JPS6236808B2 - - Google Patents

Info

Publication number
JPS6236808B2
JPS6236808B2 JP12155678A JP12155678A JPS6236808B2 JP S6236808 B2 JPS6236808 B2 JP S6236808B2 JP 12155678 A JP12155678 A JP 12155678A JP 12155678 A JP12155678 A JP 12155678A JP S6236808 B2 JPS6236808 B2 JP S6236808B2
Authority
JP
Japan
Prior art keywords
electrode
copper
silver
layer
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12155678A
Other languages
Japanese (ja)
Other versions
JPS5548537A (en
Inventor
Shigeaki Sekiguchi
Naoyuki Sori
Masayuki Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP12155678A priority Critical patent/JPS5548537A/en
Publication of JPS5548537A publication Critical patent/JPS5548537A/en
Publication of JPS6236808B2 publication Critical patent/JPS6236808B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/04Electrodes specially adapted therefor or their manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は放電加工の高融点金属焼結体を主体と
する複合材よりなる電極材料に関する。 放電加工は被加工物と加工電極とを絶縁性の加
工液の中に極めて小さい間隙で対向させ、短時間
のパルス性アーク放電を繰返すことによつて、被
加工物を加工する方法であるが、このアーク放電
により被加工物は溶融、蒸発を生じ、電極の形状
に対応した形状が形成される。この場合電極側に
もこれに似た現象が起り電極の消耗を生じ、この
ため被加工物に所定の形状を作るのに障害とな
る。電極の消耗は被加工物の場合より小さいが、
それも電極材料の材質、放電エネルギーの大小に
より異なる。電極材料としては従来銅、アルミニ
ウム、タングステン、モリブデンなどの純金属や
軟鋼あるいは銅合金あるいは亜鉛合金あるいは銅
―タングステン、銀―タングステンの焼結合金あ
るいはグラフアイトなどが用いられているが、そ
れぞれ一長一短がある。たとえば銅、アルミニウ
ムなどは導電率が高く、電極の形状に加工しやす
いが、消耗が激しく、グラフアイトも加工しやす
く消耗も比較的少ないが、じん性に欠け欠損しや
すい。銅―タングステンなどの焼結合金は消耗が
少ないすぐれた電極材料であるが、導電率が低い
のでアーク放電初期の喰いつき、なじみが悪く加
工速度の遅い欠点がある。しかし、金型に寸法精
度の高い深い形状を刻み込む場合には、従来は銅
―タングステンの消耗が少なく高精度が得られる
という特性を生かし、この焼結体より所定の形状
の電極に仕上げ、放電加工機に取り付けるための
シヤンク材を銀ろう付けして使用していた。この
銀ろう材による焼結体とシヤンク材との接合で
は、作業条件により接合強度が必ずしも十分でな
いことがあつた。特に接合面積の広い場合や接合
部に外力が加わる場合にはこの難点が顕在化し
た。これはろう材と焼結体とのなじみが不十分で
微小な空隙が残るためと考えられ、放電加工中に
この部分で局部放電等を生じ接合部がはく離脱落
することがあつた。 本発明は前記の諸点につき検討を重ねた結果得
られたもので、寸法精度を保持するため電極の消
耗の少ない銅―タングステンのごとき高融点金属
焼結体を素材とし、特に放電開始初期の喰いつき
を改善することにより加工速度を増大させ、かつ
簡単な工程によりシヤンク部分をも強固に一体化
できるすぐれた放電加工用電極材料を提供するこ
とを目的とする。 本発明は高融点金属焼結体の少なくとも被加工
物に接する面(以下電極面という)に銅又は銀の
ごとき導電率の高い金属層を0.5〜3mmの厚さで
複合させ、放電加工開始時の喰いつき、なじみを
改良するとともに、他面には接合材としてコバル
ト、ニツケルと銀でなるものを用い一般金属体を
接合したことを特徴とする。 本発明の高融点金属としてはタングステン又は
モリブデンが好ましく、この焼結体に銀あるいは
銅を溶浸させたものが適用でき、さらに放電加工
の加工速度増大に効果のある酸化トリウム
(ThO2)、酸化ジルコニウム(ZrO2)の粉末の1
種又は2種を1〜10重量%添加することは効果が
ある。又本発明の接合材は銀を40〜60重量%、コ
バルト、ニツケルの1種又は2種を計60〜40重量
%でなるものである。これらを混合粉の状態で用
いるときは細かい方が分散がよく好ましく、なお
混合粉量は0.1〜0.2g/cm2程度でよい。混合粉は
そのままの状態で使用してもよく、あるいは水、
アルコール等でペースト状にして用いてもよく、
又メツシユプレートでもよい。この様に合金成
分、粉末の大きさ及び粉末量を規定することによ
り接合強度を向上させることができる。又接合材
を介して接合する一般金属体としては、マグネツ
トチヤツクが可能な鉄系金属であることが作業が
簡単でありかつ安価であることから好ましい。 本発明の電極材料すなわち電極面より導電率の
高い純金属層として銅層又は銀層、連続して銅又
は銀―タングステン又はモリブデン溶浸焼結体、
さらに連続して接合層、シヤンク材の4層構造電
極材を簡単な工程で製造するには次の方法によ
る。第1図aは断面図、bは平面図であるが、グ
ラフアイト容器15の底部に電極面の銅層又は銀
層の厚さに必要な所定の架台16を置き溶浸材1
4の銅又は銀を粉末又は片等にて一部入れ、次い
でタングステン又はモリブデンのスケルトン11
を載置し、さらに一般金属体普通は硬鋼
(S45C)よりなるシヤンク材13の接合面に接合
材12を塗布して、スケルトン11に積層し、こ
れを水素雰囲気中にて1000〜1300℃に30分〜3時
間加熱し、冷却後容器より取り出し、所定電極材
の形状に機械加工を施せば第1図cのごとく電極
面より銅層又は銀層17、銅又は銀―タングステ
ン又はモリブデン18、接合層19、シヤンク材
13の4層構造複合電極体が得られる。 なお電極面の銅層又は銀層の厚さは使用目的に
よつて異なるが、0.5〜3mmの範囲に設定するこ
とが必要である。又接合層は接合時に0.1〜0.3mm
程度の厚さであればよいが、接合後は接合材とシ
ヤンク材あるいは接合材と銅層(銀層)とが充分
拡散することを要する。 本発明の電極面の銅層又は銀層は前記のごとく
溶浸時に過剰の銅又は銀を付着させ、機械加工に
て必要な厚さだけ残してもよく、又使用目的によ
つては銅板又は銀板をろう付け、さらには圧着、
ねじ止め、ビス止めなどの機械的接合、めつき、
蒸着などの表面処理によつてもよい。溶浸以外の
方法で電極面を形成する場合には第2図の断面図
に示すごとく架台を用いず、スケルトン11をグ
ラフアイト容器15に載置し、次いで接合材12
を介してシヤンク材13を積層し、隙間に溶浸材
14をつめれば電極面の銅層又は銀層は付着しな
い。この場合の溶浸材はスケルトン中にしみ込ま
せる所要量と接合部の所要量となり、電極面の付
着量は考えなくてもよい。 本発明のシヤンク材を一体化した4層構造複合
電極材を使用することにより放電加工電極材とし
て純銅又は純銀の利点と銅又は銀―タングステン
又はモリブデン焼結体の利点とを享受でき、従来
の銅―タングステン焼結体単味の加工速度の遅い
のを改良し、かつ電極材の消耗は少なく、放電加
工機へ取り付けのためシヤンク材の結合も強固
で、ろう付けの手間が省けるため生産現場での品
質向上、生産性向上による経済的効果が大きい。 実施例と比較例 平均粒径3μのタングステン粉末95重量部に酸
化トリウムの平均粒径3μの粉末の5重量部を添
加してよく混和し、所定の円柱電極形状に金型成
形する。成型圧は4t/cm2である。成形後水素雰囲
気中にて1000℃にて1時間焼結し、タングステン
スケルトンとする。次に第1図aの断面図、bの
平面図に示すごときグラフアイト容器15中に架
台16を4か所に置き、銅の溶浸材の一部を入
れ、その上にスケルトン11を置く。さらにシヤ
ンク材として所定寸法に仕上げた硬鋼(S45C)
13の端面に接合材12として銀とコバルトとを
