dryer to an apparent thickness of 1.2 mm. Density 0.32g/ cm3
The same water mixed dispersion was applied to one side of the nonwoven fabric to a thickness of 1.0 mm without drying, and most of the solvent was evaporated in a humid box at 40°C and 80% RH. Then, residual solvent and part of the water were removed at 80°C, and finally drying was performed at 110°C. The characteristic values of the obtained artificial leather substrate are as follows. This was used in the next example. Note that the method for measuring characteristic values is also common to the following examples.

【衚】 実斜䟋  (1) ビス・4′ヒドロキシプニルプロパンを開
始剀ずし、これに゚チレンオキサむドを開環付
加重合させビス−・4′ヒドロキシプニル−
プロパンを分子鎖䞭に少くずも぀含有する分
子量2050のポリマヌゞオヌルを埗た。このポリ
マヌゞオヌル618郚ずむ゜シアネヌト−・
・トリメチルシクロヘキシルむ゜シアネヌ
ト287郚ずを、95℃で180分間窒玠気流䞋で反応
させた埌40℃に冷华し、脱氎したゞメチルホル
ムアミドを添加しお濃床40にした。぀いで
・ブタンゞオヌル95郚を添加し、ゞブチル
チンゞラりレヌト0.05郚を添加しお40℃で鎖䌞
長反応を行い、粘床が過倧にならないようゞメ
チルホルムアミドを远添し、時間反応の埌ゞ
−ブチルアミン2.5郚を添加し、最終濃床20
、粘床300ポむズ30℃の粘皠なドヌプを埗
た。 これを曎にテトラハむドロフラン×メチル゚
チルケトンの混合溶媒で10に垌釈す
るずずもに、この溶液100郚に察しお酞化チタ
ン郚むルガノツクス1010チバガむギヌ瀟酞
化防止剀0.05郚を添加し、コロむドミル䞭で
均䞀に分散させ、ベヌス塗料以䞋塗料ず略
蚘するを䜜成した。 (2) 同じポリマヌゞオヌル469郚ず−む゜シア
ネヌト、・・トリメチルシクロヘキシル
む゜シアネヌト387郚ずを、95℃で120分間窒玠
気流䞋で反応させた埌40℃に冷华し、脱氎した
ゞメチルホルムアミドを添加しお濃床40ずし
た。぀いで・ブタンゞオヌル144郚ずゞブ
チルチンゞラりレヌト0.05郚を添加し、40℃で
鎖䌞長反応を行いゞメチルホルムアミドで垌釈
を逐次行い時間反応させた埌、ゞ−ブチル
アミン2.5郚を添加し濃床20粘床220ポむズ
30℃のドヌプを埗た。 これを曎にテトラハむドロフランメチル゚
チルケトンの混合溶媒で10に垌釈
し、この溶液100郚に察しお酞化チタン0.1郚む
ルガノツクス1010 0.05郚を添加しコロむドミ
ル䞭で均䞀に分散させトツプ塗料以䞋塗料
ず略蚘するを䜜成した。 次に先の人工皮革基䜓に150メツシナのグラビ
ダロヌルでベヌス塗料をロヌル、トツプ暹脂を
ロヌル塗垃した。埗られた人工皮革の物性を衚
−−(3)に瀺した。本発明のポリマヌグリコヌル
を甚いた人工皮革はビスプニルプロパン基を含
たないポリ゚チレングリコヌルのみを甚いた比范
䟋ず比范し光による劣化及び倉色が著しく向䞊
したものであ぀た。 実斜䟋  ビス−・4′ヒドロキシプニル−プロパンを
開始剀ずしお、プロピレンオキサむドを付加し分
子量玄640のビス−ωヒドロキシポリプロポキシ
プニル−プロパンを合成し、曎に゚チレンオキ
サむドを付加し分子量1980のビス−ωヒドロキシ
ポリ゚トキシ・ポリプロポキシプニル−プロパ
ンを合成した。このポリマヌグリコヌルのポリア
ルキレンオキサむド成分のポリプロピレンオキサ
むドずポリ゚チレンオキサむドの割合は倫々玄25
、75であ぀た。 これを甚いお実斜䟋の塗料ず同様に塗料を
䜜成し人工皮革を䜜成した。埗られた人工皮革は
透湿床が実斜䟋に比し若干劣るが、耐光劣化性
等は埓来のポリアルキレン゚ヌテルのみを䜿甚し
た比范䟋よりすぐれおいる。 比范䟋  実斜䟋ず同様にポリマヌグリコヌル䞭のポリ
アルキレンオキサむド成分ずしおポリプロピレン
オキサむドずポリ゚チレンオキサむドの含有量が
倫々40、60である分子量2038のビス−ωヒド
ロキシ・ポリ゚トキシ・ポリプロポキシプニル
−プロパンを合成した。 埗られた人工皮革は透湿床が実斜䟋−、に
比范しお小さいものであ぀た。 比范䟋実斜䟋〜 実斜䟋ず同様にビス−・4′ヒドロキシプ
ニル−プロパンを開始剀ずしお、゚チレンオキサ
むドを反応させ、衚−−(1)に瀺す分子量722
比范䟋958、2736、3096、3998それぞれ実斜
䟋〜のビス−ωヒドロキシポリ゚トキシフ
゚ニル−プロパンを合成した。実斜䟋ず同様の
モル比で反応を行い塗料を䜜成し、人工皮革を䜜
成した。衚−−(3)に瀺すごずくポリマヌグリコ
ヌルの分子量が小さい比范䟋は透湿床が䜎く奜
たしくなく又分子量が倧きい実斜䟋ではポリマ
ヌグリコヌル䞭にしめるビスプニルプロパン基
の圱響が小さく耐光劣化性、黄倉性の点で劣぀お
いる。 実斜䟋  ポリマヌグリコヌルずしおビス−βヒドロキシ
゚トキシシクロヘキシル−プロパンを開始剀ず
し、゚チレンオキサむドを付加させた分子量2022
のものを䜿甚し、ゞむ゜シアネヌトずしおゞシク
ロヘキシルメタン・4′ゞむ゜シアネヌト、鎖䌞
長剀ずしおヘキサメチレンゞアミンを反応させお
埗たポリマヌを実斜䟋ず同じ方法で塗料ずし
た。人工皮革の特性は衚−−(3)に瀺す通りであ
぀た。 実斜䟋  ポリマヌグリコヌルずしおビス−・4′ヒドロ
キシシクロヘキシル−ペンタンを開始剀ずしお、
゚チレンオキサむドを付加させお埗た分子量1989
のゞオヌルずゞむ゜シアネヌトずしおヘキサメチ
レンゞむ゜シアネヌト、鎖䌞長剀ずしおゞアミノ
シクロヘキシルメタンずを実斜䟋ず同様のモル
比で反応させお埗たポリりレア暹脂を実斜䟋の
塗料ず同じ方法で塗料化しこの塗料で人工皮革
を䜜成した。耐黄倉性、耐光劣化性は実斜䟋ず
同様すぐれおいた。 実斜䟋  ビス−βヒドロキシ゚トキシシクロヘキシル−
プロパンに゚チレンオキサむドを付加しお埗た分
子量1995のポリマヌグリコヌルずゞむ゜シアネヌ
トずしおキシレンゞむ゜シアネヌト、鎖䌞長剀ず
しお・ブタンゞオヌルずを実斜䟋ず同様の
モル比で反応させお埗たポリりレタン暹脂を実斜
䟋の塗料ず同じ方法で塗料化し人工皮革を䜜
成した。耐黄倉性が若干䜎いが耐光劣化性は実斜
䟋ず同様すぐれおいた。 実斜䟋 10 実斜䟋でキシリレンゞむ゜シアネヌトの代り
にゞプニルメタン・4′ゞむ゜シアネヌトを甚
いお実斜した。 耐黄倉性は長時間り゚ザヌメヌタヌに曝露した
堎合劣るが、耐光劣化性は優れおいた。 比范䟋  ポリマヌゞオヌルずしおポリオキシ゚チレン鎖
のみからなる分子量2048のポリ゚チレングリコヌ
ルを甚いる以倖は実斜䟋ず同様の反応を行い
塗料及び塗料を䜜成し、塗料を塗装したもの
曎にこれに塗料を実斜䟋ず同条件で塗垃しお
人工皮革を埗た。いずれも実斜䟋に比范し耐光
劣化性が著しく劣぀おおり、黄倉性も䞍十分なも
のであ぀た。 実斜䟋 11 ビス−βヒドロキシ゚トキシプニル−メタン
に゚チレンオキサむドを付加しお埗た分子量1650
のポリマヌグリコヌル523郚ずωω′ゞむ゜シアネ
ヌト・ゞメチルシクロヘキサンDIMCH
