JPS6236705B2 - - Google Patents

Info

Publication number
JPS6236705B2
JPS6236705B2 JP53025724A JP2572478A JPS6236705B2 JP S6236705 B2 JPS6236705 B2 JP S6236705B2 JP 53025724 A JP53025724 A JP 53025724A JP 2572478 A JP2572478 A JP 2572478A JP S6236705 B2 JPS6236705 B2 JP S6236705B2
Authority
JP
Japan
Prior art keywords
membrane
pva
ascites
degree
swelling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53025724A
Other languages
Japanese (ja)
Other versions
JPS54118699A (en
Inventor
Akinori Sueoka
Shiro Osada
Hirokuni Tanii
Shuji Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2572478A priority Critical patent/JPS54118699A/en
Publication of JPS54118699A publication Critical patent/JPS54118699A/en
Publication of JPS6236705B2 publication Critical patent/JPS6236705B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、医療甚芪氎性膜玠材ずしお奜適な、
ポリビニルアルコヌル系遞択透過性膜を腹氎の
過膜ずしお甚いた膜システムによる腹氎凊理装眮
に関する。 肝硬倉内臓癌あるいは腎䞍党等が原因し
お、腹氎症に苊しんでいる患者は盞圓数にのが
り、囜内では増加傟向を瀺しおいる。埓来、この
ような患者に察し、しばしば、腹氎穿刺による排
液法が適甚されおきたが、これでは患者は䞀時的
に楜にはなるが、再貯留し易く、たた腹氎䞭の蛋
癜質等の栄逊分も同時に喪倱するこずになり、患
者の症状は返぀お増悪するこずが倚く問題であ぀
た。これに察し、最近自家腹氎を再静泚する治療
法が臚床的に評䟡され぀぀あり、その為の治療装
眮の開発が望たれるようにな぀た。 自家腹氎の再静泚法は、遠くはGallupら1911
幎が詊みおいるが、無修正の自家腹氎再静泚に
よるもので、効果も定かでなく䞀般に甚いられる
に到らなか぀た。その埌E.AdlercreutzActa.
Med.Scand.1611958R.C.Britton
Arch.Surg.83364.1961らが、人工腎臓甚透
析装眮を甚いお、濃瞮再静泚を行ない過剰氎分負
荷の問題を解決せんずしたが、操䜜が煩雑であ
り、装眮の胜力も問題で、非経枈的であるこず等
から顧みられなか぀た。しかも、この方法では腹
氎䞭に现菌、巚倧现胞等䞍芁物が含たれる堎合
に、これらをも濃瞮しお、血管内に戻すこずにな
り問題である。これに察し最近腹氎をあらかじめ
過しお癌现胞や现菌を陀去しお埌、濃瞮再静泚
する方法が、詊みられこの皮甚途により安党に、
か぀汎甚的に甚いられる凊法ずしお泚目され぀぀
ある。 かゝる目的に察し、䟋えば特開昭51−140387号
にお過噚ず濃瞮噚を備えた腹氎凊理装眮が提案
されおいる。該発明では具䜓的には過膜ずしお
セルロヌスアセテヌト膜が瀺されおいる。この膜
は腹氎の過膜ずしお䞀応目的を達する性胜を有
するが、生䜓適合性、耐熱性、耐圧性等が䞍十分
であり、䜿甚に際しお皮々の制限が必芁ずされ
る。ここで生䜓適合性は、被凊理腹氎䞭の蛋癜等
の倉性の有無に関係し、耐熱性は高圧蒞気滅菌し
た膜が提䟛できるか吊かの問題に関係する。高圧
蒞気滅菌した膜は、ホルマリンや゚チレンオキサ
むドガス等の薬剀を含たないずいう点で本目的に
は望たしいものである。 本発明者らは、かゝる芳点から本質的に芪氎性
が倧きく生䜓適合性にすぐれおおり、か぀化孊凊
理によ぀お耐熱性を改善できる玠材ずしおPVA
系膜を怜蚎した結果、PVA系膜のように芪氎性
の倧きな物質は含氎率が倧きく透氎性がすぐれお
いるものの匷床耐圧性が劣るが、耐圧性を改
善するず逆に芪氎性が䜎䞋するずいう問題があ぀
たが、PVA系膜に特定の構造を付䞎するこずに
より、高圧蒞気滅菌可胜な過膜が埗られるこず
を認め本発明を完成した。 すなわち本発明は平均孔埄が、0.01〜Όの範
囲にある均䞀倚孔質構造を有し、か぀その膚最床
ψが1.0≊ψ≊1.2、ダングモゞナラス比が≧
0.3ここでいうずは100℃及び40℃氎䞭におけ
るダングモゞナラスの比Y100Y40を意味する
である105〜140℃で高圧蒞気滅菌可胜なPVAç³»
遞択透過性膜を内蔵した過単䜍ず、䞊蚘過単
䜍によ぀お過された腹氎を濃瞮する遞択透過性
膜を内蔵した濃瞮単䜍から構成されるこずを特城
ずする腹氎凊理甚装眮である。䞊述の倚孔質構造
は䞀䞇倍の電顕芳察により認められる構造であ
る。 本来、膜による腹氎の過による癌现胞の陀去
操䜜は、目ずたりを起し易い難䜜業であるが、䞊
蚘した本発明による膜の倚孔質構造にさらに有効
埮现孔平均孔埄が、0.01〜ΌなるPVA系遞択透
過性膜を甚いれば、予想倖に目ずたりを生ぜずに
高フラツクスで、分離可胜であるこずを芋出し
た。この有効平均孔埄がΌ以䞊のものでは、血
球や癌现胞を透過させる可胜性が倧であり䞍適圓
である。又0.01Ό以䞋では有甚な蛋癜質の回収率
が悪く、分離胜即ち凊理胜力が急激に䜎䞋する為
に奜たしくない。 該膜はさらに奜たしくは有効平均孔埄0.01〜
0.2Όの倚孔質構造を有する。該膜によれば腹氎
症患者に察する自家腹氎過再静泚治療を行う際
に现胞類ず共に现菌類をも陀去するこずができ、
症状の改善に著しい効果が期埅できる。かゝる構
造は本発明の膜が孔埄の調敎が容易であるこずか
ら達成できるこずである。有効平均孔埄が0.2ÎŒ
以䞊になるず、现菌類に察する阻止率が䜎䞋す
る。ここでの有効孔埄は、膜に察する癜血球、分
子量100䞇皋床の蛋癜及び0.2Όの粒子を含むラテ
ツクス等の阻止率により評䟡する。 䞊述した倚孔質構造は埌述する方法で電顕芳察
から認められる構造である。しかしながら膜の内
郚構造は電顕芳察で認められる構造のみで衚わさ
れるものではなく、䟋えば透過成分の粒子埄から
考えるず、電顕で認められる構造の他に、別の埮
现孔構造があるず考えるのが劥圓ずされる。本発
明による膜においおも電顕から認められる0.01〜
Όの倚孔質構造の䞊に、各皮溶液の透過性詊隓
より0.01〜Όの埮现孔があるず考えられるの
で、該埮现孔を有効埮现孔ずする。該有効埮现孔
は電顕芳察から芋られる構造ずは別異のものであ
る。 本発明の膜は䞊蚘した倚孔質構造にさらに特定
の膚最床をも぀こずを特城ずする。本発明の目的
に察しお膜は高透過性ず共に高い耐圧性を有する
こずが必芁であり、該耐圧性に察しお膜が特定の
膚最床を有するこずが必芁であるこずを認めた。
ここで、膚最床ψずはメンブレンの断面の倖埄
䞭空糞又は厚み方向の長さ平膜のdryに
察するwetの比倍を瀺す。この膚最床は1.0≩
ψ≊1.2であるこずが必芁である。ψが1.2より倧
きいず耐圧性や他の機械的特性が䞍足し、さらに
圧力䞊昇ず共に膜の倉圢がおこりやすく、透過性
を倧巟に倉動させるこずになる。 たゞしdryの枬定は25℃−RH60に24時間攟
眮埌行ない、Wetの枬定は25℃−氎䞭24時間攟眮
埌行なう。埓来の技術ではPVA系膜のような芪
氎性の倧きな膜は必然的に膚最床が倧ずなり、そ
の倀も1.2倍以䞊、通垞は1.4倍以䞊のものしか埗
られなか぀た。即ち芪氎性の倧なる構造は含氎状
態では必然的に圢態が膚最倉圢するので膚最床は
1.4倍以䞊ずならざるを埗なか぀た。そのため膚
最床を小さいものずするには玠材を疎氎性ポリマ
ヌより遞ばなければならないず信じられおいた。
しかるに本発明者らは、芪氎性が倧でか぀膚最床
が小さなPVA系膜を埗るこずに成功し、芪氎性
ポリマヌず疎氎性ポリマヌの特性を䜵有する埓来
ない画期的な新しいPVA系膜を提䟛するこずが
できた。たた膚最床は䞀般的には疎氎性を瀺す尺
床ずもなり、ポリアクリロニトリル系セルロヌ
スアセテヌト系ポリマヌは疎氎性であるこずよ
り、膚最床のみを考えれば、同皋床のものずなる
がその意味するこずが、本発明のPVA系膜では
明らかに異なる点に泚意すべきである。 本発明の膜の膚最床は、PVA系膜が凝固济を
出た埌の任意の段階でホルムアルデヒドアセト
アルデヒドベンズアルデヒドなどのモノアルデ
ヒド或いはグルタルアルデヒドグリオキザヌ
ルPVAを過沃玠酞むオンやセリりムむオンで
酞化分解しお埗られるPVAゞアルデヒドなどの
ゞアルデヒドでアセタヌル化したり、゚ステル
化゚ヌテル化のPVA倉性凊理を行うこずによ
り調敎できる。これら化孊的倉性凊理においお、
皮類以䞊の倉性剀を甚いるこずも勿論可胜であ
り、又副次的に熱凊理操䜜を䜵甚するこずもでき
る。 本発明のPVA系過膜は、セルロヌスアセテ
ヌトポリアクリロニトリル等の他の限倖過膜
にみられないすぐれた耐熱性高枩特性を兌ね備
えるこずができる。 本発明の目的ずする医療甚膜は溶出物のないこ
ずず滅菌凊理を行うこずが必芁である。溶出物は
膜を70℃時間氎䞭凊理しお溶出する物質の量を
評䟡するものであり、これは膜玠材の耐熱性ず密
接な関係がある。滅菌凊理は、公知のホルマリン
氎滅菌や゚チレンオキサむドガス滅菌でも可胜で
ある。しかしながらそれら薬剀による滅菌はその
残存量の患者に察する悪圱響が懞念され぀぀あ
る。かゝる点から、医療甚膜の滅菌ずしおは105
〜140℃の高圧蒞気滅菌又は105〜140℃の氎又は
生理食塩液存圚䞋で高圧蒞気できるこずが望たし
い。このような高枩湿熱凊理に察し半透膜ずしお
の性胜が保持できるか吊かは、党くその耐熱性に
䟝存する。 本発明者らは、䞊述した本発明の過膜に察
し、さらにかゝる高床の耐熱性が付䞎できるか吊
か怜蚎した結果ダングモゞナラス比がT.≧0.3
奜たしくはT.≧0.5を満足すれば、121℃20分の高
圧蒞気滅菌に十分耐えられる膜にするこずができ