60:40の割合で混合した混合粉を水とアルコール
にてペースト状とし塗布し、これを介してスケル
トン11に積層させ、所要量の銅溶浸材14の残
部を入れる。なお溶浸材としてはスケルトン中に
しみ込ませる所要量と純銅の電極部と接合部の合
計量を使用する。連続水素炉にこのグラフアイト
容器を装入して、溶浸条件として1200℃、30分で
炉を通過させ、溶浸材をとかしてスケルトン中に
均一にしみこませるとともに電極部の純銅層およ
び接合層を形成させる。次いでグラフアイト容器
よりこれを取り出し、第1図c,dに示すごとき
所定の形状の電極材とするため純銅層を3mm残
し、外周部はスケルトンおよびシヤンク材寸法に
機械加工する。これにより電極部17に3mm厚の
純銅層をもち連続して銅を約30%含有する銅―タ
ングステン焼結体18、さらに連続して銀、コバ
ルト、鉄、銅を含む強固な接合層19、最後に硬
鋼のシヤンク材よりなる4層構造複合電極材が得
られた。 本発明の電極材と従来の銅―タングステン電極
材との加工速度をジヤパツクス製放電加工機にて
同一金型材、同一電極形状について試験した。こ
の結果を第1表に示す。加工全体は10mm直径電極
で30mmの金型材に中仕上げの貫通穴を加工する際
の速度で比較した。なお従来の電極材の速度を
100として比較した。
The present invention relates to an electrode material made of a composite material mainly composed of a high melting point metal sintered body produced by electrical discharge machining. Electrical discharge machining is a method of machining a workpiece by placing the workpiece and a machining electrode facing each other with an extremely small gap in an insulating machining fluid and repeatedly generating short-term pulsed arc discharge. This arc discharge causes the workpiece to melt and evaporate, forming a shape corresponding to the shape of the electrode. In this case, a similar phenomenon occurs on the electrode side, resulting in wear of the electrode, which becomes an obstacle to forming a predetermined shape on the workpiece. The wear of the electrode is smaller than that of the workpiece, but
It also varies depending on the material of the electrode and the magnitude of the discharge energy. Conventionally, pure metals such as copper, aluminum, tungsten, and molybdenum, mild steel, copper alloys, zinc alloys, sintered alloys of copper-tungsten, silver-tungsten, and graphite have been used as electrode materials, but each has its advantages and disadvantages. be. For example, copper, aluminum, etc. have high conductivity and are easy to process into electrode shapes, but are subject to severe wear and tear.Graphite is also easy to process and suffers from relatively little wear, but lacks toughness and is prone to breakage. Sintered alloys such as copper-tungsten are excellent electrode materials with low wear and tear, but because of their low conductivity, they have the drawbacks of biting in the early stages of arc discharge, poor fitting, and slow machining speed. However, when carving a deep shape with high dimensional accuracy into a mold, conventionally the copper-tungsten material was used to finish the electrode in the specified shape, taking advantage of its low consumption and high precision properties. The shank material used was soldered with silver to attach it to the processing machine. When joining the sintered body and the shank material using this silver brazing material, the joining strength may not always be sufficient depending on the working conditions. This difficulty became particularly apparent when the joint area was large or when external force was applied to the joint. This is thought to be due to insufficient compatibility between the brazing material and the sintered body, leaving minute voids, and during electrical discharge machining, local discharge occurred in these areas, causing the joint to peel off and fall. The present invention was achieved as a result of repeated studies on the above-mentioned points, and in order to maintain dimensional accuracy, the material is a high-melting point metal sintered body such as copper-tungsten, which has less wear on the electrode, and is particularly suitable for use in the early stages of discharge. It is an object of the present invention to provide an excellent electrode material for electric discharge machining, which can increase the machining speed by improving the sticking property and can also firmly integrate the shank part through a simple process. The present invention combines a high-conductivity metal layer such as copper or silver with a thickness of 0.5 to 