JPS6236246B2 - - Google Patents

Info

Publication number
JPS6236246B2
JPS6236246B2 JP55026658A JP2665880A JPS6236246B2 JP S6236246 B2 JPS6236246 B2 JP S6236246B2 JP 55026658 A JP55026658 A JP 55026658A JP 2665880 A JP2665880 A JP 2665880A JP S6236246 B2 JPS6236246 B2 JP S6236246B2
Authority
JP
Japan
Prior art keywords
speed
rotation speed
vibration
calculate
vibration amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55026658A
Other languages
Japanese (ja)
Other versions
JPS56124918A (en
Inventor
Mitsuyo Nishikawa
Nobuo Kurihara
Yoshitoshi Nagahashi
Masafumi Takechi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2665880A priority Critical patent/JPS56124918A/en
Publication of JPS56124918A publication Critical patent/JPS56124918A/en
Publication of JPS6236246B2 publication Critical patent/JPS6236246B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • G05D13/62Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover characterised by the use of electric means, e.g. use of a tachometric dynamo, use of a transducer converting an electric value into a displacement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Turbines (AREA)
  • Motor And Converter Starters (AREA)
  • Control Of Velocity Or Acceleration (AREA)

Description

【発明の詳細な説明】 本発明は振動監視機能を有する回転機の速度制
御に係り、特に危険速度領域における軸振動の予
測に基づく回転機の昇速制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to speed control of a rotating machine having a vibration monitoring function, and more particularly to a speed increase control method for a rotating machine based on prediction of shaft vibration in a critical speed range.

回転機、特に蒸気タービンの昇速制御は、あら
かじめ定められた回転数上昇勾配にしたがつて昇
速、暖機を行ないつゝ目標回転速度に到達せしめ
る運転方法が採用されている。実際には起動スケ
ジユールにしたがつて主蒸気弁あるいはバイパス
弁等を操作して昇速させるが、この過程における
異常発生の対応処置は最も重要な課題のひとつで
ある。なかでも異常振動発生時は、その適切なる
処置とタイミングを失しないようにしないと、高
速回転体では重大な事故をひきおこすことにな
る。
The speed increase control of a rotating machine, particularly a steam turbine, employs an operating method in which the speed is increased and warmed up according to a predetermined rotation speed increase gradient to reach a target rotation speed. In reality, the main steam valve or bypass valve is operated to increase the speed according to the startup schedule, but one of the most important issues is how to deal with the occurrence of abnormalities during this process. In particular, when abnormal vibrations occur, if appropriate measures and timing are not taken, serious accidents can occur in high-speed rotating bodies.

これに対して従来からいろいろの方法が試みら
れている。古くから行なわれている方法の一つは
目標昇速運転中に異常振動が検知されると、運転
員の手操作による制御に切替えて昇速するやり方
である。しかしこの方法は全て運転員の判断に依
存するわけで、個人差がある上、果して適切な処
置がなされるかの問題があり好ましい方法ではな
い。
Various methods have been tried for this purpose. One method that has been used for a long time is to increase the speed by switching to manual control by the operator when abnormal vibrations are detected during target speed-up operation. However, this method depends entirely on the judgment of the operator, and there are individual differences, and there is the problem of whether appropriate measures can be taken, so it is not a preferable method.

また回転体の場合、固有振動周波数から定まる
危険速度領域があり、この危険速度領域では所謂
軸振動が増大することが知られている。第1図は
横軸に回転数N、縦軸に軸振動振幅Aをプロツト
した場合の一般的な振動特性を示している。軸振
動が大きくなる領域aを危険速度領域と呼ぶ。こ
の特性に関連して従来は次の2の方法で速度制御
を行なうことが知られている。その一つは危険速
度領域で振動を検知した場合、危険速度領域より
低く、振動に対して安定な回転数までタービン回
転数を降下させる方法である(特公昭52―32001
号)。しかしこの方法では、危険速度領域で振動
発生をを検知した場合速やかに回転数を降下させ
るかどうか、回転体の慣性などの影響で適切な処
置がとられないまゝ危険速度領域で回転を続けて
しまうおそれがある。大型の高速回転体の場合は
特にその可能性が大きい。
Furthermore, in the case of a rotating body, there is a critical speed region determined by the natural vibration frequency, and it is known that so-called shaft vibration increases in this critical speed region. FIG. 1 shows general vibration characteristics when the rotational speed N is plotted on the horizontal axis and the shaft vibration amplitude A is plotted on the vertical axis. Region a where the shaft vibration increases is called the critical speed region. In relation to this characteristic, it is conventionally known to perform speed control using the following two methods. One method is to reduce the turbine speed to a rotation speed that is lower than the dangerous speed range and stable against vibrations when vibration is detected in the dangerous speed range (Special Publication No. 52-32001).
issue). However, with this method, if vibration is detected in the dangerous speed range, it is difficult to immediately reduce the rotation speed, and due to the influence of the inertia of the rotating body, appropriate measures are not taken and the engine continues to rotate in the dangerous speed range. There is a risk that this may occur. This possibility is particularly large in the case of large, high-speed rotating bodies.