るこずを芋い出した。勿論かゝる膜は70℃での溶
出物のレベルが十分満足されるものである。ここ
でいうずは、各100℃及び40℃氎䞭におけるダ
ングモゞナラスPVA系ポリマヌの分子間の架
橋床を瀺すの比Y100Y40を意味しこれは耐
圧耐熱性を瀺す䞀぀の尺床である。≧0.3な
る膜は121℃20分間の蒞気凊理によ぀おも、実甚
䞊問題ずなる皋の圢状の倉化はみられず≧0.5
なる膜では同凊理による圢状の倉化は党くみられ
ない。≧0.3を満足する本発明のPVA系過膜
は140℃たでの湿熱凊理を数回くり返しおも、そ
の性胜の倉化は党くみられないずいう驚くべき特
性を有しおいる。 ダングモゞナラス比は、前述した膚最床調敎
のための化孊的倉性凊理のうち分子間架橋反応を
少くずもその䞀郚ずしお甚いるこずにより達成で
きる。架橋凊理ずしおは、PVAの分子間架橋を
圢成するもの、䟋えば、グルタヌルアルデヒド
グリオキザヌルテレフタルアルデヒド等のゞア
ルデヒドによる架橋、プニレンゞむ゜シアネヌ
トトリレンゞむ゜シアネヌト等のゞむ゜シアネ
ヌトによる架橋、チオグリコヌル酞゚ステルによ
る゚ステル架橋、等が甚いられる。これらの内で
反応の容易さの点からはゞアルデヒド架橋を甚い
るのが有利であり、特にグルタヌルアルデヒドが
奜たしい。以䞊述べた劂く、腹氎過単䜍に甚い
るPVA系膜はPVAの芪氎性を有したたた、膚最
床においおは疎氎性ポリマヌの特性を瀺すずいう
党く特異な構造を有し、そのため芪氎性が倧きく
か぀耐圧性が倧きいずいうすぐれた性胜を有す
る。たたこの膜は105〜140℃の高圧蒞気滅菌凊理
するこずができ、この堎合でも過膜ずしおの性
胜䜎䞋は党くない。かかる事実は埓来のいかなる
膜にも知られおいないこずである。次に本発明に
よる濃瞮膜に぀いお説明する。 本発明による濃瞮膜は、透氎量が少くずも0.2
mlhr.atm.cm2invitro蒞留氎でありか぀分画
分子量が45000以䞋の遞択透過性膜であるが、特
開昭51−140387号に蚘茉されおいるように䞀般に
人工腎臓に甚いられおいる膜を甚いるこずができ
る。䞭でも前述の過甚のPVA系膜ず同皮の玠
材及び゚チレン含量が10〜50モルからなる゚チ
レン―ビニルアルコヌル共重合䜓EVAから
なる膜を甚いるこずが奜たしい。該膜は構成粒子
が実質的也燥膜の電子顕埮鏡芳察においお求めら
れる平均粒子埄が100〜10000Åより奜たしくは
500〜7000Åの範囲にあり、該粒子が盞互に接合
した構造を有する。かゝる構造のPVA系膜が䞊
述した透氎性ず分画分子量を有し腹氎の濃瞮甚膜
ずしお䜿甚できる。透氎量が0.2mlhr.atm.cm2以
䞋では倧きな膜面積か長時間が必芁ずなり実甚的
でなく、分画分子量が45000以䞊では有甚成分で
ある蛋癜類の喪倱が起り適圓でない。 以䞊述べたPVA系の過甚膜ずEVAの濃瞮膜
は䟋えば特開昭52−123385特願昭51−107089
特開昭53−31580及び同52−152877号に瀺され
る補造法により補造するこずができる。 本発明においお、過甚膜及び濃瞮甚膜を䞭空
糞又は平膜等の圢態で甚い、各皮構造の過単䜍
及び濃瞮単䜍を構成する。各単䜍は独立のハりゞ
ングに収容されおも、単䞀のハりゞングに収容さ
れおもよい。これらの構成単䜍は公知のポンプ茞
液回路等ず䞀䜓にしお、実際の腹氎凊理に䟛す
る。以䞋実斜䟋により本発明を説明する。 実斜䟋〜及び比范䟋 ケン化床98.5、DP2400のPVAず、分子量
1000のPEGをPVAに察し100混合し、100℃で
加熱溶解し、PVA濃床14.5の均䞀な氎溶液を調
敎した。 この玡糞原液を環状ノズルからNaOH
Na2SO470240の凝固济に析出しお䞭空
糞をえた。次いで、該䞭空糞をグルタルアルデヒ
ドH2SO4Na2SO4系の架橋凊理济䞭で70℃、
時間浞挬凊理し、さらに25℃、時間流氎掗し
おPEGを完党に陀去し埮现孔構造を圢成した。
その埌宀枩で颚也し也燥䞭空糞を埗た。 埗られた䞭空糞に぀いお、膚最床ψ、ダングモ
ゞナラス比、該䞭空糞の120℃、20分間高圧蒞
気滅菌埌の透氎性及び耐圧性を衚―に瀺した。 なお、耐氎性ずはwet状態の䞭空糞の内偎を加
圧したずきの砎裂圧である。
The present invention is suitable as a medical hydrophilic membrane material,
The present invention relates to an ascites treatment device using a membrane system using a polyvinyl alcohol-based permselective membrane as an ascites membrane. A considerable number of patients suffer from ascites due to liver cirrhosis, internal cancer, renal failure, etc., and the number is increasing in Japan. Conventionally, drainage of fluid through ascitic puncture has often been applied to such patients, but although this provides temporary relief to the patient, it tends to re-accumulate, and nutrients such as proteins in ascites are lost. At the same time, the patient's symptoms often worsen, which is a problem. In contrast, a treatment method of reinjecting autologous ascitic fluid intravenously has recently been clinically evaluated, and the development of a treatment device for this purpose has become desirable. Re-infusion of autologous ascites has been widely used by Gallup et al. (1911
(2012) attempted this, but it was based on repeated intravenous injection of autologous ascitic fluid without modification, and its effectiveness was uncertain, so it was not widely used. Afterwards E. Adlercreutz (Acta.
Med.Scand. 161 , 1, 1958), R.C. Britton
(Arch. Surg. 83.364.1961 ) attempted to solve the problem of excessive fluid load by performing concentrated re-infusion using an artificial kidney dialysis machine, but the operation was complicated and the machine's capacity was also problematic. However, it was not considered because it was uneconomical. Moreover, this method poses a problem in that if the ascites contains unnecessary substances such as bacteria and giant cells, these will also be concentrated and returned to the blood vessels. In contrast, a method has recently been attempted in which ascitic fluid is filtered in advance to remove cancer cells and bacteria, and then concentrated and re-injected intravenously, making it safer for this type of use.
It is also attracting attention as a widely used treatment method. For this purpose, for example, Japanese Patent Laid-Open No. 140387/1987 proposes an ascites treatment device equipped with a filter and a concentrator. In this invention, a cellulose acetate membrane is specifically shown as the membrane. Although this membrane has the ability to achieve its intended purpose as a membrane for ascites, it has insufficient biocompatibility, heat resistance, pressure resistance, etc., and various restrictions are required when using it. Here, biocompatibility is related to the presence or absence of denaturation of proteins in the ascites to be treated, and heat resistance is related to whether a membrane sterilized by high-pressure steam can be provided. Autoclaved membranes are desirable for this purpose in that they do not contain chemicals such as formalin or ethylene oxide gas. From this perspective, the present inventors discovered PVA as a material that is inherently hydrophilic and has excellent biocompatibility, and whose heat resistance can be improved through chemical treatment.