3 mm on at least the surface in contact with the workpiece (hereinafter referred to as the electrode surface) of the high-melting point metal sintered body, and at the beginning of electrical discharge machining. It is characterized by improving the biting and conformability of the material, and by using a bonding material made of cobalt, nickel, and silver on the other side to bond general metal objects. The high melting point metal of the present invention is preferably tungsten or molybdenum, and a sintered body infiltrated with silver or copper can be used, and thorium oxide (ThO 2 ), which is effective in increasing the machining speed of electric discharge machining, Zirconium oxide (ZrO 2 ) powder 1
Adding 1 to 10% by weight of one or two species is effective. The bonding material of the present invention is composed of 40 to 60% by weight of silver and 60 to 40% by weight of one or both of cobalt and nickel. When these are used in the form of a mixed powder, the finer the powder is, the better the dispersion is, and it is preferable, and the amount of the mixed powder may be about 0.1 to 0.2 g/cm 2 . The mixed powder can be used as is, or mixed with water,
It may also be used in a paste form with alcohol etc.
Alternatively, a mesh plate may be used. By regulating the alloy components, powder size, and powder amount in this way, the bonding strength can be improved. Further, as the general metal body to be bonded via the bonding material, it is preferable to use a magnetically chuckable iron-based metal because it is easy to work with and is inexpensive. The electrode material of the present invention, that is, a copper layer or silver layer as a pure metal layer with higher conductivity than the electrode surface, a continuous copper or silver-tungsten or molybdenum infiltrated sintered body,
Furthermore, the following method can be used to continuously manufacture a four-layer structure electrode material including a bonding layer and a shank material through a simple process. 1A is a cross-sectional view, and FIG. 1B is a plan view. A predetermined frame 16 necessary for the thickness of the copper layer or silver layer on the electrode surface is placed at the bottom of the graphite container 15, and the infiltration material 1 is placed at the bottom of the graphite container 15.
Add some copper or silver in the form of powder or pieces from step 4, and then add tungsten or molybdenum skeleton 11.
Then, the bonding material 12 is applied to the bonding surface of a shank material 13 made of a general metal body, usually hard steel (S45C), and the bonding material 12 is laminated on the skeleton 11. This is heated at 1000 to 1300°C in a hydrogen atmosphere. Heat for 30 minutes to 3 hours, take out from the container after cooling, and machine it into the shape of the specified electrode material.As shown in Figure 1c, a copper or silver layer 17 and a copper or silver-tungsten or molybdenum layer 18 are formed from the electrode surface. , a bonding layer 19, and a shank material 13, resulting in a four-layer composite electrode body. The thickness of the copper layer or silver layer on the electrode surface varies depending on the purpose of use, but it is necessary to set it in the range of 0.5 to 3 mm. Also, the bonding layer should be 0.1 to 0.3mm during bonding.
It is sufficient that the bonding material and the shank material or the bonding material and the copper layer (silver layer) are sufficiently diffused after bonding. The copper layer or silver layer on the electrode surface of the present invention may be formed by depositing excess copper or silver during infiltration as described above, and leaving only the required thickness by machining, or depending on the purpose of use, copper plate or silver layer may be deposited on the electrode surface. Brazing silver plates, and even crimping,