379郚ずを、95℃で180分間窒玠気流䞋で反応させ
た埌、冷华し脱氎ゞメチルホルムアミドに溶解濃
床を40にし、぀いで゚チレングリコヌル98郚を
添加しトリ゚チレンアミン0.1郚を加え、35℃で
鎖䌞長反応を行い粘床が過倧にならないようにゞ
メチルホルムアミドで垌釈を行い時間反応させ
た埌、ゞ−ブチルアミン2.5郚を加え、最終濃
床20、粘床160ポむズ30℃の粘皠なドヌプを
埗た。以䞋は実斜䟋 ず同様に仕䞊塗料を調合
し人工皮革基䜓に塗垃した。
[Table] Example 1 (1) Using bis4.4'hydroxyphenylpropane as an initiator, ethylene oxide was subjected to ring-opening addition polymerization to bis(-4.4'hydroxyphenyl(-
A polymer diol with a molecular weight of 2050 containing at least one propane in the molecular chain was obtained. 618 parts of this polymer diol and 5 isocyanate-3.
After reacting with 287 parts of 3.5 trimethylcyclohexyl isocyanate at 95°C for 180 minutes under a nitrogen stream, the mixture was cooled to 40°C, and dehydrated dimethylformamide was added to give a concentration of 40%. Next, 95 parts of 1,4-butanediol were added, and 0.05 part of dibutyltin dilaurate was added to carry out a chain extension reaction at 40°C. Dimethylformamide was additionally added to prevent the viscosity from becoming excessive, and after 6 hours of reaction, di- Add 2.5 parts of n-butylamine to a final concentration of 20
%, a viscous dope with a viscosity of 300 poise/30°C was obtained. This was further diluted to 10% with a mixed solvent of tetrahydrofuran x methyl ethyl ketone = 1/1, and 2 parts of titanium oxide and 0.05 parts of Irganox 1010 (antioxidant, Ciba Geigy) were added to 100 parts of this solution to form a colloid. The mixture was uniformly dispersed in a mill to create a base paint (hereinafter abbreviated as B paint). (2) 469 parts of the same polymer diol and 387 parts of 5-isocyanate, 3.3.5-trimethylcyclohexyl isocyanate, were reacted at 95°C for 120 minutes under a nitrogen stream, then cooled to 40°C, and the dehydrated dimethylformamide was reacted. was added to give a concentration of 40%. Next, 144 parts of 1,4-butanediol and 0.05 part of dibutyltin dilaurate were added, a chain elongation reaction was carried out at 40°C, dilution was performed successively with dimethylformamide, the reaction was allowed to proceed for 3 hours, and then 2.5 parts of di-n-butylamine was added to adjust the concentration. 20% viscosity 220 poise/
A dope at 30°C was obtained. This was further diluted to 10% with a mixed solvent of tetrahydrofuran/methyl ethyl ketone = 1/1, and 0.1 part of titanium oxide and 0.05 part of Irganox 1010 were added to 100 parts of this solution and uniformly dispersed in a colloid mill to form a top coating. (hereinafter abbreviated as T paint) was created. Next, 6 rolls of base paint and 2 rolls of top resin were applied to the artificial leather substrate using a 150 mesh gravure roll. The physical properties of the obtained artificial leather are shown in Table 1-(3). The artificial leather using the polymer glycol of the present invention showed significantly improved deterioration and discoloration due to light compared to Comparative Example 3 using only polyethylene glycol containing no bisphenylpropane group. Example 2 Using bis(-4·4'hydroxyphenyl)-propane as an initiator, propylene oxide was added to synthesize bis(-ω hydroxypolypropoxyphenyl)-propane with a molecular weight of approximately 640, and further ethylene oxide was added. Bis(-ω hydroxypolyethoxy polypropoxyphenyl)-propane with a molecular weight of 1980 was synthesized. The ratio of polypropylene oxide and polyethylene oxide in the polyalkylene oxide component of this polymer glycol is approximately 25% each.