As a result of examining the system membranes, we found that highly hydrophilic substances such as PVA membranes have a high water content and excellent water permeability, but have poor strength (pressure resistance), but improving pressure resistance conversely reduces hydrophilicity. However, the present invention was completed after recognizing that a permeable membrane that can be sterilized by high-pressure steam could be obtained by imparting a specific structure to a PVA-based membrane. That is, the present invention has a uniform porous structure with an average pore diameter in the range of 0.01 to 2ÎŒ, a swelling degree ψ of 1.0≊ψ≊1.2, and a Young's modulus ratio T≧
0.3 (T here means the Young modulus ratio Y 100 /Y 40 in water at 100°C and 40°C)
The unit consists of a permselective membrane with a built-in PVA-based permselective membrane that can be autoclaved at 105 to 140°C, and a concentration unit with a permselectively membrane that concentrates the ascites filtered through the persunit. This is an ascites treatment device characterized by: The above-mentioned porous structure is a structure recognized by electron microscopic observation at a magnification of 10,000 times. Originally, removing cancer cells through ascites through a membrane is a difficult task that tends to cause clogging, but the porous structure of the membrane according to the present invention has an effective micropore average diameter of 0.01 to 2Ό. We have unexpectedly discovered that by using a PVA-based permselective membrane, separation is possible at high flux without clogging. If the effective average pore diameter is 2 Ό or more, it is unsuitable because there is a high possibility that blood cells or cancer cells will pass through. Further, if it is less than 0.01Ό, the recovery rate of useful proteins is poor, and the separation ability, that is, the processing ability, decreases rapidly, which is not preferable. The membrane more preferably has an effective average pore diameter of 0.01 to
It has a porous structure of 0.2Ό. According to this membrane, bacteria can be removed along with cells when treating patients with ascites with repeated intravenous injection of autologous ascites.
It can be expected to have a significant effect on improving symptoms. Such a structure can be achieved in the membrane of the present invention because the pore size can be easily adjusted. Effective average pore diameter is 0.2Ό
If the amount exceeds that level, the inhibition rate against bacteria will decrease. The effective pore size here is evaluated by the rejection rate of latex, etc. containing white blood cells, proteins with a molecular weight of about 1 million, and particles of 0.2Ό against the membrane. The porous structure described above is a structure that can be observed by electron microscopy using the method described below. However, the internal structure of the membrane is not expressed only by the structure observed by electron microscopy; for example, considering the particle size of the permeable component, it is thought that there is another micropore structure in addition to the structure observed by electron microscopy. is considered appropriate. In the film according to the present invention, 0.01~ observed by electron microscopy
Based on the permeability test of various solutions, it is thought that there are micropores of 0.01 to 2Ό on the 2Ό porous structure, so these micropores are considered as effective micropores. The effective micropores have a structure different from that seen through electron microscopy. The membrane of the present invention is characterized by having a specific degree of swelling in addition to the above-mentioned porous structure. It has been recognized that for the purposes of the present invention it is necessary for the membrane to have high pressure resistance as well as high permeability, and it is necessary for the membrane to have a certain degree of swelling for the pressure resistance.
