JPS6236222A - Device for conveying powder body - Google Patents
Device for conveying powder bodyInfo
- Publication number
- JPS6236222A JPS6236222A JP60172736A JP17273685A JPS6236222A JP S6236222 A JPS6236222 A JP S6236222A JP 60172736 A JP60172736 A JP 60172736A JP 17273685 A JP17273685 A JP 17273685A JP S6236222 A JPS6236222 A JP S6236222A
- Authority
- JP
- Japan
- Prior art keywords
- polarity
- electrode
- electrodes
- particle
- electric field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Dry Development In Electrophotography (AREA)
- Non-Mechanical Conveyors (AREA)
Abstract
Description
【発明の詳細な説明】
搬送する粉体搬送装置に関し、一般的な粉体の搬送を行
う装置全体に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a powder conveying device, and relates to an entire device for conveying general powder.
(従来技術)
従来、粉体搬送は、コーティング、静電潜像への現像等
に利用されており、特に現像の分野では電界を利用した
電界カーテン方式として特公昭47−47811号公報
、特公昭54−12667号公報、特公昭57−985
6号公報及び特開昭58−202217号公報等に開示
されている。”
これらの公報は、所定の一方向のみに粉体を搬送したり
粉体を反発させる等といった粉体搬送装置に関するもの
を示し、具体的には多相正弦波交流を駆動源とした進行
波型電界を利用しその進行方向に粉体を搬送するもので
ある。(Prior art) Powder conveyance has conventionally been used for coating, developing electrostatic latent images, etc. In the field of development in particular, electric field curtain methods using electric fields are disclosed in Japanese Patent Publication No. 47-47811 and Japanese Patent Publication No. 47-47811. Publication No. 54-12667, Special Publication No. 57-985
This method is disclosed in Japanese Patent Application Laid-Open No. 58-202217, etc. ” These publications are related to powder conveying devices that convey powder only in one predetermined direction or repel powder, and specifically, use a traveling wave device that uses multiphase sinusoidal AC as a driving source. The powder is transported in the direction of movement using the electric field.
しかしながら、これらの粉体搬送は、粉体の帯電状態、
特に極性に関係なく行われていたために、搬送中におい
て、極性の異なる粉体が漿果し □て搬送不良を
起こしたり、不要な極性の粉体が混在してしまうことに
より数々の不都合を将来してしまうといった欠点がある
。However, these powder conveyances are difficult due to the charging state of the powder,
In particular, because the process was carried out regardless of polarity, powders of different polarities could □ berries during transportation, causing transportation failures, and powders of unnecessary polarities being mixed together, which could cause many problems in the future. There are drawbacks such as the fact that
(本発明の目的) 切に搬送できる装置の提供を目的とする。(Objective of the present invention) The purpose is to provide a device that can be transported easily.
(本発明の概要)
本発明はその目的を達成するもので、その特徴が互いに
所定間隔を介して配こされている複数個の電極が配置さ
れる一方向側に関して隣り合う電極間の電位差が該一方
向側に正であって負極帯電粒子を移動できる電圧閾値と
なるように、且つ上記電極が配置される該一方向側とは
反対方向側に関して隣り合う電極間の電位差が該反対方
向側に負であって正極帯電粒子を移動できる電圧閾値と
なるように、上記電極へ印加される交番駆動電圧を制御
する手段を有することである。(Summary of the present invention) The present invention achieves the object, and its feature is that the potential difference between adjacent electrodes in one direction where a plurality of electrodes are arranged at a predetermined distance from each other is The potential difference between adjacent electrodes on the side opposite to the one direction side where the electrodes are arranged is such that the voltage threshold is positive in the one direction and can move the negatively charged particles. The present invention includes means for controlling the alternating drive voltage applied to the electrodes so that the voltage threshold is negative and allows the movement of the positively charged particles.
本発明の目的及び概要は以下の説明から理解されよう。The purpose and summary of the present invention will be understood from the following description.
(実施例)
以下の説明においては、電極群をn個ごとに電気的に接
続することによりn相の各同相電極群を形成している構
成を電界カーテンと称する。以下、図面を参照しながら
、粉体の分別方法の原理と具体的な装置構成について説
明する。(Example) In the following description, a configuration in which n-phase in-phase electrode groups are formed by electrically connecting every n electrode groups is referred to as an electric field curtain. Hereinafter, the principle of the powder separation method and the specific device configuration will be explained with reference to the drawings.