第2の方法は、危険速度領域における振動振幅
値の異常監視についてであつて、回転数信号を入
力とする関数発生器を用いて比較レベル信号を連
続的に変化させて振動異常を検出する方法である
(特公昭50―6886号)。この例ではさらに振動振幅
変化率を求めて所定値との比較によつて異常状態
を検知する方法が述べられている。しかしこの第
2の方法であつても、実測された振動振幅値の異
常を検出することにおいて前記の例と同様であつ
て、特に大型回転機の異常時の場合、遅滞なく適
切な処置がとられるかということに対して大きな
問題が残されている。比較的小形の回転機の場合
は速応処置が可能であるが、慣性が大きい回転機
の場合は、起動の途中で降速し、再び昇速するこ
とは避けなければいけない。
The second method is to monitor vibration amplitude abnormalities in the critical speed range, and detects vibration abnormalities by continuously changing a comparison level signal using a function generator that receives a rotation speed signal as input. (Special Publication No. 50-6886). This example further describes a method of detecting an abnormal state by determining the vibration amplitude change rate and comparing it with a predetermined value. However, even with this second method, it is similar to the above example in detecting an abnormality in the actually measured vibration amplitude value, and appropriate measures can be taken without delay, especially in the case of an abnormality in a large rotating machine. A big question remains as to whether it will be possible. In the case of a relatively small rotating machine, quick response measures can be taken, but in the case of a rotating machine with large inertia, it is necessary to avoid slowing down during startup and speeding up again.

本発明は前述の従来技術の問題点に鑑みてなさ
れたものであつて、危険速度領域における振動状
態をあらかじめ予測し、予測された結果に基づい
て回転体の速度制御を行なう速度制御方法を提供
することを目的とする。
The present invention has been made in view of the problems of the prior art described above, and provides a speed control method that predicts the vibration state in a critical speed range in advance and controls the speed of a rotating body based on the predicted result. The purpose is to

本発明の特徴は、回転体から定まる固有振動数
に対応する回転数NCと危険速度領域以外の回転
数に設定された昇速判定回転数NDとの差ΔNを
演算し、この差ΔNと実測した回転数Nとを用い
て前記回転数NCに達する所要時間ΔTを演算
し、実測した振動振幅値Aの変化率A〓と前記所要
時間ΔTを乗算して振動振幅の増分ΔAを演算
し、この振動振幅の増分ΔAと実測振幅値Aとの
和Aと予め設定された前記回転数NCにおける振
幅のしきい値ABとを比較演算し、前記和Aがし
きい値ABを越えたかどうかによつて回転機の回
転数を保持又は変化させる軸振動監視による回転
機の速度制御方法にある。
The feature of the present invention is to calculate the difference ΔN between the rotation speed N C corresponding to the natural frequency determined from the rotating body and the acceleration determination rotation speed N D set to a rotation speed outside the critical speed area, and calculate the difference ΔN Calculate the time ΔT required to reach the rotation speed N C using the measured rotation speed N, and multiply the rate of change A〓 of the measured vibration amplitude value A by the required time ΔT to obtain the increment ΔA of the vibration amplitude. The sum A of this vibration amplitude increment ΔA and the measured amplitude value A is compared with the preset amplitude threshold value A B at the rotation speed N C , and the sum A is calculated as the threshold value A. A method of controlling the speed of a rotating machine by monitoring shaft vibration, which maintains or changes the rotational speed of the rotating machine depending on whether B is exceeded.