Here, the degree of swelling ψ indicates the ratio (times) of wet to dry of the outer diameter of the cross section of the membrane (hollow fiber) or the length in the thickness direction (flat membrane). This degree of swelling is 1.0≩
It is necessary that ψ≊1.2. When ψ is larger than 1.2, pressure resistance and other mechanical properties are insufficient, and the membrane is likely to deform as pressure increases, resulting in wide fluctuations in permeability. Dry measurements are performed after being left at 25°C and RH 60% for 24 hours, and wet measurements are made after being left in water at 25°C for 24 hours. With conventional techniques, highly hydrophilic membranes such as PVA-based membranes inevitably have a high degree of swelling, and it has only been possible to obtain a swelling value of 1.2 times or more, usually 1.4 times or more. In other words, the shape of a large hydrophilic structure inevitably swells and deforms in a water-containing state, so the degree of swelling is
It had to be more than 1.4 times as large. Therefore, it was believed that in order to reduce the degree of swelling, the material must be selected from hydrophobic polymers.
However, the present inventors succeeded in obtaining a PVA-based membrane with high hydrophilicity and low degree of swelling, creating a new and unprecedented PVA-based membrane that has both the characteristics of hydrophilic and hydrophobic polymers. I was able to provide it. In addition, swelling degree is generally a measure of hydrophobicity, and polyacrylonitrile-based and cellulose acetate-based polymers are hydrophobic, so if we consider only swelling degree, they are about the same, but what does it mean? However, it should be noted that the PVA-based membrane of the present invention is clearly different. The degree of swelling of the membrane of the present invention is determined by adding monoaldehyde such as formaldehyde, acetaldehyde, or benzaldehyde, or glutaraldehyde, glyoxal, or PVA to periodate ion or cerium ion at any stage after the PVA membrane leaves the coagulation bath. It can be adjusted by acetalization with a dialdehyde such as PVA dialdehyde obtained by oxidative decomposition, or by PVA modification treatment such as esterification or etherification. In these chemical modification treatments,
Of course, it is possible to use two or more types of modifiers, and a heat treatment operation can also be used in combination. The PVA-based membrane of the present invention can have excellent heat resistance and high-temperature properties not found in other ultrafiltration membranes such as cellulose acetate and polyacrylonitrile. The medical membrane targeted by the present invention must be free of eluates and must be sterilized. The amount of eluted substances is evaluated by treating the membrane in water at 70°C for 1 hour and evaluating the amount of substances eluted, which is closely related to the heat resistance of the membrane material. The sterilization process can also be performed by known formalin water sterilization or ethylene oxide gas sterilization. However, there is a growing concern that sterilization using these drugs may have an adverse effect on patients due to the residual amount of the drugs. From this point of view, 105 is recommended for sterilization of medical membranes.
It is desirable to be able to perform high-pressure steam sterilization at ~140°C or high-pressure steaming at 105-140°C in the presence of water or physiological saline. Whether or not the membrane can maintain its performance as a semipermeable membrane under such high-temperature, moist heat treatment depends entirely on its heat resistance. The present inventors investigated whether such a high degree of heat resistance could be imparted to the membrane of the present invention described above, and as a result, the Young modulus ratio T was T. 0.3.
It has been found that, preferably, if T. Of course, such a membrane has a sufficiently satisfactory level of eluate at 70°C. T here means the ratio of Young's modulus (indicating the degree of crosslinking between molecules of PVA polymer) Y 100 /Y 40 in water at 100°C and 40°C, which is a measure of pressure resistance and heat resistance. It is. Even after steam treatment at 121°C for 20 minutes, the film with T≧0.3 did not show any change in shape that would pose a practical problem.