第1図は本発明の実施例で、1は誘電体からなる電界カ
ーテン基板、2は電極、3はトリポ極性分別を行なうた
めの、駆動電源とその制御手段を含めたブロックである
。FIG. 1 shows an embodiment of the present invention, in which numeral 1 represents an electric field curtain substrate made of a dielectric, numeral 2 an electrode, and numeral 3 a block including a drive power source and its control means for performing tripo polarity separation.
電極2は通常の電界カーテンと同じ構成であり、基板l
上に平行かつ等間隔に設置されている。駆動電源・制御
手段3からは第2図で示される如き3相の電圧波形が出
力され、各相は図の如く順次2木置きに各電極2に印加
される。従って各電極の並びに対応して、各相(Φ1
、Φ2 。Electrode 2 has the same structure as a normal electric field curtain, and the substrate l
They are placed parallel and evenly spaced above. A three-phase voltage waveform as shown in FIG. 2 is outputted from the drive power supply/control means 3, and each phase is sequentially applied to each electrode 2 every two times as shown in the figure. Therefore, each phase (Φ1
,Φ2.
Φ3)の並び方は向かって左側から順次Φ1 。Φ3) are lined up sequentially from the left side as Φ1.
Φ2 、Φ3の順に繰り返されるような並びになる。The arrangement is such that Φ2 and Φ3 are repeated in this order.
駆動電源・制御手段3から出力される電圧波形は、−回
交番した後に暫時ゼロ電位を保つという過程を1周期と
した矩形波であり、プラス電位。The voltage waveform output from the drive power supply/control means 3 is a rectangular wave whose cycle consists of alternating - times and then temporarily maintaining zero potential, and has a positive potential.
マイナス電位、ゼロ電位の順にl/3周期毎に変化して
いる。そしてこの出力はΦ1 、Φ2 、Φ3の3相か
ら成り、各相は以下の如く1/3周期づつ位相がずれて
いる。It changes every 1/3 period in the order of negative potential and zero potential. This output consists of three phases Φ1, Φ2, and Φ3, and the phases of each phase are shifted by 1/3 period as shown below.
Φl=Φ1 (t)
Φ2=Φ+ (t=T/3)
Φ3=Φ+ (t = 2 T / 3 )ここでt
は時間、Tは周期を示している。Φl=Φ1 (t) Φ2=Φ+ (t=T/3) Φ3=Φ+ (t = 2 T/3) where t
indicates time, and T indicates period.
そしてこめ駆動電圧の波高値aは、電極間にこの波高値
の電位差が生じても、帯電粒子が隣接する電極部へ移動
しないものに制限してあり、逆に波高値の2倍、即ち、
駆動電圧、のビーク・ピーク値2aは帯電粒子を隣接す
る電極部へ確実に移動できるように設定しである。つま
り、この場合力構成としては、電極間粒子移動の電圧閾
値が、駆動電圧の波高値とピーク・ピーク値との間に来
るように設定することが必要である。The peak value a of the drive voltage is limited to such that even if a potential difference of this peak value occurs between the electrodes, the charged particles do not move to the adjacent electrode portion, and conversely, it is twice the peak value, that is,
The peak/peak value 2a of the drive voltage is set to ensure that charged particles can be moved to the adjacent electrode section. That is, in this case, it is necessary to set the force configuration so that the voltage threshold for particle movement between the electrodes is between the peak value and the peak-to-peak value of the drive voltage.
このような駆動電圧を前述した如く、各電極に印加する
と、後述するトリポ極性分別原理により結果的には、ト
リポ極性マイナスの粒子4は、矢印の方向(電極配置方
向に関して一方向側へ)つまり向かって右側に搬送され
、トリポ極性プラスの粒子5はこれとは逆の矢印βの方
向(電極配置方向に関して反対の方向)つまり向かって
左側に搬送される。この粒子のトリポ極性により搬送方
向を異にする作用によって、該電界カーテン上の粉体粒
子はそのトリポ極性により分別される。When such a driving voltage is applied to each electrode as described above, as a result of the trypo polarity separation principle described later, the particles 4 with negative trypo polarity are moved in the direction of the arrow (towards one side with respect to the electrode arrangement direction), that is. The particles 5 with positive trypo polarity are transported in the opposite direction of arrow β (opposite direction with respect to the electrode arrangement direction), that is, to the left as seen. The powder particles on the electric field curtain are separated according to their tripo polarity by changing the transport direction depending on the tripo polarity of the particles.
