JPS6236275Y2 - - Google Patents

Info

Publication number
JPS6236275Y2
JPS6236275Y2 JP19418781U JP19418781U JPS6236275Y2 JP S6236275 Y2 JPS6236275 Y2 JP S6236275Y2 JP 19418781 U JP19418781 U JP 19418781U JP 19418781 U JP19418781 U JP 19418781U JP S6236275 Y2 JPS6236275 Y2 JP S6236275Y2
Authority
JP
Japan
Prior art keywords
capacitor
nonlinear capacitor
discharge lamp
voltage
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19418781U
Other languages
Japanese (ja)
Other versions
JPS58103136U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19418781U priority Critical patent/JPS58103136U/en
Publication of JPS58103136U publication Critical patent/JPS58103136U/en
Application granted granted Critical
Publication of JPS6236275Y2 publication Critical patent/JPS6236275Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Description

【考案の詳細な説明】 本考案は、非直線性コンデンサを備え、主とし
て、放電灯点灯回路に使用される電子部品に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronic component that includes a nonlinear capacitor and is mainly used in a discharge lamp lighting circuit.

従来の放電灯点灯回路としては、グロースター
タ方式やラピツドスタータ方式のものが良く知ら
れている。しかし、グロースタータ方式のもの
は、放電灯が点灯するまでの時間が長いこと、グ
ロースタータが有接点であるため故障交換が必要
になると共に、放電灯の劣化を招き易いこと等の
欠点がある。また、ラピツドスタータ方式のもの
は、起動時間は比較的短いが、専用の大型の安定
器と、専用のランプとを必要とし、価格が高くな
る欠点がある。
As conventional discharge lamp lighting circuits, those of a glow starter type and a rapid starter type are well known. However, the glow starter type has disadvantages such as it takes a long time for the discharge lamp to light up, the glow starter is a contact point, so it must be replaced if it fails, and the discharge lamp tends to deteriorate. . Furthermore, although the rapid starter type has a relatively short start-up time, it requires a dedicated large ballast and a dedicated lamp, which has the disadvantage of being expensive.

この従来の放電灯点灯回路の欠点を除去するも
のとして、第1図に示すように、放電灯1に対し
て並列に、かつ誘導性安定器2に対して直列とな
るように非直線性コンデンサCnを接続し、前記
安定器2及び前記放電灯1の予熱フイラメント1
a、1bと共に直列的ループを形成するように、
サイリスタ等の三端子制御整流素子Q1を接続し
た放電灯点灯回路が提案されている。
To eliminate this drawback of the conventional discharge lamp lighting circuit, as shown in FIG. Connect Cn to the ballast 2 and the preheating filament 1 of the discharge lamp 1
so as to form a serial loop with a and 1b,
A discharge lamp lighting circuit has been proposed in which a three-terminal controlled rectifier Q1 such as a thyristor is connected.

前記非直線性コンデンサCnは例えばチタン酸
バリウム等を主成分とする強誘電体磁器材料によ
つて構成され、その印加電圧Vと蓄積電荷Qとの
関係が、第2図に示すような角形特性を示す。
The nonlinear capacitor Cn is made of a ferroelectric ceramic material whose main component is barium titanate, for example, and the relationship between the applied voltage V and the accumulated charge Q has a square characteristic as shown in FIG. shows.

Q2は、非直線性コンデンサCnと直列に接続
され、非直線性コンデンサCnに対する充電回路
を構成する三端子制御整流素子であり、この例で
は逆阻止三端子サイリスタによつて構成してあ
る。この三端子制御整流素子Q2のゲートとカソ
ードとの間には整流用のダイオードD2を並列に
接続してある、ダイオードD2は三端子制御整流
素子Q2のゲートに対して逆向きに接続する。ま
た三端子制御整流素子Q2のゲートとアノードと
の間には定電圧ダイオードD3を並列に接続して
ある。R4は前記整流用ダイオードD2と並列に
接続した抵坑、R5は定電圧ダイオードD3と直
列に接続された抵坑、R6は三端子制御整流素子
Q2と並列に接続された抵坑である。
Q2 is a three-terminal controlled rectifier element connected in series with the non-linear capacitor Cn to constitute a charging circuit for the non-linear capacitor Cn, and in this example is constituted by a reverse blocking three-terminal thyristor. A rectifying diode D2 is connected in parallel between the gate and cathode of the three-terminal control rectifier Q2, and the diode D2 is connected in the opposite direction to the gate of the three-terminal control rectifier Q2. Further, a constant voltage diode D3 is connected in parallel between the gate and anode of the three-terminal controlled rectifier Q2. R4 is a resistor connected in parallel with the rectifying diode D2, R5 is a resistor connected in series with the constant voltage diode D3, and R6 is a resistor connected in parallel with the three-terminal control rectifying element Q2.