The film shows no change in shape due to the same treatment. The PVA membrane of the present invention, which satisfies T≧0.3, has the surprising property that no change in performance is observed even after repeated heat-and-moisture treatment up to 140°C several times. The Young's modulus ratio T can be achieved by using an intermolecular crosslinking reaction as at least a part of the chemical modification treatment for controlling the degree of swelling described above. As a crosslinking treatment, a substance that forms intermolecular crosslinks of PVA, such as glutaraldehyde,
Crosslinking using dialdehydes such as glyoxal and terephthalaldehyde, crosslinking using diisocyanates such as phenylene diisocyanate and tolylene diisocyanate, and ester crosslinking using thioglycolic acid esters are used. Among these, it is advantageous to use dialdehyde crosslinking from the viewpoint of ease of reaction, and glutaraldehyde is particularly preferred. As mentioned above, the PVA-based membrane used for the ascites membrane has a completely unique structure that exhibits the characteristics of a hydrophobic polymer in swelling degree while retaining the hydrophilic properties of PVA. It has excellent performance with high strength. Moreover, this membrane can be subjected to high-pressure steam sterilization at 105 to 140°C, and even in this case, there is no deterioration in performance as a membrane. This fact is unknown for any conventional membrane. Next, the concentration membrane according to the present invention will be explained. The concentration membrane according to the invention has a water permeability of at least 0.2
ml/hr.atm.cm 2 (in vitro distilled water) and a permselective membrane with a molecular weight cut off of 45,000 or less, but it is generally used in artificial kidneys as described in JP-A-51-140387. A membrane that has been prepared can be used. Among these, it is preferable to use a membrane made of the same material as the overused PVA membrane mentioned above and an ethylene-vinyl alcohol copolymer (EVA) having an ethylene content of 10 to 50 mol%. The membrane preferably has constituent particles having an average particle diameter of 100 to 10,000 Å as determined by electron microscopic observation of a substantially dry membrane.
The particle diameter is in the range of 500 to 7000 Å and has a structure in which the particles are bonded to each other. A PVA-based membrane having such a structure has the above-mentioned water permeability and molecular weight cutoff, and can be used as a membrane for concentrating ascites. If the water permeability is less than 0.2 ml/hr.atm.cm 2 , a large membrane area or a long time will be required, which is not practical, and if the molecular weight cut-off is more than 45,000, proteins, which are useful components, will be lost, which is not appropriate. The PVA-based overuse membrane and EVA concentration membrane mentioned above are disclosed in, for example, Japanese Patent Application Laid-Open No. 52-123385 and Japanese Patent Application No. 51-107089.
(Japanese Unexamined Patent Publication No. 53-31580) and No. 52-152877. In the present invention, the overflow membrane and the concentration membrane are used in the form of hollow fibers or flat membranes to constitute overflow units and concentration units of various structures. Each unit may be housed in separate housings or in a single housing. These structural units are integrated with a known pump infusion circuit, etc., and are used for actual treatment of ascites. The present invention will be explained below with reference to Examples. Examples 1 to 3 and Comparative Examples 1 and 2 PVA with saponification degree of 98.5%, DP2400, and molecular weight
1000 PEG was mixed with PVA at 100% and dissolved by heating at 100°C to prepare a homogeneous aqueous solution with a PVA concentration of 14.5%. This spinning stock solution is passed through an annular nozzle using NaOH/
Hollow fibers were obtained by precipitation in a coagulation bath containing Na 2 SO 4 =70/240g/. Next, the hollow fibers were heated at 70°C in a crosslinking treatment bath of glutaraldehyde/H 2 SO 4 /Na 2 SO 4 system.
It was immersed for 5 hours and then washed with running water at 25°C for 3 hours to completely remove PEG and form a microporous structure.
Thereafter, the fibers were air-dried at room temperature to obtain dry hollow fibers. Table 1 shows the degree of swelling ψ, Young's modulus ratio T, water permeability and pressure resistance of the hollow fibers after autoclaving at 120°C for 20 minutes. Note that water resistance is the bursting pressure when pressurizing the inside of the hollow fiber in a wet state.