%, 75%. Using this, a paint was created in the same manner as paint B in Example 1, and artificial leather was created. The obtained artificial leather has slightly lower moisture permeability than Example 1, but its light deterioration resistance is superior to Comparative Example 3 using only conventional polyalkylene ether. Comparative Example 1 Similar to Example 2, bis(-ω hydroxy polyethoxy polypropoxyphenyl) with a molecular weight of 2038 was used, with the contents of polypropylene oxide and polyethylene oxide as polyalkylene oxide components in the polymer glycol being 40% and 60%, respectively. )-propane was synthesized. The obtained artificial leather had a lower moisture permeability than Examples 1 and 2. Comparative Example 2 Examples 3 to 6 In the same manner as in Example 1, ethylene oxide was reacted using bis(-4·4'hydroxyphenyl)-propane as an initiator, and the molecular weight shown in Table 1-(1) was 722.
(Comparative Example) Bis(-ω-hydroxypolyethoxyphenyl)-propanes of 958, 2736, 3096, and 3998 (Examples 3 to 6, respectively) were synthesized. A reaction was carried out at the same molar ratio as in Example 1 to prepare a paint, and artificial leather was prepared. As shown in Table 1-(3), Comparative Example 2, in which the molecular weight of the polymer glycol is small, has low moisture permeability, which is undesirable, and Example 6, in which the molecular weight is large, has a small effect of the bisphenylpropane groups contained in the polymer glycol, resulting in poor light deterioration resistance. , inferior in terms of yellowing. Example 7 Polymer glycol with a molecular weight of 2022 to which ethylene oxide was added using bis(-βhydroxyethoxycyclohexyl)-propane as an initiator
A coating material was prepared in the same manner as in Example 1 by reacting dicyclohexylmethane 4,4' diisocyanate as the diisocyanate and hexamethylene diamine as the chain extender. The characteristics of the artificial leather were as shown in Table 1-(3). Example 8 Bis(-4,4'hydroxycyclohexyl)-pentane as the polymer glycol as an initiator,
Molecular weight obtained by adding ethylene oxide: 1989
A polyurea resin obtained by reacting the diol with hexamethylene diisocyanate as a diisocyanate and diaminocyclohexylmethane as a chain extender in the same molar ratio as in Example 1 was made into a paint in the same manner as paint B in Example 1. Created artificial leather. The yellowing resistance and light deterioration resistance were excellent as in Example 1. Example 9 Bis(-βhydroxyethoxycyclohexyl)-
A polyurethane resin was obtained by reacting a polymer glycol with a molecular weight of 1995 obtained by adding ethylene oxide to propane, xylene diisocyanate as a diisocyanate, and 1,4-butanediol as a chain extender at the same molar ratio as in Example 1. Artificial leather was made into a paint using the same method as the B paint in Example 1. Although the yellowing resistance was slightly low, the light deterioration resistance was excellent as in Example 1. Example 10 Example 9 was carried out using diphenylmethane 4,4' diisocyanate instead of xylylene diisocyanate. Yellowing resistance was poor when exposed to a weather meter for a long time, but light deterioration resistance was excellent. Comparative Example 3 The same reaction as in Example 1 was carried out except that polyethylene glycol with a molecular weight of 2048 consisting only of polyoxyethylene chains was used as the polymer diol.