ここで第2図におけるΦl 、Φ2 、Φ3の矩形波パ
ターンを与えた時に各電極間に発生する電位差について
説明しながら、第3図に示す負極性物体eと正極性粉体
■の移動を説明する。Here, while explaining the potential difference that occurs between each electrode when the rectangular wave patterns of Φl, Φ2, and Φ3 in Figure 2 are applied, the movement of the negative polarity object e and the positive polarity powder ■ shown in Figure 3 will be explained. do.
トリポ極性分別原理については。Regarding the principle of trypo polarity separation.
l)所定極性とは反対となる電位差(正極に対して電位
降下、負極に対しては電位上昇)を一定方向側のみに与
えること、
2)交番電界中に、電極間粒子移動の電圧閾値を越、え
る電位差を電極間に与えること。l) Applying a potential difference opposite to the predetermined polarity (potential drop for the positive electrode, potential increase for the negative electrode) only in a certain direction; 2) Setting the voltage threshold for particle movement between the electrodes during the alternating electric field. Applying a potential difference between electrodes that exceeds
が重要である。第2図、第3図中t、−t8は順に経過
する時間を示し、矩形波パターンのl/3周期に相当し
ており、第3図のラインは電極を示している。is important. In FIGS. 2 and 3, t and -t8 indicate the elapsed time in sequence and correspond to 1/3 period of the rectangular wave pattern, and the lines in FIG. 3 indicate the electrodes.
まず、t1時にプラス極性粒子とマイナス極性粒子がΦ
1相電極上及びΦ1相電極とその陽電極(Φ2及びΦ3
)との間にあるとする(各極性粒子をeeとして図示)
、この位置を第3図中では位g10で示し、その移動を
上面図で示しである。First, at t1, a positive polarity particle and a negative polarity particle are Φ
On the 1-phase electrode and the Φ1-phase electrode and its positive electrode (Φ2 and Φ3
) (each polar particle is shown as ee)
, this position is indicated by position g10 in FIG. 3, and its movement is shown in a top view.
この時点では隣接する電極との間に、電位差2aは生じ
ていないので両極性粉体は移動しない。At this point, there is no potential difference 2a between adjacent electrodes, so the bipolar powder does not move.
次のtz時には矩形波パターンΦlが0電位からプラス
電位に、Φ2がマイナス電位からゼロ電位に、Φ3がプ
ラス電位からマイナス電位となり粉体粒子が位置する電
極部の矩形波パターンΦ1とΦ2との間に電極間粒子移
動の閾値を越える電位差2aが生じる為、プラス粒子の
みがマイナス電位に引かれて隣りの矩形波パターンΦ3
が与えら5れている電極上に移動する。さらにt3時に
はΦlがマイナス電位、Φ2がプラス電位、Φ3がゼロ
電位となりマイナス粒子が位置する電極部の矩形波パタ
ーンΦ1 とΦ2の間に該閾値を越える電位差2aが生
じる為、前段階でΦl電極上及びその近傍に残されたマ
イナス粒子のみがプラス電位に引かれて隣のΦ2電極上
に移動する0次のt4時にはΦ1がゼロ電位、Φ?がマ
イナス電位、Φ3がプラス電位となりマイナス粒子が位
置する電極部の矩形波パターンΦ2とプラス粒子が位置
する電極部の矩形波パターンΦ3との間に該閾値を越え
る電位差2aが生じる為、プラス粒子はΦ2のマイナス
電位に引かれ、Φ3電極上から隣のΦ2電極上に移動し
、同時にマイナス粒子はΦ3のプラス電位に引かれΦ2
電極上から隣のΦ3電極上に移動する0次のt5以降に
ついても図中の如く、同様にプラス・マイナス各粒子は
移動していく為、結局プラス・マイナス各粒子は以下の
ように各相の電極上を移動していくことになる。At the next tz, the square wave pattern Φl changes from 0 potential to positive potential, Φ2 goes from negative potential to zero potential, and Φ3 goes from positive potential to negative potential, and the square wave patterns Φ1 and Φ2 of the electrode part where the powder particles are located change. Since a potential difference 2a exceeding the threshold for particle movement between the electrodes occurs between the electrodes, only the positive particles are attracted to the negative potential and the adjacent rectangular wave pattern Φ3
Move onto the electrode where 5 is given. Furthermore, at t3, Φl has a negative potential, Φ2 has a positive potential, and Φ3 has a zero potential, and a potential difference 2a exceeding the threshold occurs between the rectangular wave patterns Φ1 and Φ2 of the electrode part where the negative particles are located, so the Φl electrode is Only the negative particles left above and in the vicinity are attracted to the positive potential and move onto the adjacent Φ2 electrode. At t4 of the 0th order, Φ1 is at zero potential, Φ? is a negative potential and Φ3 is a positive potential, and a potential difference 2a exceeding the threshold is generated between the square wave pattern Φ2 of the electrode part where the negative particles are located and the square wave pattern Φ3 of the electrode part where the positive particles are located. is attracted to the negative potential of Φ2 and moves from the Φ3 electrode to the adjacent Φ2 electrode, and at the same time the negative particle is attracted to the positive potential of Φ3 and moves from Φ2 to the neighboring Φ2 electrode.
