JPS6236188B2 - - Google Patents

Info

Publication number
JPS6236188B2
JPS6236188B2 JP57053395A JP5339582A JPS6236188B2 JP S6236188 B2 JPS6236188 B2 JP S6236188B2 JP 57053395 A JP57053395 A JP 57053395A JP 5339582 A JP5339582 A JP 5339582A JP S6236188 B2 JPS6236188 B2 JP S6236188B2
Authority
JP
Japan
Prior art keywords
peak
count rate
conditions
peak count
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57053395A
Other languages
Japanese (ja)
Other versions
JPS58169080A (en
Inventor
Shigehiko Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOGYO DOBOKU SHIKENJOCHO
Original Assignee
NOGYO DOBOKU SHIKENJOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOGYO DOBOKU SHIKENJOCHO filed Critical NOGYO DOBOKU SHIKENJOCHO
Priority to JP57053395A priority Critical patent/JPS58169080A/en
Publication of JPS58169080A publication Critical patent/JPS58169080A/en
Publication of JPS6236188B2 publication Critical patent/JPS6236188B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/02Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for surface logging, e.g. from aircraft

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は地層の亀裂位置の検出方法に関し、特
に表層から放出される自然のガンマ線を検出する
ことにより、前記の亀裂の地表での位置を検出す
る方法に関するものである。 表層に含まれたガンマ線放出核種は、カリウム
―40(以下 40Kという)、タリウム―208(以下
208Tlという)、およびビスマス―214(以下 214Bi
という)が代表的であり、該3核種の地層含有率
は各核種ごとに固有値を有している。しかし、地
層に亀裂があるときは、地層に亀裂がない一般の
条件よりも、地表でのガンマ線の線量が多くなる
ことが明らかにされている。 その理由は、該亀裂の周辺の地層に含まれた第
1図に示すウラン系列のラジウム―226の放射性
崩壊で生じたラドン―222(以下 222Rnという)
のうちの一部が、地層粒子から遊離して亀裂内を
大量に上昇して表層に蓄えられ、この地表に蓄え
られた 222Rnに放射性崩壊が起ると、第1図に示
すポロニウム―214までの娘核種群は短時間内に
次々と放射性崩壊を引起し、この過程で該娘核種
群内の1核種である 214Biの放射性崩壊に伴つて
ガンマ線が放出され、このガンマ線量によつて一
般の表層でのガンマ線量よりも多くなるからであ
る。 該現象を利用して地層亀裂の地表での位置を検
出する方法は、過去に数多く試みられてきた。し
かしながら、該現象は表層が均一な地層であつて
かつ地形が平坦であり、さらに人為条件でガンマ
線量に乱れを生じないという条件が揃わなければ
適用できず、わが国では非常に特殊な条件とな
る。 すなわち、表層が同じ地層であつても、地表の
幾何学的条件で地表の検出器に入射する表層から
のガンマ線の線量(以下に検出線量という)は大
幅に変化する。凹地形では平坦な条件より表層か
らのガンマ線が入射する面積が多くなつて検出線
量が多くなり、凸地形では該面積が少なくなつて
検出線量が少なくなる。また、道路の舗装、建
物、コンクリート、石積み、肥料等の人為条件に
は、ガンマ線放出核種の含有量が著しく高い物質
が含まれていて、平坦な表層の条件よりも検出線
量を多くする場合がある。同時に該人為条件が表
層からのガンマ線をしやへいして検出線量を少な
くする場合もある。 以上に述べた諸条件はわが国の場合、一般に数
多く存在するので、検出線量は地点ごとに大幅に
変化し、検出線量の増加が示される地点の数は地
層の亀裂による場合よりも一般に数十倍も多くな
り、該方法による亀裂地点の検出を困難にしてい
る。 地表の凹凸による検出線量の変化を取除くため
に、検出器をヘリコプターにのせ、対地高度を約
30m位で一定にして距離による影響を少なくする
方法もある。該方法は人為条件がない比較的平坦
な地域での表層地質の解析には成功しているが、
人為条件がある場合は解析が不十分となり、また
地層の亀裂位置は検出できない。それは対地距離
が大きくなつて、表層の亀裂位置からのガンマ線
が分散してしまい、亀裂上での検出線量の増加率
を非常に小さくしてしまうからである。 その他地表が植生や風化物に覆われ、被覆層が
厚い場合には、著しい断層運動で地表に落差が明
瞭に認められない限り、かかる地表での亀裂の検
出は極めて困難なものとなる。 本発明は叙上の点を鑑みてなされたもので、検
出線量が地表の幾何学的条件や人為条件で変動す
る現象を取除き、地表での亀裂位置を簡単かつ確
実に検出できる方法を提供することを目的とする
ものである。 かかる目的を達成するために、本発明は、表層
に含まれたガンマ線放出核種である 40K、
208Tl、および 214Biの3核種から放出されるガン
マ線のうち地表部においてNaI検出器に入射して
各核種ごとの光電効果を示したガンマ線に対して
のピーク計数率を測定し、さらに各核種のピーク
比および該ピーク比の変動率を求め、これらピー
ク変動率が所定の条件を満たしたとき地層に亀裂
があると判定することを特徴とするものである。 以下、本発明方法の詳細を第2図ないし第4図
に基づいて説明する。 まず、表層に含まれる代表的なガンマ線放出核
種である 40K、 208Tlおよび、 214Biの各核種か
ら放出されるガンマ線を、地表部でのNaI検出器
で検出し、かつ各核種の放出ガンマ線のうちで最
高のエネルギー、 40Kでは1.46MeV、 208Tlでは
2.61MeV、そして 214Biでは1.76MeVについて光
電効果を示すエネルギー範囲の計数率(以下にウ
インド計数率という)、すなわち第2図に示すそ
れぞれの面積C、A、Bを測定する。なお、第2
図に示す各核種のウインド計数率を与える上限と
下限のガンマ線エネルギーは、NaI検出器の検出
効率で定まり、通常の上限と下限のエネルギー幅
は、各核種の測定対象エネルギーを中心に、±約
8%程度になる。 ウインド計数率には、第2図に示すように、
214Biの場合には 208Tlによるコンプトン散乱の計
数率D、 40Kの場合には 208Tlと 214Biによるコ
ンプトン散乱の計数率EとFの面積がそれぞれ含
まれているので、これらを取除いてそれぞれの光
電効果による計数率(以下にピーク計数率とい
う)、すなわち第2図のHとGとの面積を求める
ために次の方法を用いた。 G=B−αA H=C+(E+F)=C−(β−αγ)A−γB ここにα、β、γは、それぞれNa検出器の
NaI結晶の形状、分解能、測定の幾何学的条件で
定まる定数であり、各核種の線源を用い、使用さ
れる検出器を平均の幾何学的条件に設置して実測
によつて定める。 叙上の操作で3核種のピーク計数率、すなわち
第2図のA,G,Hの面積が求まり、該値は一般
に地表の幾何学的条件と人為条件とによる変動を
含むが、原則的に表層の3核種の含有量をそれぞ
れ反映したものとなる。 次に地表の幾何学的条件と人為条件を大幅に取
除くために、下式のような2核種ごとのピーク計
数率の比(以下にピーク比という)を次の指標と
して用いることにした。 ピーク比A=214Biピーク計数率/208Tlピ
ーク計数率=面積G/面積A ピーク比B=214Biピーク計数率/40Kピーク
計数率=面積G/面積H ピーク比C=40Kピーク計数率/208Tlピーク
計数率=面積H/面積A 地層での各核種の含有量は地層ごとに一定なた
めに、幾何学的条件で各核種のピーク計数率がど
のように変化しても、各ピーク比は地層ごとに一
定となる。したがつて、ピーク比を用いることに