【衚】 衚―に瀺す実斜䟋及び比范䟋から明かなよう
に膚最床ψが1.0≊ψ≊1.2、ダングモゞナラス比
が≧0.3を満足する䞭空糞の高圧蒞気滅菌埌
の透氎性及び耐圧性が優れおいた。 実斜䟋  ケン化床98.5DP2400のPVAず分子量1000
のPEG95PVAを100℃加熱溶解し、PVA
濃床16の玡糞原液をえこれを環状ノズルから、
抌し出し通垞の条件䞋で䞭空糞をえた。次いで埗
られた䞭空糞をグルタルアルデヒドH2SO4
Na2SO430200の凊理济に70℃−
時間浞挬し架橋凊理した埌、垞枩氎掗し曎に85℃
にお時間掗滌しおPEGを陀去し、埮现孔構造
を圢成した。その埌宀枩で颚也し也燥䞭空糞を埗
た。埗られた䞭空糞の倖埄は800Ό、膜厚200Όで
あ぀た。埗られた䞭空繊維のダングモゞナラスは
Y407.0Kg、Y1006.2Kgであり、ダングモゞナラ
ス比は0.89であ぀た。本䞭空繊維を甚いお有効
膜面積0.5m2の過装眮を䜜補し、121℃20分間高
圧蒞気滅菌を回繰り返し、その性胜倉動をみた
が、党く膜性胜は損なわれるこずはなか぀た。 このdry䞭空糞の断面を電顕芳察したずころ、
均䞀な埄を瀺し、しかも暪断面に均䞀に配列され
おいるのを認めた。又膚最床ψは1.04であ぀た。
この䞭空繊維を甚いお、有効膜面積1.0m2の過
装眮を䜜成した。 又、濃瞮甚膜ずしおは、゚チレン含量33モル
の人工腎臓甚のEVA䞭空糞膜を甚いた。この䞭
空糞を甚い有効膜面積1.0m2の濃瞮噚を䜜補し
た。 これら装眮を甚いお、腹氎凊理を行な぀た。癌
性患者の腹氎で総蛋癜濃床2.4dl、に぀いお
腹氎穿刺埌、圧力制埡しながら60mlmin.で
時間30分にわたり䞀郚再埪環させ぀぀過し、次
いで濃瞮噚を通し総蛋癜濃床を2.5倍に濃瞮する
べく圧力制埡し぀぀操䜜した。 過埌の腹氎に぀いお分析の結果、现菌癌现
胞等は怜出されず、完党に陀去しえた。最終蛋癜
濃床も6.0ず蚭定通りであ぀た。
[Table] As is clear from the examples and comparative examples shown in Table 1, the water permeability and pressure resistance after high-pressure steam sterilization of hollow fibers that satisfy the swelling degree ψ of 1.0≊ψ≊1.2 and the Young's modulus ratio T of T≧0.3. It had excellent characteristics. Example 4 Saponification degree 98.5%, PVA with DP2400 and molecular weight 1000
PEG (95%/PVA) was heated and dissolved at 100℃, and PVA
Apply the spinning stock solution with a concentration of 16% through the annular nozzle.
Hollow fibers were obtained under extrusion normal conditions. Next, the obtained hollow fibers were treated with glutaraldehyde/H 2 SO 4 /
Na 2 SO 4 =3/30/200g/70℃-5
After soaking for a time and crosslinking treatment, wash with water at room temperature and further at 85℃.
PEG was removed by washing for 1 hour to form a microporous structure. Thereafter, the fibers were air-dried at room temperature to obtain dry hollow fibers. The outer diameter of the obtained hollow fiber was 800Ό, and the membrane thickness was 200Ό. The young modulus of the obtained hollow fiber is
Y 40 =7.0Kg, Y100 =6.2Kg, and Young's modulus ratio T was 0.89. A filtration device with an effective membrane area of 0.5 m 2 was fabricated using this hollow fiber, and high-pressure steam sterilization was repeated three times at 121°C for 20 minutes, and the performance fluctuations were observed, but the membrane performance was not impaired at all. When we observed the cross section of this dry hollow fiber using an electron microscope, we found that
It was observed that the particles had a uniform diameter and were evenly arranged in the cross section. The degree of swelling ψ was 1.04.
Using this hollow fiber, a filter device with an effective membrane area of 1.0 m 2 was created. In addition, as a concentration membrane, the ethylene content is 33 mol%.
EVA hollow fiber membrane for artificial kidney was used. A concentrator with an effective membrane area of 1.0 m 2 was fabricated using this hollow fiber. Ascites was treated using these devices. The total protein concentration in ascites of a cancerous patient was 2.4 g/dl. After paracentesis of the ascites, the total protein concentration was 2.4 g/dl, and the pressure was controlled at 60 ml/min.
The mixture was allowed to pass for 30 minutes with partial recirculation and then passed through a concentrator under pressure control to concentrate the total protein concentration by 2.5 times. As a result of analysis of the ascites after the procedure, no bacteria, cancer cells, etc. were detected and it was completely removed. The final protein concentration was also 6.0 g/d, as specified.