C2は前記三端子制御整流素子Q2に並列に、
即ち三端子制御整流素子Q2のアノードーカソー
ド間に接続されたコンデンサである。このコンデ
ンサC2は抵坑R6と共に、放電灯点灯後、放電
灯1の両端に現れる端子電圧ピーク値をバイパス
する。
C2 is connected in parallel to the three-terminal controlled rectifier Q2,
That is, it is a capacitor connected between the anode and cathode of the three-terminal controlled rectifier Q2. This capacitor C2, together with the resistor R6, bypasses the terminal voltage peak value appearing at both ends of the discharge lamp 1 after the discharge lamp is turned on.

D1はダイオード、Q1は予熱電流を流す三端
子制御整流素子、R1〜R3はこのスイツチング
回路Q1のゲート回路を構成する抵坑、C1は同
じくコンデンサ、Q3は同じくゲートトリガダイ
オードである。
D1 is a diode, Q1 is a three-terminal controlled rectifying element through which a preheating current flows, R1 to R3 are resistors constituting the gate circuit of this switching circuit Q1, C1 is also a capacitor, and Q3 is a gate trigger diode.

非直線性コンデンサCnは、この実施例では、
2つの非直線性コンデンサCn1,Cn2を並列に
接続することによつて構成してある。
The nonlinear capacitor Cn is, in this example,
It is constructed by connecting two nonlinear capacitors Cn1 and Cn2 in parallel.

次に、上記の放電灯点灯回路の回路動作を説明
する。
Next, the circuit operation of the above discharge lamp lighting circuit will be explained.

電源電圧eが端子U側を正として上昇する正サ
イクルにおいて、三端子制御整流素子Q1がター
ンオンすると、安定器2−フイラメント1a−三
端子制御整流素子Q1−フイラメント1bの経路
で予熱電流が流れ、フイラメント1a、1bが予
熱される。
In a positive cycle in which the power supply voltage e rises with the terminal U side being positive, when the three-terminal control rectifier Q1 is turned on, a preheating current flows in the path of the ballast 2 - filament 1a - three-terminal control rectifier Q1 - filament 1b, Filaments 1a, 1b are preheated.

これと同時に非直線性コンデンサCn1、Cn2
は、充分なスイツチンング特性を得るため、電源
電圧eが正サイクルにあるとき、ダイオードD
2、このダイオードD2に直列に接続された抵坑
R5及びダイオードD2と抵坑R5に対して直列
に接続された定電圧ダイオードD3を通して、A
側を正、B側を負にして充分に充電される。この
場合、三端子制御整流素子Q2のゲート・カソー
ド間に逆方向の電圧が加わるが、ゲート・カソー
ド間にダイオードD2を逆向きに接続してあるの
で、三端子制御整流素子Q2のピークゲート逆電
圧をダイオードD2の順方向電圧に抑え、三端子
制御整流素子Q2のゲートに逆方向の過電圧が印
加されるのを防止し、その破壊を防ぐことができ
る。
At the same time, nonlinear capacitors Cn1 and Cn2
In order to obtain sufficient switching characteristics, when the power supply voltage e is in the positive cycle, the diode D
2. Through the resistor R5 connected in series to this diode D2 and the constant voltage diode D3 connected in series to the diode D2 and resistor R5, A
Make the side positive and the B side negative and it will be fully charged. In this case, a voltage in the opposite direction is applied between the gate and cathode of the three-terminal controlled rectifier Q2, but since the diode D2 is connected in the opposite direction between the gate and the cathode, the peak gate voltage of the three-terminal controlled rectifier Q2 is reversed. By suppressing the voltage to the forward voltage of the diode D2, it is possible to prevent an overvoltage in the reverse direction from being applied to the gate of the three-terminal control rectifier Q2, thereby preventing its destruction.