よつて地層ごとの幾何学的条件による各核種のピ
ーク計数率の変動は消去され、また、ガンマ線放
出核種の含有量が著しく異なるような表層の混在
または人為条件の存在は除去される。すなわちい
ずれの条件でも各核種のピーク計数率は地表での
測定位置ごとに大幅に変動するが、2核種の含有
量の比率でみるとその差は少ないものとなり、ピ
ーク比を使うことによつてこれらの条件での各核
種のピーク計数率のもつ大幅な変動は除去され、
各ピーク比は比較的安定な値を示すことになる。 しかして、地層の亀裂から 222Rnが上昇してい
る表層では、一般の表層より該 222Rnの放射性崩
壊による 214Biのガンマ線量は増えることにな
り、亀裂地点はピーク比Aまたはピーク比Bにお
いてその値の急増地点として示されることにな
る。この事実を地形が平坦で表層が均一であり、
微小地震の連続によつて地下から亀裂を通つて大
量の 222Rnが上昇している福島県山都町でのピー
ク比A、Bの結果でみると、第3図に示すよう
に、亀裂の位置はピーク比AおよびBの増加地点
として明瞭に示されている。 しかしながら、一般の亀裂では、この事例のよ
うな大量の 222Rnは上昇しなく、一般の亀裂での
亀裂位置の解析には、ピーク比の解析をさらに詳
細、正確なものにする必要がある。 その手段として、表層に含まれた該核種の放射
性崩壊の統計的変動に基づくピーク比の値の変動
を、下記のように、それ以前に求められた(n−
1)個のピーク比についての移動平均値と比較す
る方法を用いた。 ここに(n−1)は対象の測定地点での測定直
前までの任意の測定数で、その数は測点の間隔で
定まり、通常3〜10の範囲の数を用いる。 任意地点での測定値がもつ各ピーク変動率を、
100%を中心に正、ゼロ、負に区分すると、その
組合せは27通りとなるが、そのうち、亀裂地点を
示す条件が含まれることになる 214Biのピーク計
数率の増加量が他の2核種のピーク計数率の増加
量よりも多くなるという条件は、下表に示す〜
までの3パターンに限定される。すなわち、測
定値のもつピーク変動率の組合せ条件は1/9に縮
められたことになる。
The present invention relates to a method for detecting the position of a crack in a geological formation, and more particularly to a method for detecting the position of the crack on the earth's surface by detecting natural gamma rays emitted from the surface layer. The gamma-ray emitting nuclides contained in the surface layer are potassium-40 (hereinafter referred to as 40 K) and thallium-208 (hereinafter referred to as 40 K).
208 Tl), and bismuth-214 (hereinafter referred to as 214 Bi
) is typical, and the stratum content rate of the three nuclides has a unique value for each nuclide. However, it has been shown that when there are cracks in the geological formations, the gamma ray dose at the ground surface is higher than under normal conditions where there are no cracks in the geological formations. The reason for this is radon-222 (hereinafter referred to as 222Rn ), which was produced by the radioactive decay of radium-226, a uranium series member shown in Figure 1, contained in the strata around the crack.
A portion of the 222 Rn is liberated from the stratum particles, rises in large quantities within the cracks, and is stored in the surface layer. When radioactive decay occurs in the 222 Rn stored on the surface, polonium-214 as shown in Figure 1 is generated. The daughter nuclides up to This is because the gamma ray dose is higher than the gamma ray dose at the general surface layer. Many attempts have been made in the past to detect the location of geological cracks on the ground surface using this phenomenon. However, this phenomenon cannot be applied unless the surface layer is uniform, the topography is flat, and the gamma ray dose is not disturbed by human conditions, which are very special conditions in Japan. . That is, even if the surface layer is the same geological layer, the dose of gamma rays from the surface layer (hereinafter referred to as detected dose) that enters a detector on the ground surface varies significantly depending on the geometric conditions of the ground surface. In concave terrain, the area on which gamma rays from the surface are incident is larger than in flat conditions, resulting in a higher detected dose; in convex terrain, the area is smaller, resulting in a lower detected dose. In addition, human-made conditions such as road pavement, buildings, concrete, masonry, and fertilizers contain materials with extremely high gamma-ray emitting nuclides, which may result in a higher detected dose than under flat surface conditions. be. At the same time, the artificial conditions may suppress gamma rays from the surface layer and reduce the detected dose. In the case of Japan, the conditions described above generally exist in large numbers, so the detected dose varies significantly from point to point, and the number of points where the detected dose increases is generally several tens of times larger than that caused by cracks in the strata. The number of cracks increases, making it difficult to detect crack points using this method. In order to eliminate changes in the detected dose due to unevenness of the ground surface, the detector was mounted on a helicopter and the height above the ground was set at approximately