以下図面により本発明の実施例について詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の一実施例を示す。図において
2は回転体軸受部、3は振動検出器、4は平滑回
路、5は軸受部に取付けられた熱電対、6は増幅
器、7は回転パルスギア、8は電磁ピツクアツ
プ、9は増幅器、1は本発明の要部である昇速判
定装置、25はこの昇速判定装置1の出力信号に
より回転体の速度を制御する速度制御装置であ
る。
FIG. 2 shows an embodiment of the invention. In the figure, 2 is a rotating body bearing, 3 is a vibration detector, 4 is a smoothing circuit, 5 is a thermocouple attached to the bearing, 6 is an amplifier, 7 is a rotating pulse gear, 8 is an electromagnetic pickup, 9 is an amplifier, 1 Reference numeral 25 denotes a speed increase determination device which is a main part of the present invention, and 25 a speed control device that controls the speed of the rotating body based on the output signal of the speed increase determination device 1.

さらに昇速判定装置1の詳細について述べる。
振動検出器3からの信号を平滑した振動信号Aを
入力する。信号Aは微分器11により微分され、
変化率信号dA/dt=A〓が得られる。
Further, details of the acceleration determination device 1 will be described.
A vibration signal A obtained by smoothing the signal from the vibration detector 3 is input. Signal A is differentiated by a differentiator 11,
A rate of change signal dA/dt=A is obtained.

一方軸受メタル温度信号Mから固有振動周波
数に対応した回転数NCを演算する。14は関数
発生器でMとNCとの関係を設定しておく。回転
体の固有振動数はある一定温度条件では一定であ
るが、実際には軸受メタル温度によつて変動する
ことをわれわれは経験的に把握している。これら
の補正を行ない当該運転条件における真の固有振
動周波数に対応する回転数NCを求める。それは
例えば第3図に示すようなものである。第3図で
横軸はM、縦軸は回転数である。,はそれ
ぞれNCであるが、は軸受メタル温度によりNC
は変動しないとした場合、はMにより真のNC
は変動する場合を示している。基準MOに対し
の値により真のNCは変動していることを第3図
は示している。
On the other hand, the rotation speed N C corresponding to the natural vibration frequency is calculated from the bearing metal temperature signal M. 14 is a function generator that sets the relationship between M and N C. We know from experience that the natural frequency of a rotating body is constant under certain temperature conditions, but it actually varies depending on the bearing metal temperature. These corrections are made to find the rotational speed N C corresponding to the true natural vibration frequency under the operating conditions. For example, it is as shown in FIG. In Fig. 3, the horizontal axis is M and the vertical axis is the number of rotations. , are N C respectively, but N C depends on the bearing metal temperature.
If it is assumed that does not change, then is the true N C due to M
indicates a case where it fluctuates. With respect to standard MO
Figure 3 shows that the true N C varies depending on the value of M.

15は予測を行なうべき回転数NDの設定器で
ある。17は加算器でNDとNCの差ΔNを演算す
る。この関係は第3図からも理解することが出来
るであろう。また第4図に横軸に回転数をとつた
場合のNC,NDの関係、さらに第1図と同様にa
は危険速度領域である。
Reference numeral 15 is a setting device for the rotational speed N D at which prediction should be performed. 17 is an adder which calculates the difference ΔN between N D and N C. This relationship can also be understood from Figure 3. Figure 4 also shows the relationship between N C and N D when the horizontal axis represents the number of rotations, and the same as in Figure 1.
is the critical speed area.