予熱電流iが三端子制御整流素子Q1の保持電
流以下となる電源電圧eの負サイクルで、三端子
制御整流素子Q1はターン・オフし、放電灯1の
端子3−4間に負の電源電圧eが印加される。電
源電圧eが負サイクルのとき、抵坑R6及びこの
抵坑R6に並列に接続されたコンデンサC2と、
これらに対して直列に接続された非直線性コンデ
ンサCnとによつて分圧される電圧Vqが、定電圧
ダイオードD3の動作電圧以上になると、定電圧
ダイオードD3に電流が流れる。定電圧ダイオー
ドD3に電流が流れると、抵坑R4に三端子制御
整流素子Q2のゲートを順方向にバイアスする電
圧降下が生じ、これによつて三端子制御整流素子
Q2がターン・オンし、非直線性コンデンサCn
に充電電流が流れ込む。このように、三端子制御
整流素子Q2がターン・オンする電圧を、定電圧
ダイオードD3で決定する回路構成であると、消
費電力の異なる放電灯1であつても三端子制御整
流素子Q2はそのままに、定電圧ダイオードD3
の選択によつて三端子制御整流素子Q2の点弧時
期を任意に設定することが可能になる。このた
め、消費電力の異なる放電灯1に対して同一特性
の三端子制御整流素子Q2を使用することが可能
になり、量産性が向上し、コストが安価になる。
In the negative cycle of the power supply voltage e when the preheating current i becomes less than the holding current of the three-terminal controlled rectifier Q1, the three-terminal controlled rectifier Q1 turns off, and a negative power supply voltage is applied between terminals 3 and 4 of the discharge lamp 1. e is applied. When the power supply voltage e is in a negative cycle, a resistor R6 and a capacitor C2 connected in parallel to the resistor R6,
When the voltage Vq divided by the nonlinear capacitor Cn connected in series with these voltages becomes equal to or higher than the operating voltage of the voltage regulator diode D3, a current flows through the voltage regulator diode D3. When current flows through the constant voltage diode D3, a voltage drop is created across the resistor R4 that forward biases the gate of the three-terminal controlled rectifier Q2, which turns on the three-terminal controlled rectifier Q2 and turns it off. Linearity capacitor Cn
Charging current flows into. In this way, if the circuit configuration is such that the voltage at which the three-terminal controlled rectifying element Q2 is turned on is determined by the constant voltage diode D3, the three-terminal controlled rectifying element Q2 will remain unchanged even if the discharge lamp 1 has a different power consumption. , constant voltage diode D3
By selecting , it becomes possible to arbitrarily set the firing timing of the three-terminal control rectifying element Q2. Therefore, it is possible to use the three-terminal control rectifier Q2 having the same characteristics for discharge lamps 1 having different power consumptions, improving mass productivity and reducing costs.

充電電流によつて非直線性コンデンサCnが飽
和すると、安定器2によるパルス状の逆起電力が
発生し、放電灯1の端子3−4間に印加される。
非直線性コンデンサCnへ流れる電流が三端子制
御整流素子Q2の保持電流以下になると、三端子
制御整流素子Q2がターン・オフし、再度三端子
制御整流素子Q2がターン・オンするまで電源電
圧が放電灯1の両端に印加される。以後、放電灯
1が点灯するまでこの状態が続く。
When the nonlinear capacitor Cn is saturated by the charging current, a pulsed back electromotive force is generated by the ballast 2 and is applied between the terminals 3 and 4 of the discharge lamp 1.
When the current flowing into the nonlinear capacitor Cn becomes less than the holding current of the three-terminal controlled rectifier Q2, the three-terminal controlled rectifier Q2 turns off, and the power supply voltage increases until the three-terminal controlled rectifier Q2 turns on again. A voltage is applied to both ends of the discharge lamp 1. Thereafter, this state continues until the discharge lamp 1 is lit.