There is also a method to reduce the influence of distance by keeping it constant at around 30m. Although this method has been successful in analyzing surface geology in relatively flat areas without anthropogenic conditions,
If there are artificial conditions, the analysis will be insufficient and the location of cracks in the strata cannot be detected. This is because as the distance from the ground increases, gamma rays from the cracks in the surface layer become dispersed, making the rate of increase in the detected dose on the cracks extremely small. In other cases where the earth's surface is covered with vegetation or weathered matter and the covering layer is thick, it is extremely difficult to detect cracks on the earth's surface unless there is a clear drop on the earth's surface due to significant fault movement. The present invention has been made in view of the above points, and provides a method for easily and reliably detecting the location of cracks on the earth's surface by eliminating the phenomenon in which the detected dose fluctuates due to the geometrical conditions of the earth's surface and human-made conditions. The purpose is to In order to achieve such an objective, the present invention provides 40 K, which is a gamma ray emitting nuclide contained in the surface layer.
Of the gamma rays emitted from the three nuclides 208 Tl and 214 Bi, we measured the peak count rate for the gamma rays that entered the NaI detector at the ground surface and showed the photoelectric effect of each nuclide, and then The method is characterized in that the peak ratio and the fluctuation rate of the peak ratio are determined, and when the peak fluctuation ratio satisfies a predetermined condition, it is determined that there is a crack in the stratum. Hereinafter, details of the method of the present invention will be explained based on FIGS. 2 to 4. First, gamma rays emitted from 40 K, 208 Tl, and 214 Bi, which are typical gamma ray emitting nuclides contained in the surface layer, are detected by a NaI detector at the surface, and gamma rays emitted by each nuclide are detected. The highest energy of, 1.46MeV at 40 K, 208 Tl
For 2.61 MeV and 1.76 MeV for 214 Bi, the counting rate (hereinafter referred to as window counting rate) in the energy range showing the photoelectric effect, that is, the respective areas C, A, and B shown in FIG. 2 is measured. In addition, the second
The upper and lower gamma ray energy limits that give the window count rate for each nuclide shown in the figure are determined by the detection efficiency of the NaI detector, and the normal upper and lower energy ranges are approximately ±about It will be about 8%. As shown in Figure 2, the window count rate is
In the case of 214 Bi, the count rate D of Compton scattering due to 208 Tl is included, and in the case of 40 K, the areas of count rates E and F of Compton scattering due to 208 Tl and 214 Bi are included, so these are removed. The following method was used to determine the counting rate due to the photoelectric effect (hereinafter referred to as peak counting rate), that is, the areas of H and G in FIG. G=B-αA H=C+(E+F)=C-(β-αγ)A-γB Here, α, β, and γ are the values of the Na detector, respectively.