Claims (1)

【特蚱請求の範囲】[Claims]  平均孔埄が0.01〜Όの埮现孔が暪断面に均
䞀に配列されおいる均䞀倚孔質構造を有し、か぀
その膚最床ψが、1.0≊ψ≊1.2、ダングモゞナラ
ス比が≧0.3ここでいうずは100℃及び40
℃氎䞭におけるダングモゞナラスの比Y100Y40
を意味するである105〜140℃で高圧蒞気滅菌可
胜なポリビニルアルコヌル系遞択透過性膜を内臓
した過単䜍ず、䞊蚘過単䜍によ぀お過され
た腹氎を濃瞮する遞択透過性膜を内臓した濃瞮単
䜍から構成されるこずを特城ずする腹氎凊理甚装
眮。
1 It has a uniform porous structure in which micropores with an average pore diameter of 0.01 to 2ÎŒ are uniformly arranged in the cross section, and its degree of swelling ψ is 1.0≊ψ≊1.2, and the Young's modulus ratio T is T≧0.3 (where T means 100℃ and 40
Young modulus ratio in °C water Y 100 / Y 40
), which is equipped with a polyvinyl alcohol-based permselective membrane that can be autoclaved at 105 to 140°C, and a permselective membrane that concentrates the ascites passed through the perunit. An apparatus for treating ascites, characterized by comprising a concentration unit.
JP2572478A 1978-03-06 1978-03-06 Device for treating abdominal dropsy Granted JPS54118699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2572478A JPS54118699A (en) 1978-03-06 1978-03-06 Device for treating abdominal dropsy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2572478A JPS54118699A (en) 1978-03-06 1978-03-06 Device for treating abdominal dropsy