放電灯1が点灯した後、放電灯1の両端子間電
圧は、非直線性コンデンサCnに印加される電圧
Vcnと前述の端子電圧Vqとに分圧される。この
場合、非直線性コンデンサCnと直列に接続され
ているコンデンサC2及びこのコンデンサC2に
並列に接続されている抵坑R6で構成されている
RCバイパス回路により、放電灯1の端子3−4
間電圧のピーク値を示す1〜2KHzの高周波成分
を含んだピーク電圧がバイパスされるため、放電
灯1が点灯した後の前記電圧Vqにより、三端子
制御整流素子Q2が再度ターン・オンすることが
なく、安定した点灯状態となり、フイラメント1
a、1bを痛めることもない。
After the discharge lamp 1 is lit, the voltage across both terminals of the discharge lamp 1 is the voltage applied to the nonlinear capacitor Cn.
The voltage is divided into Vcn and the aforementioned terminal voltage Vq. In this case, it consists of a capacitor C2 connected in series with the nonlinear capacitor Cn and a resistor R6 connected in parallel to this capacitor C2.
The RC bypass circuit connects terminals 3-4 of discharge lamp 1.
Since the peak voltage containing a high frequency component of 1 to 2 KHz indicating the peak value of the voltage between the three terminals is bypassed, the three-terminal control rectifier Q2 is turned on again by the voltage Vq after the discharge lamp 1 is turned on. There is no light, the lighting is stable, and filament 1
It won't hurt a or 1b.

上述のように、この放電灯点灯回路は非直線性
コンデンサCnの特性を巧みに利用して放電灯1
を点灯させるものであつて、電源投入から放電灯
が点灯するまでの起動時間は最長でも0.8秒程度
と、従来のグロースタータの起動時間2〜8秒に
比べて格段に短く、またラピツドスタータ方式に
比べて著しく小型の放電灯点灯回路を実現するこ
とができる。
As mentioned above, this discharge lamp lighting circuit cleverly utilizes the characteristics of the nonlinear capacitor Cn to
The startup time from power on to the discharge lamp lighting is about 0.8 seconds at the longest, which is much shorter than the 2 to 8 seconds startup time of conventional glow starters, and it is a rapid starter method. It is possible to realize a discharge lamp lighting circuit that is significantly smaller than the conventional one.

ところが、当該放電灯点灯回路の主要な構成部
分をなす非直線性コンデンサCnは電圧印加時に
必ず電歪現象を伴う。このため、当該放電灯点灯
回路を製品化するに当り、従来から行なわれてい
る一般的な方法で非直線性コンデンサCnをプリ
ント回路基板上に実装した場合、点灯動作時に非
直線性コンデンサCnに電歪現象による振動音が
発生するという問題があつた。この振動音は使用
者に不快感や不安感を与え、またこの素子Cnに
特有の高パルス電圧の発生回数によつてフイラメ
ント1a、1bを焼損したり、或は他の回路素子
に悪影響を与えるものである。しかも、この電歪
現象に伴なう振動音は、非直線性コンデンサCn
の支持安定性を高めようとして太いリード線を用
いると、その太さ及び硬度に比例して大きくなる
傾向にある。即ち、非直線性コンデンサCnをそ
のリード線のみで支持した場合、第3図に示すよ
うに、片持梁としてモデル化され、その固有振動
数foは、 fo=√ 但しαはリード線のスチフネス mは非直線性コンデンサCnの質量 ここで、固有振動数foがある周波数以上になる
と、可聴領域となり、また非直線性コンデンサ
Cnからの音の放射効率も高くなり、これらが騒
音となつて人間に不快感を与えることになる。リ
ード線のスチフネスαは、 α=E・S/L 但しSはリード線の線径 Lはリード線の長さ Eはリード線のヤング率 上記の式から明らかなように、スチフネスαは
リード線の線径S及びヤング率Eに比例して大き
くなる傾向にある。
However, the nonlinear capacitor Cn, which constitutes the main component of the discharge lamp lighting circuit, is always accompanied by an electrostrictive phenomenon when voltage is applied. For this reason, when commercializing the discharge lamp lighting circuit, if the nonlinear capacitor Cn is mounted on a printed circuit board using the conventional method, the nonlinear capacitor Cn will be damaged during lighting operation. There was a problem that vibration noise was generated due to the electrostrictive phenomenon. This vibration noise gives the user a sense of discomfort and anxiety, and the number of occurrences of the high pulse voltage peculiar to this element Cn may burn out the filaments 1a and 1b or have a negative impact on other circuit elements. It is something. Moreover, the vibration noise accompanying this electrostrictive phenomenon is caused by the nonlinear capacitor Cn
If a thick lead wire is used to increase the support stability of the lead wire, the lead wire tends to become larger in proportion to its thickness and hardness. In other words, when a nonlinear capacitor Cn is supported only by its lead wires, it is modeled as a cantilever beam as shown in Figure 3, and its natural frequency fo is fo = √ where α is the stiffness of the lead wires. m is the mass of the nonlinear capacitor Cn. Here, when the natural frequency fo exceeds a certain frequency, it becomes an audible range, and the nonlinear capacitor
The radiation efficiency of sound from Cn also increases, and these become noises that cause discomfort to humans. The stiffness α of the lead wire is α=E・S/L where S is the wire diameter of the lead wire L is the length of the lead wire E is the Young's modulus of the lead wire As is clear from the above formula, the stiffness α is the lead wire tends to increase in proportion to the wire diameter S and Young's modulus E.