It is a constant determined by the shape of NaI crystal, resolution, and geometric conditions of measurement, and is determined by actual measurements using a radiation source of each nuclide and setting the detector used under average geometric conditions. The peak count rates of the three nuclides, that is, the areas A, G, and H in Figure 2, are determined by the above operations, and these values generally include variations due to the geometric conditions of the earth's surface and human conditions, but in principle, This reflects the contents of the three nuclides in the surface layer. Next, in order to largely eliminate the geometrical and anthropogenic conditions on the earth's surface, we decided to use the ratio of peak count rates for each two nuclides (hereinafter referred to as peak ratio) as shown in the formula below as the next index. Peak ratio A = 214 Bi peak count rate / 208 Tl peak count rate = Area G / Area A Peak ratio B = 214 Bi peak count rate / 40 K peak count rate = Area G / Area H Peak ratio C = 40 K peak count Rate / 208 Tl peak count rate = Area H / Area A Since the content of each nuclide in a stratum is constant for each stratum, no matter how the peak count rate of each nuclide changes due to geometric conditions, Each peak ratio is constant for each stratum. Therefore, by using the peak ratio, fluctuations in the peak count rate of each nuclide due to the geometrical conditions of each stratum are eliminated, and variations in the peak count rate of each nuclide due to the geometric conditions of each stratum are eliminated, and it is also possible to eliminate variations in the peak count rate of each nuclide due to the geometric conditions of each stratum. The existence of the condition is removed. In other words, under all conditions, the peak count rate of each nuclide varies greatly depending on the measurement position on the earth's surface, but when looking at the ratio of the content of the two nuclides, the difference is small, and by using the peak ratio, The large fluctuations in the peak count rate of each nuclide under these conditions are removed,
Each peak ratio shows a relatively stable value. Therefore, in the surface layer where 222 Rn has risen through cracks in the stratum, the gamma ray dose of 214 Bi due to the radioactive decay of 222 Rn will be higher than in the general surface layer, and the crack point will be at peak ratio A or peak ratio B. It will be shown as a point where the value suddenly increases. This fact can be explained by the fact that the topography is flat and the surface layer is uniform.
Looking at the results of peak ratios A and B in Yamato Town, Fukushima Prefecture, where a large amount of 222Rn has risen from underground through cracks due to a series of microearthquakes, as shown in Figure 3, The location is clearly shown as the point of increase in peak ratios A and B. However, in ordinary cracks, a large amount of 222 Rn does not rise as in this case, and in order to analyze the crack position in ordinary cracks, it is necessary to make the analysis of the peak ratio more detailed and accurate. As a means of this, the fluctuation of the peak ratio value based on the statistical fluctuation of the radioactive decay of the nuclide contained in the surface layer was previously determined as follows (n-
1) A method of comparing the moving average values of the peak ratios was used. Here, (n-1) is an arbitrary number of measurements made immediately before the measurement at the target measurement point, and the number is determined by the interval between the measurement points, and is usually a number in the range of 3 to 10. Each peak fluctuation rate of the measured value at an arbitrary point is
If we classify 100% into positive, zero, and negative, there are 27 combinations, of which the increase in the peak count rate of 214 Bi, which includes conditions indicating a crack point, is greater than that of the other two nuclides. The condition that the increase in peak count rate is greater than the increase in the peak count rate is shown in the table below.
Limited to the following three patterns. In other words, the combination conditions for the peak fluctuation rate of the measured values have been reduced to 1/9.