Publications (2)

Publication Number Publication Date
JPS54118699A JPS54118699A (en) 1979-09-14
JPS6236705B2 true JPS6236705B2 (en) 1987-08-08

Family

ID=12173741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2572478A Granted JPS54118699A (en) 1978-03-06 1978-03-06 Device for treating abdominal dropsy

Country Status (1)

Country Link
JP (1) JPS54118699A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110625A (en) * 1980-02-05 1981-09-01 Takeda Chem Ind Ltd Separating method of blood plasma and apparatus for the same
JPH11302973A (en) * 1998-04-22 1999-11-02 Kuraray Co Ltd Polyvinyl alcohol-based hollow yarn with excellent biocompatibility nd its production

Also Published As

Publication number Publication date
JPS54118699A (en) 1979-09-14

Similar Documents

Publication Publication Date Title
US4402940A (en) Method for treating blood plasma employing a hollow fiber membrane
EP0569229A1 (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
US4839055A (en) Method for treating blood and apparatus therefor
JPWO2002009857A1 (en) Modified hollow fiber membrane
US4741927A (en) Production of cellulose dialysis membrane with improved biocompatibility
JPH0553528B2 (en)
US4176070A (en) Semi-permeable membranes of regenerated cuprammonium cellulose and method for heat sterilization thereof in physiological saline
JP3216910B2 (en) Porous hollow fiber membrane
WO2000027447A1 (en) Blood purifying apparatus
JPS6236705B2 (en)
DE19750527C2 (en) Cellulosic separation membrane
JP7035537B2 (en) Separation membrane module
JP4352709B2 (en) Polysulfone-based semipermeable membrane and artificial kidney using the same
JPH0370539B2 (en)
CN116829576A (en) Method for preparing controllable high-concentration silk fibroin solution by tangential flow ultrafiltration technology
JPH0135681B2 (en)
CN114653222A (en) Low-nonspecific adsorption virus removal filter membrane and preparation method thereof
JP4381058B2 (en) Hollow fiber blood purifier with excellent blood compatibility
JP2003010322A (en) Hollow fiber membrane for hemocatharsis, method for manufacturing the same, and blood purifier
JP2010233987A (en) Blood purifier
JPH01254204A (en) Method for removing virus
JPH0143562B2 (en)
JP3147343B2 (en) Method for producing hydrophilic filter material
JP2005074019A (en) Hollow fiber type blood purification membrane
JPH0429409B2 (en)