一方周波数―電圧の変換を行うF/V変換器1
0で回転数信号Nが演算される。16は微分器で
N〓を演算する。18は割算器でΔN/N〓を演算し
ΔTを求める。ΔTはN〓で昇速を続けた場合のN
Cに到達する所要時間である。乗算器12でA〓×
ΔTすなわち振動振幅の増分ΔAが演算される。
加算器13ではA+ΔA=Aが演算されNCにお
けるしきい値、設定値ABと加算器20で演算さ
れ、ΔACが求まる。ΔAC0であるときステツ
プ信号発生器21の出力がONされる。ΔAC>0
はNC時点において振動振幅値Aがしきい値AB
越えたことを意味し、警報などの処理を行なう
か、現時点NDにおける運転制御を変更しなけれ
ばいけない。
On the other hand, F/V converter 1 that performs frequency-voltage conversion
0, the rotational speed signal N is calculated. 16 is a differentiator that calculates N〓. Reference numeral 18 uses a divider to calculate ΔN/N and obtain ΔT. ΔT is N when the speed continues to increase at N〓
This is the time required to reach C. A〓× in multiplier 12
ΔT, that is, the vibration amplitude increment ΔA is calculated.
The adder 13 calculates A+ΔA=A, and the adder 20 calculates the threshold value at N C and the set value A B to find ΔA C. When ΔAC is 0, the output of the step signal generator 21 is turned on. ΔAC >0
means that the vibration amplitude value A exceeds the threshold A B at the time N C , and it is necessary to perform processing such as a warning or change the operation control at the current N D.

23は接点でN―ND≦0の時出力信号がONと
なる比較器22の出力信号が印加される。24は
アンド回路でNとNDとの関係が満足されたとき
のみ速度制御装置SNを速度制御装置25に入力
される。
23 is a contact to which the output signal of the comparator 22 is applied, the output signal being ON when N-N D ≦0. 24 is an AND circuit which inputs the speed control device S N to the speed control device 25 only when the relationship between N and N D is satisfied.

第4図から明らかなようにΔAC0の時はそ
のまゝ昇速を続けることが出来ない場合、ΔAC
<0の時はNDの時点における昇速率で昇速を行
なつてもよい場合である。同図bはMにより変
動するであろうNCの変動範囲を示している。
As is clear from Fig. 4, when ΔA C is 0, if it is not possible to continue increasing the speed, ΔA C
When <0, the speed may be increased at the speed increase rate at the time of N D. Figure b shows the variation range of N C that will vary depending on M.

こゝでNDは危険速度領域以外の速度領域に設
けられた判定回転数であつてあらかじめ定められ
た回転数である。
Here, N D is a predetermined rotation speed that is set in a speed range other than the critical speed range.

第5図はタービン昇速過程を横軸に時間をとつ
た場合について示した。(i)は振動振幅特性、(ii)は
昇速状態を示している。t1時点でNDに達し、NC
におけるAすなわちAを予測したところA―AB
0となり退避速度Ndへ一旦退避させる。dは
A−AB<0となるまで退避運転が必要であるこ
とを示している。
FIG. 5 shows the turbine speed-up process with time plotted on the horizontal axis. (i) shows the vibration amplitude characteristics, and (ii) shows the speed increase state. At time t 1 , N D is reached, and N C
When predicting A, that is, A, A-A B
0 and is temporarily evacuated to the evacuation speed N d . d indicates that evacuation operation is necessary until A-A B <0.

ある定められた時間退避運転を再び昇速をはじ
めt2においてN=NDとなり再びNCにおけるAを
予測した結果A―AB0を満足し、昇速が可能
になつた場合を示している。Uは振動振幅の余裕
値を示している。bは第4図と同様に軸受メタル
温度による固有振動周波数の変動に対応した回転
数変動領域を示す。この実施例ではt1時点からN
dに退避させる運転を行なつているが、必らずし
も退避速度に降速させる必要もなく、NDを持続
する方法であつてもよい。Ndを保持しつつ第4
図との関係で云えばΔACを監視し、ΔACが昇速
条件を満足した時点で昇速を再び開始すればよ
い。ND一定保持後NDへ降速させる方法でもよ
い。
The following shows the case where the evacuation operation for a certain period of time begins to accelerate again, and at t 2 , N = N D , and A at N C is predicted again, and as a result, A - A B 0 is satisfied, and it is possible to increase the speed. There is. U indicates the margin value of vibration amplitude. Similarly to FIG. 4, b shows the rotational speed fluctuation region corresponding to the fluctuation of the natural vibration frequency due to the bearing metal temperature. In this example, from time t 1 , N
Although the vehicle is operated to evacuate to d , it is not necessarily necessary to reduce the speed to the evacuating speed, and a method of maintaining N D may be used. 4th while holding N d
In relation to the diagram, it is sufficient to monitor ΔA C and restart speed increase when ΔA C satisfies the speed increase condition. A method of decreasing the speed to N D after keeping N D constant may also be used.