【表】 したがつて、亀裂位置を示す条件は、表のパタ
ーン〜の条件をもつときのPAとPB値が100
%以上の場合が確度の高いものとなる。 しかし、ピーク変動率PAとPBの値には、ピー
ク計数率のもつ統計的変動が含まれるので、しき
い値mを設定し、(100+m)%以上としなければ
ならなく、mの値としては、測定値A、Bに対す
る統計誤差±a、±bがある場合、例えばピーク
変動率PA±paに対ししきいmをpa/PA(%)
の如くすれば、mは次式で示される。 i=Bi=a =b =constとすると また、ピーク変動率PAとPBの値には、ピーク
比の操作で処理し切れなかつた表層の地質変化と
人為条件のほかに、地層の続成作用等による表層
からの部分的なカリウム、ウラン系列元素、トリ
ウム系列元素の溶脱や附着の条件が加えられて、
40K、 208Tl、 214Biの各ピーク計数率に変化を
与えているので、亀裂位置の判定には、これらの
変動による 40Kや 208Tlのピーク計数率の増加率
よりも 214Biのピーク計数率の増加率はm%以上
高くなければならないと定めた。 この操作法として表に示すパターンの条件で
は PA−PC>m ………(イ) 表に示すパターンの条件では PB−1002/PC>m ………(ロ) の条件を満したときに亀裂位置とする条件を加え
ることにした。何故ならば、各核種のピーク計数
率n個の平均値にバーをつけ、対象地点での各核
種の増加量にΔをつけると、 (イ)式の左辺は となり、表で示したようにパターンではΔK/
の方がΔTl/Tlより大きく、上式はΔBi/
のうちΔK/に相当する量を地層条件等による
ものとし、残りの亀裂から上昇したと思われる増
加量についてΔTl/の値との比率を求めたも
のとなるからである。 また、(ロ)式の左辺は同様にして となり、表に示したようにパターンではΔ
Tl/の方がΔK/より大きく上式はΔBi/
のうちΔTl/に相当する量を地表条件等に
よるものとし、残りの亀裂から上昇したと思われ
る増加量についてΔK/の値との比率を求めた
ものとなるからである。 なお、表に示すパターンの場合は、 208Tlと
40Kの増加率が一定なため、これらの検討を行
なう必要はなく、次の(ハ)式および(ニ)式を検討する
だけで地層の亀裂を判定することができる。 PA≧100+m ………(ハ) PB≧100+m ………(ニ) したがつて以上のことがらを整理すると地層が
いかなる条件下にあつても、下記の式を満足して
おれば、該地層に亀裂があるものと判定すること
ができることとなる。 次に上述した本発明方法を地形と地層が複雑で
人為条件が多いという解析が困難な条件に第四紀
の活断層がある神奈川県秦野町での測定例につい
て説明する。 検出器には4″×4″のNaI結晶を10個用い、該検
出器を地表高さ約25cm程度になるように自動車の
床に固定し、自動車を時速7Kmで走行させて30秒
ごとに自然ガンマ線の測定を行ない、NaI結晶内
の発光状態から測定されたガンマ線をエネルギ別
の計数率に変え、その中から 40K、 208Tl、
214Biのウインド計数率を求め、予め実験で求め
ておいたα0.199、β=0.380、γ=0.368の値を用
い、各核種のピーク計数率を求める。 次にそれらからピーク比A、ピーク比B及びピ
ーク比Cを求め、(n−1)を5とした各ピーク
比の移動平均値を求めて両者からピーク変動率P
A、PBX、PCを求め、さらに、PA−PC値とPA
−1002/PC値を求めた。それらを図示すると第
4図のようになる。 ピーク計数率の平均NCが2500カウント、NA
800カウント、NBが700カウントからmの値を求
めると5.3%になる。 この測定例を本発明方法を基準として以下考察
すると、第4図からも明らかなように各ピーク比
および、そのピーク変動率はかなりの巾で変動し
ている。なかでも不等式(1)、(2)、(3)を満足する地
点はA2地点から約1200mの位置にあるa地点の
他b地点で亀裂が生じていると判定される。 しかして第4図においてA3地点からほぼ
2200m離れたc地点では、 214Biと 208Tlのピー
ク比Aが上記二地点におけるそれよりも大きく、
214Biの検出線量が増加することによる亀裂が生
じていると思われるが、前記亀裂を判断する不等
式(イ)、(ロ)、(ハ)、(ニ)をいずれも満足しない。これ
は、この地層における 208Tlの含有量が少なく、
その結果 214Biと 208Tlのピーク比Aが前記二地
点a,bのそれよりも大きな値を示すことにな
り、 208Tlの含有量が少ないことによる統計誤差
によるものと考えられ、亀裂によるものでないと
判定される。 なお、第4図は亀裂位置の検出に検出器を自動
車に搭載した例を示すものであるが、自動車の侵
入できない区域での亀裂位置の検出には携帯用の
検出器を使用することもできる。 また本発明方法は、地層の亀裂位置を検出する
ことを目的とするものであるが、本発明は単なる
地層の亀裂位置の検出にとどまらない。ピーク比
A、B、Cそれぞれの値の分布状態を検討するこ
とも加えて地層の亀裂下にある地下水、温泉水、
地熱蒸気、ウラン、天然ガス、石油等の鉱床解析
のほか、地層の亀裂分布、および地層の続成作用
等による地表の異常を予知することができるなど
その応用範囲は極めて広いものである。 以上述べた如く、本発明方法によれば、表層に
含まれたガンマ線放出核種である 40K、 208Tlお
よび 214Biの3核種から放出されるガンマ線のう
ち地表部においてNaI検出器に入射して各核種ご
との光電効果を示したガンマ線に対してのピーク
計数率を測定し、さらに各核種のピーク比A、
B、Cおよびピーク変動率PA、PB、PCを求
め、該ピーク変動率PA、PB、PCが所定の条件
を満足するとき、該地層に亀裂があると判定する
もので、極めて簡単かつ確実に地層の亀裂位置を
検出できるという効果を奏するものである。と同
時に該亀裂位置の検出に要する費用も著しく軽減
し得る効果をも奏する。
[Table] Therefore, the conditions that indicate the crack position are that the P A and P B values are 100 when the pattern ~ in the table is met.
% or more, the accuracy is high. However, since the values of the peak fluctuation rates P A and P B include statistical fluctuations of the peak count rate, the threshold value m must be set to be at least (100+m)%, and the value of m If there are statistical errors ±a, ±b for the measured values A and B, for example, the threshold m for the peak fluctuation rate P A ±pa is expressed as pa/P A (%).
Then, m is expressed by the following formula. If A i = B i = a 2 i = b 2 i = const In addition, the values of peak fluctuation rates P A and P B are affected by geological changes and human conditions in the surface layer that could not be fully treated by manipulating the peak ratio, as well as partial potassium from the surface layer due to diagenesis of the stratum. , conditions for leaching and accretion of uranium series elements and thorium series elements are added,
Since the peak count rates of 40 K, 208 Tl, and 214 Bi are varied, the 214 Bi peak is more important than the rate of increase in the peak count rates of 40 K and 208 Tl due to these changes in determining the crack location. It was determined that the rate of increase in the counting rate must be higher than m%. As for this operation method, under the conditions of the pattern shown in the table, P A −P C > m ......(B) Under the conditions of the pattern shown in the table, P B −100 2 /P C >m ......(B) We decided to add a condition that, when satisfied, is considered a crack location. This is because if we add a bar to the average value of n peak count rates for each nuclide and add Δ to the increase in each nuclide at the target point, the left side of equation (a) becomes As shown in the table, in the pattern ΔK/
is larger than ΔTl/Tl, and the above formula is ΔBi/
This is because the amount corresponding to ΔK/ is determined by the geological conditions, etc., and the ratio of the amount of increase thought to have increased from the remaining cracks to the value of ΔTl/ is calculated. Similarly, the left side of equation (b) is As shown in the table, in the pattern Δ
Tl/ is larger than ΔK/ and the above formula is ΔBi/
This is because the amount corresponding to ΔTl/ is determined by ground surface conditions, etc., and the ratio of the amount of increase thought to have risen from the remaining cracks to the value of ΔK/ is calculated. In addition, in the case of the pattern shown in the table, 208 Tl and