Mechanical joining such as screw fastening, plating,
Surface treatment such as vapor deposition may also be used. When forming the electrode surface by a method other than infiltration, the skeleton 11 is placed in a graphite container 15 without using a pedestal, as shown in the cross-sectional view of FIG.
If the shank material 13 is laminated through the gap and the infiltration material 14 is filled in the gap, the copper layer or silver layer on the electrode surface will not adhere. In this case, the amount of infiltration material required to be infiltrated into the skeleton and the amount required for the joint are the same, and there is no need to consider the amount of infiltration material deposited on the electrode surface. By using the four-layer composite electrode material that integrates the shank material of the present invention, it is possible to enjoy the advantages of pure copper or pure silver and the advantages of a copper or silver-tungsten or molybdenum sintered body as an electrical discharge machining electrode material. This improves the slow processing speed of copper-tungsten sintered compacts, reduces consumption of electrode material, and provides strong bonding of shank material for attachment to electrical discharge machines, eliminating the need for brazing, making it suitable for production sites. The economic effects of improved quality and productivity are significant. Examples and Comparative Examples 5 parts by weight of thorium oxide powder having an average particle size of 3 μm are added to 95 parts by weight of tungsten powder having an average particle size of 3 μm, mixed well, and molded into a predetermined cylindrical electrode shape. The molding pressure is 4t/ cm2 . After molding, it is sintered at 1000°C for 1 hour in a hydrogen atmosphere to form a tungsten skeleton. Next, mounts 16 are placed at four locations in a graphite container 15 as shown in the cross-sectional view of FIG. . Furthermore, hard steel (S45C) is finished to the specified dimensions as a shank material.
Silver and cobalt are applied as bonding material 12 to the end face of 13.
A mixed powder mixed at a ratio of 60:40 is made into a paste with water and alcohol, and applied to the skeleton 11, and the remaining copper infiltrant material 14 in a required amount is added thereto. The amount of infiltration material used is the required amount to be infiltrated into the skeleton, plus the total amount of pure copper electrodes and joints. This graphite container is charged into a continuous hydrogen furnace and passed through the furnace at 1200℃ for 30 minutes as infiltration conditions to melt the infiltrant and soak it uniformly into the skeleton, as well as bonding the pure copper layer of the electrode part. Form a layer. Next, this was taken out from the graphite container, and the outer periphery was machined to the dimensions of the skeleton and shank material, leaving a pure copper layer of 3 mm to form the electrode material in the predetermined shape as shown in FIGS. 1c and d. As a result, the electrode part 17 has a 3 mm thick pure copper layer, a continuous copper-tungsten sintered body 18 containing about 30% copper, and a continuous strong bonding layer 19 containing silver, cobalt, iron, and copper. Finally, a four-layer composite electrode material made of hard steel shank material was obtained. The machining speed of the electrode material of the present invention and a conventional copper-tungsten electrode material was tested using an electric discharge machine manufactured by Japax using the same mold material and the same electrode shape. The results are shown in Table 1. The overall machining speed was compared using a 10 mm diameter electrode when machining a semi-finished through hole in a 30 mm mold material. Note that the speed of conventional electrode materials
Compared as 100.