またNC=一定の場合、すなわちMによるNC
のシフト分が小さいときは例えば第6図に示すよ
うに加算器17′でNとNDとの偏差ΔN′を求め
て、割算器18′でΔTを求める方法であつても
よい。
Also, when N C = constant, that is, N C due to M
When the shift amount is small, for example, as shown in FIG. 6, an adder 17' may be used to obtain the deviation ΔN' between N and N D , and a divider 18' may be used to obtain ΔT.

また第2図においてMにより真のNCを求める
ために関数発生器14を用いているが、NCの変
動に応じてNDを補正する方式であつてもよい。
例えば第7図に示すように信号NCを係数器kを
介して乗算器70で乗算しNDを補正しN′D
し、N′Dを判定回転数として演算に使用する。こ
の方法では真のNCの変動に応じてNDを補正する
のでNCに対応した最適な判定ができるという効
果がある。
Further, in FIG. 2, the function generator 14 is used to obtain the true N C from M , but a method may be used in which N D is corrected according to fluctuations in N C.
For example, as shown in FIG. 7, the signal N C is multiplied by a multiplier 70 via a coefficient unit k, N D is corrected to N' D , and N' D is used as the determination rotation speed in the calculation. This method has the effect of correcting N D in accordance with the fluctuation of the true N C , so that it is possible to make an optimal determination corresponding to N C.

第1図に示した危険速度領域aはNCに対する
あらかじめ定めた割合で定めてもよい。NCの値
にかゝわらず一定割合の領域が危険速度領域とし
て特定できる特徴がある。
The critical speed region a shown in FIG. 1 may be determined by a predetermined ratio to N C . It has the characteristic that a certain percentage of the area can be identified as a critical speed area regardless of the value of N C.

また第4図においてNCにおける振動振幅値を
予測するための速度上昇率をNDを含む複数の回
転数において演算しその平均値を用いる方法であ
つてもよい。この場合は何回かの平均値を用いる
ので、NCにおける予測精度がより向上し、信頼
性の高い予測結果が得られる特徴がある。
Alternatively, in FIG. 4, the speed increase rate for predicting the vibration amplitude value at N C may be calculated at a plurality of rotational speeds including N D , and the average value thereof may be used. In this case, since the average value of several times is used, the prediction accuracy in N C is further improved and a highly reliable prediction result can be obtained.

本発明によればあらかじめ固有振動数に対応し
た回転数における軸振動振幅の予測値に基いて昇
速するので回転機を異常振動状態にすることがな
い。
According to the present invention, since the speed is increased in advance based on the predicted value of the shaft vibration amplitude at the rotation speed corresponding to the natural frequency, the rotating machine is not brought into an abnormal vibration state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回転数と振動振幅の関係を示す図、第
2図は本発明の具体的実施例のブロツク構成図、
第3図は軸受メタル温度と固有振動周波数に対応
した回転数との関係を示す図、第4図は昇速判定
説明図、第5図は昇速過程の説明図、第6図、第
7図は本発明の他の実施例を示す。 3……振動検出器、4……平滑回路、5……熱
電対、7……回転パルスギア、8……電磁ピツク
アツプ、15……ND設定器、17……加算器、
18……割算器、25……速度制御装置。
Fig. 1 is a diagram showing the relationship between rotation speed and vibration amplitude, Fig. 2 is a block configuration diagram of a specific embodiment of the present invention,
Figure 3 is a diagram showing the relationship between the bearing metal temperature and the rotational speed corresponding to the natural vibration frequency, Figure 4 is an explanatory diagram of speed increase determination, Figure 5 is an explanatory diagram of the speed increase process, and Figures 6 and 7. The figures show other embodiments of the invention. 3... Vibration detector, 4... Smoothing circuit, 5... Thermocouple, 7... Rotating pulse gear, 8... Electromagnetic pickup, 15... N D setting device, 17... Adder,
18...Divider, 25...Speed control device.