Since the rate of increase at 40 K is constant, there is no need to perform these considerations, and cracks in the stratum can be determined by simply considering the following equations (c) and (d). P A ≧100+m (c) P B ≧100+m (d) Therefore, putting the above things in order, no matter what conditions the strata are under, if the following formula is satisfied, This means that it can be determined that there is a crack in the stratum. Next, a measurement example of the above-mentioned method of the present invention in Hadano Town, Kanagawa Prefecture, where there is an active fault in the Quaternary period, will be explained, where the topography and strata are complex and there are many human-induced conditions, making analysis difficult. The detector uses 10 4" x 4" NaI crystals, is fixed to the floor of the car at a height of about 25cm above the ground, and is detected every 30 seconds while the car is running at 7km/h. Measurement of natural gamma rays was performed, and the gamma rays measured from the luminescence state within the NaI crystal were converted into counting rates for each energy, and among these, 40 K, 208 Tl, 208 Tl,
The window count rate of 214 Bi is determined, and the peak count rate of each nuclide is determined using the values of α0.199, β = 0.380, and γ = 0.368, which were previously determined experimentally. Next, calculate the peak ratio A, peak ratio B, and peak ratio C from them, calculate the moving average value of each peak ratio with (n-1) as 5, and calculate the peak fluctuation rate P from both.
Find A , P BX , and P C , and then calculate the P A − P C value and P A
−100 2 /P C value was determined. They are illustrated in Figure 4. Average peak count rate N C is 2500 counts, N A is
If you calculate the value of m from 800 counts and NB is 700 counts, it will be 5.3%. When this measurement example is considered below using the method of the present invention as a reference, as is clear from FIG. 4, each peak ratio and its peak fluctuation rate fluctuate within a considerable range. Among the points that satisfy the inequalities (1), (2), and (3), it is determined that cracks have occurred at point a, which is approximately 1200 m from point A2, and point b. However, in Figure 4, it is almost
At point c, which is 2200 m away, the peak ratio A of 214 Bi and 208 Tl is larger than that at the two points above.
Although cracks appear to be caused by an increase in the detected dose of 214 Bi, none of the above-mentioned inequalities (a), (b), (c), and (d) for determining cracks are satisfied. This is due to the low content of 208 Tl in this formation.
As a result, the peak ratio A of 214 Bi and 208 Tl showed a larger value than that at the two points a and b, which is thought to be due to a statistical error due to the low content of 208 Tl, and is not due to cracks. It is judged that it is not. Although Fig. 4 shows an example in which a detector is mounted on a car to detect crack positions, a portable detector can also be used to detect crack positions in areas where cars cannot enter. . Furthermore, although the method of the present invention aims to detect the position of cracks in strata, the present invention is not limited to simply detecting the positions of cracks in strata. In addition to examining the distribution state of the values of peak ratios A, B, and C, groundwater under the cracks in the strata, hot spring water,
In addition to analyzing deposits of geothermal steam, uranium, natural gas, oil, etc., it has an extremely wide range of applications, including the ability to predict the distribution of cracks in geological formations and abnormalities on the earth's surface due to diagenesis, etc. As described above, according to the method of the present invention, among the gamma rays emitted from the three gamma ray-emitting nuclides contained in the surface layer, 40 K, 208 Tl, and 214 Bi, those gamma rays that are incident on the NaI detector at the ground surface are detected. The peak count rate for gamma rays that showed the photoelectric effect for each nuclide was measured, and the peak ratio A of each nuclide,
B, C and peak fluctuation rates P A , P B , P C are determined, and when the peak fluctuation rates P A , P B , and P C satisfy predetermined conditions, it is determined that there is a crack in the stratum. This method has the effect of being able to detect the position of cracks in the strata extremely easily and reliably. At the same time, the cost required for detecting the crack position can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はウラン系列の放射性崩壊過程を示す遷
移図、第2図は 40K、 214Biおよび 208Tlのピー
ク計数率を示す説明図、第3図および第4図は3
核種間のピーク比およびピーク変動率等と測定位
置の関係を示すグラフである。
Figure 1 is a transition diagram showing the radioactive decay process of the uranium series, Figure 2 is an explanatory diagram showing the peak count rates of 40 K, 214 Bi and 208 Tl, and Figures 3 and 4 are 3
It is a graph showing the relationship between the peak ratio between nuclides, the peak fluctuation rate, etc., and the measurement position.