A paint and a T-paint were prepared, and the B-paint was coated and then the T-paint was applied under the same conditions as in Example 1 to obtain artificial leather. In both cases, the light deterioration resistance was significantly inferior to that of Example 1, and yellowing was also insufficient. Example 11 Molecular weight 1650 obtained by adding ethylene oxide to bis(-βhydroxyethoxyphenyl)-methane
523 parts of polymer glycol and ωω' diisocyanate 1,4 dimethylcyclohexane (DIMCH)
After reacting with 379 parts at 95°C for 180 minutes under a nitrogen stream, it was cooled and dissolved in dehydrated dimethylformamide to a concentration of 40%, then 98 parts of ethylene glycol and 0.1 part of triethylene amine were added, and the mixture was reacted at 35°C. After diluting with dimethylformamide to prevent the viscosity from becoming too high and reacting for 4 hours, 2.5 parts of di-n-butylamine was added to give a viscous solution with a final concentration of 20% and a viscosity of 160 poise at 30°C. Got dope. A finishing paint was prepared in the same manner as in Example 1 and applied to the artificial leather substrate.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  繊維質基材ず高分子匟性䜓ずからなり、繊維
質基材䞭に高分子匟性䜓の連通倚孔質局を圢成さ
せた人工皮革甚基䜓の衚面に、ポリりレタン系暹
脂を塗垃しおなる人工皮革においお、該ポリりレ
タン暹脂が、 (1) 有機ゞむ゜シアネヌト (2) 分子量400以䞋の䜎分子鎖䌞長剀 (3) 分子量900〜3500の炭玠数〜のアルキレ
ンオキサむドからなるポリアルキレンオキサむ
ドグリコヌルの分子鎖䞭に、少くずも぀の䞋
蚘に瀺す単䜍の環状基を含有し、か぀ポリアル
キレンオキサむド成分はポリオキシ゚チレン鎖
に基づく成分が50以䞊しめるポリマヌゞオヌ
ル からなるものであるこずを特城ずする人工皮革。 匏䞭、R1、R2はC1〜C3のアルキル基又は氎
玠、は氎玠、Cl又はBrを瀺す。  有機ゞむ゜シアネヌトが脂環族、脂肪族ゞむ
゜シアネヌトである特蚱請求の範囲第項蚘茉の
人工皮革。  ポリマヌゞオヌルの環状基のしめる割合が環
状基の分子量に察する環状基を陀いたポリアルキ
レン゚ヌテル郚分の分子量比が〜13であるポリ
マヌゞオヌルである特蚱請求の範囲第項蚘茉の
人工皮革。
[Scope of Claims] 1. A polyurethane resin on the surface of an artificial leather substrate consisting of a fibrous base material and a polymeric elastic material, in which a continuous porous layer of the polymeric elastic material is formed in the fibrous base material. In the artificial leather coated with the polyurethane resin, (1) an organic diisocyanate, (2) a low molecular chain extender having a molecular weight of 400 or less, and (3) a polyurethane resin comprising an alkylene oxide having 2 to 4 carbon atoms and a molecular weight of 900 to 3,500. The alkylene oxide glycol must contain at least one cyclic group of the unit shown below in its molecular chain, and the polyalkylene oxide component must consist of a polymer diol in which the component based on polyoxyethylene chains accounts for 50% or more. Artificial leather featuring In the formula, R 1 and R 2 represent a C 1 -C 3 alkyl group or hydrogen, and X represents hydrogen, Cl or Br. 2. The artificial leather according to claim 1, wherein the organic diisocyanate is an alicyclic or aliphatic diisocyanate. 3. The artificial leather according to claim 1, wherein the polymer diol is a polymer diol in which the ratio of the cyclic group to the molecular weight of the polyalkylene ether portion excluding the cyclic group is 5 to 13.
JP1303480A 1980-02-07 1980-02-07 Artificial leather Granted JPS56112578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1303480A JPS56112578A (en) 1980-02-07 1980-02-07 Artificial leather