そこで、本考案は放電灯点灯回路等のように、
非直線性コンデンサを必要とする回路を構成する
場合に、プリント回路基板等に対して簡単かつ確
実に実装することができ、しかも非直線性コンデ
ンサの電歪現象に伴う音を小さくできるようにし
た電子部品を提供することを目的とする。
Therefore, the present invention is designed to
When configuring a circuit that requires a nonlinear capacitor, it can be easily and reliably mounted on a printed circuit board, etc., and the noise caused by the electrostrictive phenomenon of the nonlinear capacitor can be reduced. The purpose is to provide electronic components.

上記目的を達成するため、本考案に係る電子部
品は、外周に溝を有し、かつ中央部に孔を有する
絶縁弾性体で成る支持体と、非直線性コンデンサ
とを備え、前記支持体をプリント回路基板の取付
孔内に挿入して前記溝内にプリント回路基板の端
縁部を弾力的に挟持し、前記孔内に前記非直線性
コンデンサを圧入係止したことを特徴とする。
In order to achieve the above object, an electronic component according to the present invention includes a support made of an insulating elastic material having a groove on the outer periphery and a hole in the center, and a nonlinear capacitor. It is characterized in that it is inserted into a mounting hole of a printed circuit board, an edge of the printed circuit board is elastically held in the groove, and the nonlinear capacitor is press-fitted and locked in the hole.

以下実施例たる添付図面を参照し、本考案の内
容を具体的に説明する。第4図は本考案に係る電
子部品の正面断面図、第5図は同じくその平面
図、第6図は同じくその側面図である。図におい
て、Cnは非直線性コンデンサである。該非直線
性コンデンサCnは放電灯点灯回路の回路構成に
応じて2個以上としてもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The content of the present invention will be specifically described below with reference to the accompanying drawings, which are examples. FIG. 4 is a front sectional view of the electronic component according to the present invention, FIG. 5 is a plan view thereof, and FIG. 6 is a side view thereof. In the figure, Cn is a nonlinear capacitor. The number of nonlinear capacitors Cn may be two or more depending on the circuit configuration of the discharge lamp lighting circuit.

5はゴム等の絶縁弾性体で構成された支持体で
ある。この支持体5は、前記非直線性コンデンサ
Cnを支持するためのものであつて、略矩形状に
形成し、その中央部に前記非直線性コンデンサ
Cnの外形形状及び個数等に合つた貫通孔状の孔
6を設け、この孔6の内部に非直線性コンデンサ
Cnを挿入し、これに支持体5の弾発力を加えて
孔6内に圧入係止してある。
5 is a support made of an insulating elastic material such as rubber. This support 5 is the non-linear capacitor.
It is for supporting Cn, and is formed into a substantially rectangular shape, and the nonlinear capacitor is placed in the center of the rectangular shape.
A through hole 6 that matches the external shape and number of Cn is provided, and a nonlinear capacitor is placed inside this hole 6.
Cn is inserted, and the elastic force of the support body 5 is applied to the Cn to press fit into the hole 6 and lock it.

また、前記支持体5の外周には、プリント回路
基板等に挿着する場合の挿着部分となる溝7を設
けてある。この実施例では、該溝7は、前記支持
体5の全周に設けてある。
Furthermore, a groove 7 is provided on the outer periphery of the support body 5 to serve as an insertion portion when the support body 5 is inserted into a printed circuit board or the like. In this embodiment, the groove 7 is provided around the entire circumference of the support 5.