As shown in the figure, the plus and minus particles move in the same way after t5 of the 0th order moving from the top of the electrode to the next Φ3 electrode, so the plus and minus particles end up in each phase as shown below. It will move on the electrode.
このプラス粒子とマイナス粒子の軌跡を時間単位でみる
と(各時間ごとの電極位置を並置して比較できるように
示しである)、第3図の如く移動。If we look at the trajectories of these positive particles and negative particles in units of time (the electrode positions are shown side by side for each time period so that we can compare them), they move as shown in Figure 3.
することになる、つまり、第1図のように各相の電極が
並んでいる場合には、プラス粒子はβ方向に、マイナス
粒子はα方向に移動することになる。In other words, if the electrodes of each phase are lined up as shown in FIG. 1, the positive particles will move in the β direction, and the negative particles will move in the α direction.
第4図は本発明でいう駆動型圧印手段と交番駆動電圧制
御手段との実施例ブロック図で、前述したトリボ極性分
別の為の3相電圧波形を出力する所謂トリボ極性分別駆
動電源の実施構成例を示している。基準パルス発生回路
14によりトリボ極性分別波形を信号発生回路15にて
作りそれを増幅するという手法を取っている。FIG. 4 is a block diagram of an embodiment of the drive-type coining means and the alternating drive voltage control means according to the present invention, and is an implementation configuration of the so-called tribo polarity classification drive power source that outputs the three-phase voltage waveform for the tribo polarity classification described above. An example is shown. A method is adopted in which a tribo polarity classification waveform is generated by the reference pulse generation circuit 14 in the signal generation circuit 15 and then amplified.
第5図は前述した信号発生回路の実施例であり、主にJ
−にフリップフロップ6 (74LS112)、アンド
ロジック7 (74LSO8)及びフォトカプラー8か
ら構成されている。出力信号の波高値は可変抵抗9−1
0によりコントロールすることができる。FIG. 5 shows an embodiment of the signal generation circuit described above, mainly J
- consists of a flip-flop 6 (74LS112), an AND logic 7 (74LSO8), and a photocoupler 8. The peak value of the output signal is determined by variable resistor 9-1.
It can be controlled by 0.
尚、本実施例では3相のトリボ極性分別駆動電圧を利用
しているが、3相に限られる訳ではなく4相、5相およ
びn相のものを利用することも可能である。但しn相の
トリボ極性分別駆動電圧−形は、トリボ極性分別作用を
持たせる為に、1周期に1、回交番し、交番時間t a
f) n / 2倍以上を1周期とし、各相の交番タ
イミングが順次交番時間taの半分づつずれる構成をと
れば良い、−例として矩、形波パルス波形Φl〜Φ5の
5相のトリボ極性分別駆動電圧波形及び各相の電極への
配線・接続を第6図に示した。In this embodiment, a three-phase tribo polarity separation drive voltage is used, but the voltage is not limited to three phases, and it is also possible to use four-phase, five-phase, and n-phase voltages. However, the n-phase tribo polarity separation drive voltage type is alternated once per cycle in order to have a tribo polarity separation effect, and the alternation time t a
f) One cycle is n/2 times or more, and the alternating timing of each phase may be sequentially shifted by half of the alternating time ta. - For example, tribo polarity of 5 phases of rectangular and shaped pulse waveforms Φl to Φ5. Figure 6 shows the separate drive voltage waveforms and the wiring and connections to the electrodes of each phase.