Claims (1)

【特許請求の範囲】 1 表層に含まれたガンマ線放出核種であるカリ
ウム―40、タリウム―208、およびビスマス―214
の3核種から放出されるガンマ線のうち、地表部
においてNaI検出器に入射して各核種ごとの光電
効果を示したガンマ線に対してのピーク計数率を
測定し、さらに各核種のピーク比A、B、Cおよ
びピーク変動率PA、PB、PCを求め、該ピーク
変動率PA、PB、PCが下記条件(1)式ないし(3)式
を満足したとき、該地層に亀裂があると判定する
ことを特徴とする地表での地層亀裂位置の検出方
法。 A=ビスマス―214のピーク計数率/タリウム
―208のピーク計数率 B=ビスマス―214のピーク計数率/カリウム
―40のピーク計数率 C=カリウム―40のピーク計数率/タリウム―
208のピーク計数率 パターン():PA=PB>100、PC=100 パターン():PA>PB>100、PC>100 パターン():PB>PA>100、PC<100 m:しきい値
[Claims] 1. Potassium-40, thallium-208, and bismuth-214, which are gamma-ray emitting nuclides contained in the surface layer.
Among the gamma rays emitted from the three nuclides, we measured the peak count rate for the gamma rays that entered the NaI detector at the ground surface and showed the photoelectric effect of each nuclide, and further calculated the peak ratio A of each nuclide, B, C and peak fluctuation rates P A , P B , P C are calculated, and when the peak fluctuation rates P A , P B , P C satisfy the following conditions (1) to (3), A method for detecting the position of a stratum crack on the earth's surface, characterized by determining that there is a crack. A = peak count rate of bismuth-214/peak count rate of thallium-208 B = peak count rate of bismuth-214/peak count rate of potassium-40 C=Potassium-40 peak count rate/Thallium-
208 peak count rate pattern (): P A = P B > 100, P C = 100 Pattern (): P A > P B > 100, P C > 100 Pattern (): P B > P A > 100, P C <100 m: Threshold
JP57053395A 1982-03-31 1982-03-31 Detection of crack position in bed of ground surface Granted JPS58169080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57053395A JPS58169080A (en) 1982-03-31 1982-03-31 Detection of crack position in bed of ground surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57053395A JPS58169080A (en) 1982-03-31 1982-03-31 Detection of crack position in bed of ground surface