本考案に係る電子部品は上述のような構造であ
るから、前記放電灯点灯回路をプリント回路基板
上に実装して回路ユニツトとして製品化する場
合、第7図Aに示すように、予めプリント回路基
板8に支持体5の溝7に適合する取付孔9を設け
ておき、この取付孔9内に支持体5を挿入して溝
7内にプリント回路基板8の端縁部を弾力的に挟
持することにより、支持体5をプリント回路基板
8に弾力的に取付け固定し、次に第7図Bに示す
ように、支持体5の孔6内に非直線性コンデンサ
Cnを圧入係止し、電極リード線10、11をプ
リント回路基板8上の導体パターン12、13に
半田付けするだけでよい。これにより、非直線性
コンデンサCnが支持体5によつてプリント回路
基板8上に弾力的に取付られる。
Since the electronic component according to the present invention has the above-described structure, when the discharge lamp lighting circuit is mounted on a printed circuit board and commercialized as a circuit unit, it is necessary to prepare the printed circuit in advance as shown in FIG. 7A. A mounting hole 9 that fits into the groove 7 of the support 5 is provided in the board 8, and the support 5 is inserted into the mounting hole 9 to elastically clamp the edge of the printed circuit board 8 in the groove 7. By doing so, the support 5 is elastically attached and fixed to the printed circuit board 8, and then a nonlinear capacitor is inserted into the hole 6 of the support 5, as shown in FIG. 7B.
It is only necessary to press-fit and lock Cn and solder the electrode leads 10 and 11 to the conductor patterns 12 and 13 on the printed circuit board 8. Thereby, the nonlinear capacitor Cn is elastically mounted on the printed circuit board 8 by the support 5.

非直線性コンデンサCnの電極リード線10、
11は、第8図に示すように、非直線性コンデン
サCnの中心部に半田付けしたり、或は第9図に
示すように、支持体5の孔6から突出させた端部
に半田付けし、孔6の内部を通つて導体パターン
12、13のある面側に導出する等の構造をとる
こともできる。また、第10図に示すように、非
直線性コンデンサCnの全体にデイツプ半田また
は絶縁コート14を施すことにより、非直線性コ
ンデンサCnの電極を銀ペースト焼付け電極とし
た場合のシルバーマイグレーシヨンの発生を防止
し、耐湿性を向上させることができる。
electrode lead wire 10 of nonlinear capacitor Cn,
11 is soldered to the center of the nonlinear capacitor Cn, as shown in FIG. 8, or soldered to the end protruding from the hole 6 of the support 5, as shown in FIG. However, it is also possible to adopt a structure in which the conductor patterns 12 and 13 are led out through the inside of the hole 6. Furthermore, as shown in FIG. 10, by applying dip solder or insulation coating 14 to the entire nonlinear capacitor Cn, silver migration occurs when the electrodes of the nonlinear capacitor Cn are baked with silver paste. can be prevented and moisture resistance can be improved.

上述のように、本考案によれば、支持体5をプ
リント回路基板8の取付け孔9内に弾力的に挿着
し、この後、非直線性コンデンサCnを支持体5
の孔6内に圧入するだけで、プリント回路基板5
に対する非直線性コンデンサCnの組立が完了す
るので、その組立作業が非常に簡単かつ容易にな
り、自動挿着機による自動挿着等も可能になる。
しかも、非直線性コンデンサCnを支持体5の孔
6内に圧入した場合、支持体5が外側に膨らみ、
それが外周に設けた溝7の底部7aをプリント回
路基板8の取付け孔9の端縁に押圧するように作
用するので、プリント回路基板8と支持体5との
間及びこの支持体5と非直線性コンデンサCnと
の間に、支持体5の弾発力が加わり、各部分は緩
みを生じることなく、隙間のない密着した状態で
互いに固定される。
As mentioned above, according to the present invention, the support 5 is elastically inserted into the mounting hole 9 of the printed circuit board 8, and then the nonlinear capacitor Cn is inserted into the support 5.
Just press fit into the hole 6 of the printed circuit board 5.
Since the assembly of the nonlinear capacitor Cn is completed, the assembly work becomes very simple and easy, and automatic insertion by an automatic insertion machine becomes possible.
Moreover, when the nonlinear capacitor Cn is press-fitted into the hole 6 of the support 5, the support 5 swells outward.
This acts to press the bottom part 7a of the groove 7 provided on the outer periphery against the edge of the mounting hole 9 of the printed circuit board 8, so that the space between the printed circuit board 8 and the support 5 and between the support 5 and the The elastic force of the support body 5 is applied to the linear capacitor Cn, and each part is fixed to each other in close contact with no gaps, without causing any loosening.