この場合も、駆動電圧の波高値については前述したトリ
ボ分別作用を醸し出す為に、電極間移動閾値(電圧)が
該波高値より大きく駆動電圧のピーク・ピーク値(波高
値の2倍)以下の間に来るように設定することが好まし
い、さらに、波高値が該閾値の1/2より小になると粉
体粒子の移動・搬送は全く行われなくなり、波高値が該
閾値よりも大きくな、ると粉体粒子はそのトリボ極性に
関係なく一方向(本実施例の場合α方向)のみに搬送さ
れ、トリボ分別作用はなくなってしまうことがあるので
、(閾値Xi/2)≦波高値く閾値とすることが好まし
い。In this case as well, the peak value of the drive voltage is such that the inter-electrode movement threshold (voltage) is greater than the peak value and less than or equal to the peak-to-peak value (twice the peak value) of the drive voltage in order to create the tribo-separation effect described above. Furthermore, when the wave height value becomes smaller than 1/2 of the threshold value, powder particles are not moved or transported at all, and the wave height value becomes larger than the threshold value. The powder particles are transported only in one direction (in the case of this example, the α direction) regardless of their tribo polarity, and the tribo sorting effect may be lost. It is preferable that
また、トリポ極性分別駆動電圧波形は第2図。Moreover, the tripo polarity separation drive voltage waveform is shown in FIG.
第6図の例に限られる訳ではなく、第7図に示すような
タイプのものでも同様な効果が得られる。The present invention is not limited to the example shown in FIG. 6, but a similar effect can be obtained using the type shown in FIG.
前者(第2図、第6図)はプラス−マイナスの順に交番
しているのに対して、後者(第7図)はマイナス・プラ
スの順に交番している点が異なっており1例えばこの第
7図の駆動電圧を第1図の電界カーテンにそのまま印加
するとプラス及びマイナス極性の粒子はそれぞれ図中矢
印(α、β)と全く逆の方向にそれぞれ搬送される。The difference is that the former (Figures 2 and 6) alternate in the order of plus and minus, while the latter (Figure 7) alternate in the order of minus and plus. When the driving voltage shown in FIG. 7 is directly applied to the electric field curtain shown in FIG. 1, particles of plus and minus polarities are transported in directions completely opposite to the arrows (α, β) in the figure.
さらに、本実施例ではトリポ極性分別駆動電圧波形とし
て矩形的波形を用いているが、第8図に示した如き曲線
的波形及び三角波的なもの等も用いることができる。Further, in this embodiment, a rectangular waveform is used as the tripo polarity separation drive voltage waveform, but a curvilinear waveform or a triangular waveform as shown in FIG. 8 may also be used.
第9図はトリポ極性分別電界カーテンを静電記録装置の
現像装置に応用した実施例であり、11は静電潜像担持
体、12はトナーホッパー、13はプラス極性の静電潜
像である。FIG. 9 shows an example in which a tripo polarity separation electric field curtain is applied to a developing device of an electrostatic recording device, in which 11 is an electrostatic latent image carrier, 12 is a toner hopper, and 13 is a positive polarity electrostatic latent image. .
ここでトリポ極性分別電界カーテンは片側が潜像担持体
に対向し、該電界カーテンの各相電極はプラス粒子がβ
方向に、マイナス粒子がα方向に搬送されるように設定
されている。従ってホッパー12から該電界カーテン上
にトナーが供給されると、該トナー粒子の内プラス極性
のものはβ方向に搬送され、マイナス極性のものはα方
向に搬送される。この場合α方向に搬送されるマイナス
トナー粒子はやがて潜像相持体とそれに対向した電界カ
ーテンとで挟まれた現像領域に到達し、この場合で該ト
ナー粒子は駆動電圧の交番による交番電界の作用を受け
ながら静電潜像上に吸着され、所謂ジャンピング現像(
特公昭58−32375号参照)が行なわれる。Here, one side of the tripo polarity separation electric field curtain faces the latent image carrier, and each phase electrode of the electric field curtain has positive particles β
The direction is set so that the minus particles are transported in the α direction. Therefore, when toner is supplied from the hopper 12 onto the electric field curtain, toner particles with positive polarity are transported in the β direction, and those with negative polarity are transported in the α direction. In this case, the negative toner particles transported in the α direction eventually reach the development area sandwiched between the latent image carrier and the electric field curtain facing it, and in this case, the toner particles are affected by the alternating electric field due to the alternating drive voltage. It is attracted onto the electrostatic latent image while being subjected to so-called jumping development (
(See Japanese Patent Publication No. 58-32375).