Claims (1)

【特許請求の範囲】[Claims] 1 回転体から定まる固有振動数に対応する回転
数NCと危険速度領域以外の回転数に設定された
昇速判定回転数NDとの差ΔNを演算し、この差
ΔNと実測した回転数Nとを用いて前記回転数N
Cに達する所要時間ΔTを演算し、実測した振動
振幅値Aの変化率A〓と前記所要時間ΔTを乗算し
て振動振幅の増分ΔAを演算し、この振動振幅の
増分ΔAと実測振幅値Aとの和Aと予め設定され
た前記回転数NCにおける振幅のしきい値ABとを
比較演算し、前記和Aがしきい値ABを越えたか
どうかによつて回転機の回転数を保持又は変化さ
せることを特徴とする軸振動監視による回転機の
速度制御方法。
1 Calculate the difference ΔN between the rotation speed N C corresponding to the natural frequency determined from the rotating body and the acceleration judgment rotation speed N D set to a rotation speed outside the dangerous speed area, and calculate the difference ΔN and the actually measured rotation speed. N and the rotational speed N
Calculate the required time ΔT to reach C , multiply the rate of change A of the actually measured vibration amplitude value A by the required time ΔT to calculate the vibration amplitude increment ΔA, and calculate the vibration amplitude increment ΔA and the actually measured amplitude value A. The sum A is compared with a preset amplitude threshold A B at the rotation speed N C , and the rotation speed of the rotating machine is determined depending on whether the sum A exceeds the threshold value A B. A method for controlling the speed of a rotating machine by monitoring shaft vibration, characterized by holding or changing the speed.
JP2665880A 1980-03-05 1980-03-05 Speed controlling method of rotary machine by monitoring axial vibration Granted JPS56124918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2665880A JPS56124918A (en) 1980-03-05 1980-03-05 Speed controlling method of rotary machine by monitoring axial vibration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2665880A JPS56124918A (en) 1980-03-05 1980-03-05 Speed controlling method of rotary machine by monitoring axial vibration

Publications (2)

Publication Number Publication Date
JPS56124918A JPS56124918A (en) 1981-09-30
JPS6236246B2 true JPS6236246B2 (en) 1987-08-06

Family

ID=12199517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2665880A Granted JPS56124918A (en) 1980-03-05 1980-03-05 Speed controlling method of rotary machine by monitoring axial vibration

Country Status (1)

Country Link
JP (1) JPS56124918A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2644841A1 (en) 2012-03-29 2013-10-02 Alstom Technology Ltd Method of operating a turbine engine after flame off
CN113682937A (en) * 2021-08-30 2021-11-23 日立电梯(广州)自动扶梯有限公司 Escalator vibration reduction system and escalator vibration reduction method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080874A (en) * 1973-11-15 1975-07-01

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242124Y2 (en) * 1972-10-06 1977-09-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080874A (en) * 1973-11-15 1975-07-01

Also Published As

Publication number Publication date
JPS56124918A (en) 1981-09-30

Similar Documents

Publication Publication Date Title
JP2960615B2 (en) Control device for motor vehicle drive with automatic transmission
US4852007A (en) Method and device for stopping vehicle at predetermined position
US5175483A (en) Method and an apparatus for computing moment of inertia in a motor speed controller, and a speed control method and apparatus for a motor
EP1968184A2 (en) Motor controller and motor control system
US6574543B2 (en) Method and apparatus for maintaining a vehicle speed at a predetermined vehicle speed
JPS59188073A (en) Method and device for controlling pitch of blade of windmill
EP0365003B1 (en) Method for controlling an internal combustion engine with fuel injection
US11287805B2 (en) Servo driver and state change detecting method
US4853857A (en) Ratio control for continuously variable transmission
JPS6236246B2 (en)
US6266604B1 (en) Method for cruise control for a motor vehicle
JPH0686186B2 (en) Vehicle speed controller
JPH07322401A (en) Motor output limiter for electric car
EP0433461A1 (en) Zeroing method using a disturbance estimating observer
EP0332119B1 (en) Electronic-type engine control method
US4097787A (en) Device for controlling the peripheral speed in rotating objects
JPH10206038A (en) Furnace heating control method using fuzzy logic
JPH0324575B2 (en)
JP4834929B2 (en) Wind power generator and method
GB2126358A (en) Apparatus and methods for monitoring inertia
JPH0716632A (en) Controller for continuous hot rolling mill
JP2635356B2 (en) Speed control device of turbine generator
JP2741341B2 (en) Engine speed control device
JPH09303424A (en) Automobile clutch control device
JP3979149B2 (en) Driving force control device