また、本考案においては、非直線性コンデンサ
Cnを絶縁弾性体で成る支持体5によつてプリン
ト回路基板8上に取付ることとなるので、非直線
性コンデンサCnに電歪現象が生じても、支持体
5の弾性緩衝作用を受けてその振動音が緩和され
る。しかも、支持体5によつて強固な取付構造を
形成することができるので、非直線性コンデンサ
Cnの電極リード線10、11は、支持線として
ではなく、専ら導通線として使用することが可能
になる。このため、リード線10、11を非常に
細くし、電歪現象に伴う振動音をより一層小さく
することができる。リード線10、11は線径が
0.3φ以下のものが振動音の減衰に有効である。
このような線径のリード線10、11を用い、そ
の長さを長くすることにより、第3図にモデル化
した系の固有振動数を低下させ、悪影響を及ぼす
可聴音のレベルを低下させることができる。ま
た、リード線10、11を通してプリント回路基
板8に伝達される音の成分が低周波成分のみとな
り、基板8に伝達され放射される騒音も問題とな
らないレベルまで低下する。
In addition, in this invention, a nonlinear capacitor
Since Cn is mounted on the printed circuit board 8 by the support 5 made of an insulating elastic material, even if an electrostrictive phenomenon occurs in the nonlinear capacitor Cn, it will not be affected by the elastic buffering effect of the support 5. The vibration noise is alleviated. Moreover, since a strong mounting structure can be formed by the support body 5, non-linear capacitors can be
The Cn electrode lead wires 10 and 11 can be used exclusively as conduction wires rather than as support wires. Therefore, the lead wires 10 and 11 can be made very thin, and the vibration noise caused by the electrostrictive phenomenon can be further reduced. The wire diameter of lead wires 10 and 11 is
A material with a diameter of 0.3φ or less is effective in damping vibration noise.
By using lead wires 10 and 11 with such wire diameters and increasing their length, the natural frequency of the system modeled in FIG. 3 can be lowered, and the level of audible sound having an adverse effect can be lowered. I can do it. Further, the sound components transmitted to the printed circuit board 8 through the lead wires 10 and 11 are only low frequency components, and the noise transmitted to and radiated from the board 8 is reduced to a level that does not pose a problem.

以上述べたように、本考案に係る電子部品は、
外周に溝を有し、かつ中央部に孔を有する絶縁弾
性体で成る支持体と、非直線性コンデンサとを備
え、前記支持体をプリント回路基板の取付孔内に
挿入して前記溝内にプリント回路基板の端縁部を
弾力的に挟持し、前記孔内に前記非直線性コンデ
ンサを圧入係止したことを特徴とするから、放電
灯点灯回路等のように、非直線性コンデンサを必
要とする回路を構成する場合に、プリント回路基
板等に対して簡単かつ確実に実装することがで
き、しかも非直線性コンデンサの電歪現象に伴う
音を小さくできるようにした電子部品を提供する
ことができる。
As mentioned above, the electronic component according to the present invention is
A support made of an insulating elastic material having a groove on the outer periphery and a hole in the center, and a non-linear capacitor, and the support is inserted into a mounting hole of a printed circuit board into the groove. Since the edge of the printed circuit board is elastically held and the nonlinear capacitor is press-fitted into the hole, the nonlinear capacitor is not required, such as in a discharge lamp lighting circuit. To provide an electronic component that can be easily and reliably mounted on a printed circuit board, etc., and that can reduce noise caused by the electrostrictive phenomenon of a nonlinear capacitor when configuring a circuit. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は放電灯点灯回路の電気回路接続図、第
2図は非直線性コンデンサの印加電圧−蓄積電荷
特性図、第3図は非直線性コンデンサをリード線
で支持した場合をモデル化して示す図、第4図は
本考案に係る電子部品の正面部分断面図、第5図
は同じくその平面図、第6図は同じくその側面部
分断面図、第7図A、Bは本考案に係る電子部品
のプリント回路基板に対する組立方法を示す図、
第8図乃至第10図は本考案に係る電子部品の更
に別の実施例を示す各正面部分断面図である。 1……放電灯、2……安定器、5……支持体、
6……孔、7……溝、8……プリント回路基板、
9……取付け孔、Cn……非直線性コンデンサ。
Figure 1 is an electric circuit connection diagram of a discharge lamp lighting circuit, Figure 2 is a diagram of applied voltage vs. accumulated charge characteristics of a non-linear capacitor, and Figure 3 is a model of the non-linear capacitor supported by a lead wire. 4 is a front partial sectional view of an electronic component according to the present invention, FIG. 5 is a plan view thereof, FIG. 6 is a side partial sectional view thereof, and FIGS. 7 A and B are according to the present invention. A diagram showing a method of assembling electronic components to a printed circuit board,
8 to 10 are front partial cross-sectional views showing still other embodiments of the electronic component according to the present invention. 1... Discharge lamp, 2... Ballast, 5... Support,
6...hole, 7...groove, 8...printed circuit board,
9...Mounting hole, Cn...Nonlinear capacitor.