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1303480A JPS56112578A (en) 1980-02-07 1980-02-07 Artificial leather

Publications (2)

Publication Number Publication Date
JPS56112578A JPS56112578A (en) 1981-09-04
JPS6237153B2 true JPS6237153B2 (en) 1987-08-11

Family

ID=11821832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303480A Granted JPS56112578A (en) 1980-02-07 1980-02-07 Artificial leather

Country Status (1)

Country Link
JP (1) JPS56112578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129482A (en) * 2000-10-16 2002-05-09 Okamoto Ind Inc Synthetic resin leather

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129482A (en) * 2000-10-16 2002-05-09 Okamoto Ind Inc Synthetic resin leather

Also Published As

Publication number Publication date
JPS56112578A (en) 1981-09-04

Similar Documents

Publication Publication Date Title
US7202322B2 (en) Heat resistant high moisture vapor transmission thermoplastic polyurethane
EP1336683B1 (en) Textile material coated or finished with organopolysiloxan/Polyurea/Polyurethan-Blockcopolymer
US3687715A (en) Articifial leather having polyurethane surface finish layer
CN108840987B (en) Organosilicon polyol modified waterborne polyurethane emulsion and preparation method thereof
US8288006B2 (en) Artificial leather
KR101646686B1 (en) Tpu compositions for melt coating processes
US20060100411A1 (en) Organometallic-free polyurethanes having low extractables
CN109160994B (en) Polyurethane dispersion for dry coating primer, and preparation method and application thereof
US20070179255A1 (en) Heat Resistant High Moisture Vapor Transmission Thermoplastic Polyurethane
CN106488938A (en) UV resistant absorbent polyurethane urea resin compositionss, the formed body employing said composition and coating material
JPS6324009B2 (en)
KR20190095683A (en) Bio-polyurethane resin having excellent flexibility and cold-resistance, and Bio-polyurethane film containing the same and Manufacturing method thereof
US6251988B1 (en) Polyurethane solutions terminated with amino-functional heterocyclic stoppers
US6022939A (en) Thermoplastic polyurethanes with improved melt flow
JPS63179916A (en) Thermoplastic polyurethane resin for moisture-permeable and waterproofing material
JPS6237153B2 (en)
US3823111A (en) Polyurethanes
JPH1017764A (en) Polyurethane resin composition for nonporous-type moisture-permeable waterproof fabric
JPS5951632B2 (en) Dense and flexible composite sheet material
JPS6324008B2 (en)
JPS6329687B2 (en)
JPS6133851B2 (en)
JPH0672176B2 (en) Polyurethane manufacturing method
JPH0155288B2 (en)
IE43431B1 (en) Segmented self cross-linkable polyurethane elastomers