一般に静電記録の現像については、静電潜像と逆極性の
トナーが用いられるが該トナー中には潜像と同極性のト
ナー粒子が多少台まれている。このトナー粒子は“反転
トナー”と呼ばれており所謂“地かぶり”という画質劣
化の原因となっている。しかしこの実施例の如くトリポ
極性分別電界カーテンを利用することにより、この反転
トナー先取り除いて必要極性のトナー粒子のみで現像す
ることができる為“地かぶり”のない良好な画質が得ら
れる。Generally, for development of electrostatic recording, a toner having a polarity opposite to that of the electrostatic latent image is used, but some toner particles having the same polarity as the latent image are included in the toner. These toner particles are called "reverse toner" and are the cause of so-called "background fog", which degrades image quality. However, by using a tripo polarity separating electric field curtain as in this embodiment, this reversed toner tip can be removed and development can be carried out with only toner particles of the required polarity, resulting in good image quality without "background fog".
逆に第9図実施例で潜像を負極性とした時は、矩形波パ
ルスを第2図の如く与えれば、帯電粉体の移動方向が逆
になり、適切な現像が行える。On the other hand, when the latent image is of negative polarity in the embodiment shown in FIG. 9, if a rectangular wave pulse is applied as shown in FIG. 2, the direction of movement of the charged powder is reversed and proper development can be performed.
以上説明したように電界カーテンの駆動電圧にトリポ極
性分別作用を持つ波形のものを使用することにより、粉
体粒子のトリポ極性によりその搬送方向を異ならしめ、
該粒子をトリポ極性別に分別する効果がある。As explained above, by using a waveform that has a tripo polarity separation effect for the driving voltage of the electric field curtain, the transport direction of the powder particles can be varied depending on the tripo polarity of the powder particles.
This has the effect of sorting the particles into tripopolar groups.
また、このトリポ極性分別電界カーテンを静電記録の現
像装置に応用すれば、所謂“地かぶり”のない良好な画
質が得られる。Furthermore, if this tripo polarity separation electric field curtain is applied to a developing device for electrostatic recording, good image quality without so-called "background fog" can be obtained.
(効 果)
本発明は、帯電粒子の極性を分別できるので、両極性の
帯電粒子の混在による不都合を解決できる。(Effects) Since the present invention can distinguish the polarity of charged particles, it is possible to solve the problem caused by the coexistence of charged particles of both polarities.
第1図はトリポ極性分別電界カーテンの断面図、第2図
は該電界カーテン駆動電圧波形図、第3図は第1.2図
による帯電粒子の移動説明図、該電界カーテン別の実施
例の断面図、第7図、第8図は夫々別タイプの該電界カ
ーテン駆動電圧波形図、第9図は該電界カーテンの静電
記録現像装置への応用例側面図である。
1は電界カーテン基板(誘電体)、2は電極、3はトリ
ポ極性分別駆動電源、4はマイナス粒子、5はプラス粒
子、6はJ−にフリップフロップロジック、7はアンド
ロジック、8はフォトカプラー、9.lOは可変抵抗、
11は静電層、像担持体、12はトナーホッパー、13
は静電潜像。
hφ、f26ζ、hもφ1もFig. 1 is a cross-sectional view of a tripo polarity separation electric field curtain, Fig. 2 is a driving voltage waveform diagram of the electric field curtain, Fig. 3 is an explanatory diagram of movement of charged particles according to Figs. 1 and 2, and an example of each electric field curtain. 7 and 8 are respectively different types of electric field curtain drive voltage waveform diagrams, and FIG. 9 is a side view of an example of application of the electric field curtain to an electrostatic recording and developing device. 1 is an electric field curtain substrate (dielectric material), 2 is an electrode, 3 is a tripo polarity separation drive power source, 4 is a negative particle, 5 is a positive particle, 6 is a flip-flop logic for J-, 7 is an AND logic, 8 is a photocoupler, 9. lO is a variable resistance,
11 is an electrostatic layer, an image carrier, 12 is a toner hopper, 13
is an electrostatic latent image. hφ, f26ζ, both h and φ1
Claims (1)
電極と、該電極へ交番する駆動電圧を印加する手段と、
を備え、帯電している粒子を搬送する装置において、 上記電極が配置される一方向側に関して隣り合う電極間
の電位差が該一方向側に正であって負極帯電粒子を移動
できる電圧閾値となるように、且つ 上記電極が配置される該一方向側とは反対方向側に関し
て隣り合う電極間の電位差が該反対方向側に負であって
正極帯電粒子を移動できる電圧閾値となるように、 上記電極へ印加される交番駆動電圧を制御する手段を有
し、粒子帯電極性に応じて粉体を分別することを特徴と