Claims (1)

【実用新案登録請求の範囲】 (1) 外周に溝を有し、かつ中央部に孔を有する絶
縁弾性体で成る支持体と、非直線性コンデンサ
とを備え、前記支持体をプリント回路基板の取
付孔内に挿入して前記溝内にプリント回路基板
の端縁部を弾力的に挟持し、前記孔内に前記非
直線性コンデンサを圧入係止したことを特徴と
する電子部品。 (2) 前記非直線性コンデンサは、線径が0.3φ以
下の電極リード線を有することを特徴とする実
用新案登録請求の範囲第1項に記載の電子部
品。
[Claims for Utility Model Registration] (1) A support made of an insulating elastic material having a groove on the outer periphery and a hole in the center, and a nonlinear capacitor, and the support is attached to a printed circuit board. An electronic component, characterized in that the nonlinear capacitor is inserted into a mounting hole, an end edge of a printed circuit board is elastically held in the groove, and the nonlinear capacitor is press-fitted into the hole. (2) The electronic component according to claim 1, wherein the nonlinear capacitor has an electrode lead wire with a wire diameter of 0.3φ or less.
JP19418781U 1981-12-30 1981-12-30 electronic components Granted JPS58103136U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19418781U JPS58103136U (en) 1981-12-30 1981-12-30 electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19418781U JPS58103136U (en) 1981-12-30 1981-12-30 electronic components

Publications (2)

Publication Number Publication Date
JPS58103136U JPS58103136U (en) 1983-07-13
JPS6236275Y2 true JPS6236275Y2 (en) 1987-09-16

Family

ID=30107515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19418781U Granted JPS58103136U (en) 1981-12-30 1981-12-30 electronic components

Country Status (1)

Country Link
JP (1) JPS58103136U (en)

Also Published As

Publication number Publication date
JPS58103136U (en) 1983-07-13

Similar Documents

Publication Publication Date Title
US4381476A (en) Fluorescent lamp instantaneous starting device
US4360762A (en) Rapid starter switch for a fluorescent lamp
US5343125A (en) High-pressure discharge lamp with pulsed inverter operating circuit, and method of operating a discharge lamp
US4347462A (en) Discharge lamp lighting device
JPS6236275Y2 (en)
EP0078524A2 (en) Discharge lampstarter arrangements
EP0048137B1 (en) Discharge tube firing circuit
US5420479A (en) High pressure vapor discharge lamp with a built-in igniter
US5319284A (en) Electronic ballast circuit for discharge lamp
US5440205A (en) Fluorescent lamp starter having a transistor base control means
JPS6342515Y2 (en)
JPS6214638Y2 (en)
JPS6137200Y2 (en)
JPS636878Y2 (en)
KR830002151Y1 (en) Fluorescent Light Fast Switch
JP3427417B2 (en) Fluorescent lamp lighting device
JPH017999Y2 (en)
JPS6325679Y2 (en)
JPS6326958Y2 (en)
JPS6312560Y2 (en)
JPH081799B2 (en) High pressure discharge lamp
JP2881919B2 (en) Fluorescent lamp lighting device
JP3003419B2 (en) Fluorescent lamp lighting device
SU498767A1 (en) Device for igniting gas discharge lamps with heating electrodes
JPS6052007A (en) Pulse generator