【表】 第1表の結果より同等の仕上り精度において加
工速度が約30%増加するというすぐれた電極材で
ある。 次に本発明品と従来の銅―タングステン電極材
にシヤンク材の硬鋼をBAg―1で銀ろう付けした
のとの接合強度比較を行ない第2表の結果をえ
た。なお評価は従来の電極材の衝撃強さを100と
して比較した。
[Table] From the results in Table 1, this is an excellent electrode material that increases the processing speed by approximately 30% with the same finishing accuracy. Next, we compared the bonding strength between the product of the present invention and a conventional copper-tungsten electrode material in which hard steel as a shank material was silver-brazed with BA g -1, and the results shown in Table 2 were obtained. The evaluation was based on the impact strength of conventional electrode materials as 100.

【表】 第2表より本発明電極材の強度がすぐれ使用時
の安全性が高く、品質、生産面においても有利で
ある。
[Table] As shown in Table 2, the electrode material of the present invention has excellent strength, high safety during use, and is advantageous in terms of quality and production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の4層構造複合電極材の一実施
例を示す図、第2図は本発明の4層構造複合電極
材の中間工程を示す図である。 11…タングステン又はモリブデンスケルト
ン、12…接合材、13…シヤンク材、14…溶
浸材、15…グラフアイト容器、16…架台、1
7…純銅層又は純銀層(電極面)、18…銅又は
銀―タングステン又はモリブデン焼結体、19…
接合層。
FIG. 1 is a diagram showing an embodiment of the four-layer composite electrode material of the present invention, and FIG. 2 is a diagram showing an intermediate process of the four-layer composite electrode material of the present invention. 11... Tungsten or molybdenum skeleton, 12... Bonding material, 13... Shank material, 14... Infiltration material, 15... Graphite container, 16... Frame, 1
7... Pure copper layer or pure silver layer (electrode surface), 18... Copper or silver-tungsten or molybdenum sintered body, 19...
bonding layer.