Publications (2)

Publication Number Publication Date
JPS58169080A JPS58169080A (en) 1983-10-05
JPS6236188B2 true JPS6236188B2 (en) 1987-08-05

Family

ID=12941631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57053395A Granted JPS58169080A (en) 1982-03-31 1982-03-31 Detection of crack position in bed of ground surface

Country Status (1)

Country Link
JP (1) JPS58169080A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249083A (en) * 1984-05-25 1985-12-09 Asahi Koyo Kk Method and device for aerial geological survey by heat infrared ray, visible ray and gamma ray
JPS60249080A (en) * 1984-05-25 1985-12-09 Asahi Koyo Kk Method and device for geological analysis by aerial measurement of gamma rays
JPH0778541B2 (en) * 1989-04-18 1995-08-23 株式会社日さく A method for detecting the location of stratum fractures and the state of open holes on the surface of the earth.

Also Published As

Publication number Publication date
JPS58169080A (en) 1983-10-05

Similar Documents

Publication Publication Date Title
Olley et al. The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments
Debenham et al. Thermoluminescence dating of stalagmitic calcite
Maxwell et al. Spatial distribution of gamma radiation dose rates from natural radionuclides and its radiological hazards in sediments along river Iju, Ogun state Nigeria
Duval Equivalent uranium map of conterminous United States
Nelson et al. Transport of radon in flowing boreholes at Stripa, Sweden
JPS6236188B2 (en)
Varley et al. Radon in soil gas and its relationship with some major faults of SW England
Denagbe Radon-222 concentration in subsoils and its exhalation rate from a soil sample
Amin et al. Assessment of natural radioactivity and radon exhalation rate in Sannur cave, eastern desert of Egypt
Martin et al. Use of airborne γ-ray spectrometry for environmental assessment of the rehabilitated Nabarlek uranium mine, Australia
Yener et al. Concentrations of radon and decay products in various underground mines in western Turkey and total effective dose equivalents
Smith Jr et al. A multi-function compensated spectral natural gamma ray logging system
Malczewski et al. 222Rn and 220Rn concentrations in soil gas of Karkonosze–Izera Block (Sudetes, Poland)
Kundu et al. Optical dating of sediments in Khari river basin and slip Rate along Katrol hill fault (KHF), Kachchh, India
Nautiyal et al. Investigation of 222Rn and 220Rn exhalation rates from soil samples of Pithoragarh District, India
Žunić et al. Field experience with soil gas mapping using Japanese passive radon/thoron discriminative detectors for comparing high and low radiation areas in Serbia (Balkan Region)
Németh et al. In situ gamma ray survey for geological mapping of Kmetasomatized metavolcanics at Bükkszentkereszt, Bükk Mts, Hungary
Tyler et al. In situ radiometric mapping of soil erosion and field‐moist bulk density on cultivated fields
Je et al. A preliminary study on soil–gas radon geochemistry according to different bedrock geology in Korea
Leach et al. A study of radiation parameters in an open-pit mine
Tsepav et al. Assessment of radiation related health risks of quarry sites in the vicinity of Lapai, North Central Nigeria
Ademila Radiometric impact assessment around two quarry sites, Benin-owo express way, southwestern Nigeria
JPH0755950A (en) Measuring method of radon emanation and method for underground investigation thereof
JP2819097B2 (en) A method for detecting the distribution of fault fracturing zones, open fractures, etc. that lie below the surface and below the sea and lake bottoms
Coker et al. Radiometric survey to determine the terrestrial gamma radiation levels: A case study of Sagamu and Abeokuta, South Western Nigeria