する粉体搬送装置。(1) a plurality of electrodes arranged at predetermined intervals, and means for applying alternating driving voltages to the electrodes;
In a device for transporting charged particles, the potential difference between adjacent electrodes in one direction on which the electrodes are arranged is positive in that one direction and becomes a voltage threshold that can move the negatively charged particles. and so that the potential difference between adjacent electrodes on the side opposite to the one direction on which the electrodes are arranged is negative in the opposite direction and becomes a voltage threshold at which the positively charged particles can be moved. 1. A powder conveying device comprising means for controlling an alternating drive voltage applied to an electrode, and separating powder according to particle charge polarity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60172736A JPS6236222A (en) | 1985-08-06 | 1985-08-06 | Device for conveying powder body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60172736A JPS6236222A (en) | 1985-08-06 | 1985-08-06 | Device for conveying powder body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6236222A true JPS6236222A (en) | 1987-02-17 |
Family
ID=15947362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60172736A Pending JPS6236222A (en) | 1985-08-06 | 1985-08-06 | Device for conveying powder body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6236222A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010023997A (en) * | 2008-07-22 | 2010-02-04 | Murata Mfg Co Ltd | Particle transport device |
JP2010180050A (en) * | 2009-02-09 | 2010-08-19 | Murata Mfg Co Ltd | Particle transporting device |
-
1985
- 1985-08-06 JP JP60172736A patent/JPS6236222A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010023997A (en) * | 2008-07-22 | 2010-02-04 | Murata Mfg Co Ltd | Particle transport device |
JP2010180050A (en) * | 2009-02-09 | 2010-08-19 | Murata Mfg Co Ltd | Particle transporting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6272296B1 (en) | Method and apparatus using traveling wave potential waveforms for separation of opposite sign charge particles | |
US5893015A (en) | Flexible donor belt employing a DC traveling wave | |
EP0572523B1 (en) | Digitally controlled toner delivery method and apparatus | |
US5717986A (en) | Flexible donor belt | |
US6134412A (en) | Method for loading dry xerographic toner onto a traveling wave grid | |
US4306271A (en) | Sequentially pulsed overlapping field multielectrode corona charging method and apparatus | |
JPS6236222A (en) | Device for conveying powder body | |
JPS5896570A (en) | Image recorder | |
US6070036A (en) | Multizone method for xerographic powder development: voltage signal approach | |
US6112044A (en) | Integrated toner transport/toner charging device | |
JPS6313079A (en) | Electric field curtain type developing device | |
JPH0222682A (en) | Recording method | |
JPS60216361A (en) | Brush electrostatic charging and transferring device | |
JPS6312527A (en) | Pulverized substance transport device with electric field curtain | |
JPH0416867A (en) | Contact electrostatic charging device | |
JPS6313068A (en) | Electric field curtain developing device | |
JPH03177242A (en) | Sheet transporting device | |
JPS6313075A (en) | Developing device | |
JPS6251463A (en) | Electric discharge device | |
JPH05107876A (en) | Electrostatic charging device fitted to be used in image forming device | |
JP2722973B2 (en) | Developing method and apparatus | |
JPS62240980A (en) | Destaticizing and electrifying device | |
JPS6157353A (en) | Electrostatic recording apparatus | |
JPH0483658A (en) | Toner jet-type image forming device | |
JPH03261571A (en) | Corona ion recording device |