Claims (1)

【特許請求の範囲】[Claims] 1 タングステン又はモリブデンでなる高融点金
属焼結体の少くとも電極面に厚さ0.5〜3mmの銅
層又は銀層を密着形成させ、他面には銀を40〜60
%、コバルト,ニツケルの1種又は2種を計60〜
40重量%でなる接合材を介し、鉄系金属体を接合
した層状複合体よりなることを特徴とする放電加
工用電極材。
1 A copper layer or silver layer with a thickness of 0.5 to 3 mm is closely formed on at least the electrode surface of a high melting point metal sintered body made of tungsten or molybdenum, and a 40 to 60 mm thick layer of silver is formed on the other surface.
%, cobalt, and nickel, total of 60~
An electrode material for electric discharge machining, characterized in that it is made of a layered composite in which iron-based metal bodies are bonded via a bonding material of 40% by weight.
JP12155678A 1978-10-04 1978-10-04 Electrode material for electrospark machining Granted JPS5548537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12155678A JPS5548537A (en) 1978-10-04 1978-10-04 Electrode material for electrospark machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12155678A JPS5548537A (en) 1978-10-04 1978-10-04 Electrode material for electrospark machining

Publications (2)

Publication Number Publication Date
JPS5548537A JPS5548537A (en) 1980-04-07
JPS6236808B2 true JPS6236808B2 (en) 1987-08-10

Family

ID=14814156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12155678A Granted JPS5548537A (en) 1978-10-04 1978-10-04 Electrode material for electrospark machining

Country Status (1)

Country Link
JP (1) JPS5548537A (en)

Also Published As

Publication number Publication date
JPS5548537A (en) 1980-04-07

Similar Documents

Publication Publication Date Title
US1986197A (en) Metallic composition
US2642654A (en) Electrodeposited composite article and method of making the same
US3778586A (en) Process for coating metals using resistance heating of preformed layer
Zaw et al. Formation of a new EDM electrode material using sintering techniques
US3303559A (en) Electrical discharge machine electrodes
US2244053A (en) Hard cemented carbide composite
CN109175379B (en) Diamond saw blade tool bit and preparation method thereof
CN110219002A (en) High-entropy alloy composite coating material and mould repair method for repairing mould
US3255522A (en) Abrasion resistant material bonding process using boron alloys
US6042781A (en) Ambient temperature method for increasing the green strength of parts
US2377882A (en) Bearing
US2706759A (en) Refractory contacts
CN1057244C (en) Method for mfg. double metal plunger cylinder made of steel-copper and lead alloy
US5579533A (en) Method of making a soldering iron tip from a copper/iron alloy composite
JPS6051972B2 (en) Manufacturing method of electrode material for electrical discharge machining
CN1417380A (en) Direct laser synthesis and making process of hard alloy coating
US3305324A (en) Tungsten powder bodies infiltrated with copper-titanium-bismuth or copper-titanium-tin
JPS6236808B2 (en)
US3366463A (en) Sintered shaped structure formed of penetration-bonded metal, particularly for arcing electric contacts
US2977673A (en) Method of forming composite metal bearings
US1390243A (en) Method of welding low-melting-point metals and alloys to high-melting-point metals
JPS62127448A (en) Electrode material for electric discharge machining and its production
JPS6227933B2 (en)
US3671314A (en) Tungsten electrical switching contacts
JPS6227934B2 (en)