JPS6236009A - Thermal decomposition type boron nitride - Google Patents

Thermal decomposition type boron nitride

Info

Publication number
JPS6236009A
JPS6236009A JP17119985A JP17119985A JPS6236009A JP S6236009 A JPS6236009 A JP S6236009A JP 17119985 A JP17119985 A JP 17119985A JP 17119985 A JP17119985 A JP 17119985A JP S6236009 A JPS6236009 A JP S6236009A
Authority
JP
Japan
Prior art keywords
boron nitride
thermal decomposition
crucible
plane
decomposition type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17119985A
Other languages
Japanese (ja)
Other versions
JPH044967B2 (en
Inventor
Tetsuo Kawai
哲郎 川井
Kunio Shidori
倭文 邦郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP17119985A priority Critical patent/JPS6236009A/en
Publication of JPS6236009A publication Critical patent/JPS6236009A/en
Publication of JPH044967B2 publication Critical patent/JPH044967B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To decrease the laminar surface exfoliation which is observed with the conventional thermal decomposition type boron nitride crucible and to extend the life of the crucible by forming the thermal decomposition type boron nitride in such a manner that the X-ray diffraction intensity of the hexagonal boron nitride is made smaller than the X-ray diffraction intensity of the boron nitride having the irregular laminar structure in the crystal structure of the thermal decomposition type boron nitride. CONSTITUTION:This thermal decomposition type boron nitride has the crystal structure consisting of the hexagonal boron nitride and the boron nitride of the irregular laminar structure having the larger inter-plane spacing of the C plane than the hexagonal boron nitride and has the diffraction strength of the hexagonal boron nitride smaller than the diffraction intensity of the boron nitride of the irregular laminar structure in the X-ray diffraction. The laminar surface exfoliation is prevented simply by controlling the lamination state of the C plane in the stage of forming the film of the boron nitride by a thermal decomposition method, for example, CVD method. The lamination state of the C plane is controllable by, for example, CVD conditions and the examination of the lamination state is possible by X-ray diffraction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱分解型窒化硼素に関するものであり、■−■
族化合物半導体単結晶を育成する際に使用するルツボま
たは真空蒸着もしくは分子線エピタキシー(M B E
 )等で使用するAI溶解用ルツボなどの用途に適した
熱分解型窒化硼素に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to pyrolytic boron nitride, and
Crucible or vacuum evaporation or molecular beam epitaxy (MBE) used to grow group compound semiconductor single crystals
), etc. This relates to pyrolytic boron nitride suitable for applications such as AI melting crucibles.

〔従来の技術〕[Conventional technology]

■−v族化合物半導体単結晶、例えばGaAs単結晶や
 InP単結晶の引き上げには、成分元素の揮発を防ぐ
必要があり、このため液体封止チaクラルスキー法(L
EC法)が採用されている。
■-When pulling group V compound semiconductor single crystals, such as GaAs single crystals and InP single crystals, it is necessary to prevent the volatilization of component elements.
EC law) has been adopted.

LEC法で使用するルツボとしては、従未石’A (S
 io t)ルツボなどが使用されでいた。しかし、例
えば石英ルツボを使用してGaAsを引き上げると結晶
中にSiが不純物として混入するという問題があった。
The crucible used in the LEC method is Juweishi'A (S
io t) Crucibles etc. were not used. However, when GaAs is pulled using a quartz crucible, for example, there is a problem in that Si is mixed into the crystal as an impurity.

このため、通常、Crをドープして引き上げを行なうと
いうことも知られでいるが、Crをドープすると絶縁性
が低下しIC用基板としでは適さなくなるという新たな
問題が生ずる。
For this reason, it is known that the material is usually pulled up by doping it with Cr, but a new problem arises in that doping with Cr lowers the insulation properties and makes it unsuitable as an IC substrate.

そのため、最近ノンドープの半絶縁性基板を得るべく、
ルツボとして熱分解型窒化硼素(p−BN)からなるル
ツボが使用されるようになってきた。
Therefore, recently, in order to obtain a non-doped semi-insulating substrate,
Crucibles made of pyrolytic boron nitride (p-BN) have come to be used as crucibles.

窒化硼素(BN)は■−■族化合物であり、単結晶中に
混入しても不純物レベルを形成しないこと、また熱分解
法で製造されるp−BNルツボは極めて高純度のものが
得られること、などがルツボとして使用されるようにな
ってきた理由である。
Boron nitride (BN) is a ■-■ group compound, and does not form an impurity level even when mixed into a single crystal, and p-BN crucibles manufactured by pyrolysis can have extremely high purity. This is the reason why it has come to be used as a crucible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来知られているp−B Nルツボは層状の表
面剥離が生じやすく、4〜5回の引き上げが寿命となっ
ており、この寿命の短いことがGaAs単結晶を工業的
1こ量産する上で大きな障害となっている。
However, conventionally known p-B N crucibles are prone to layered surface delamination and have a lifespan of 4 to 5 pulls.This short lifespan makes it difficult to industrially mass-produce GaAs single crystals. This is a major obstacle.

不発明の目的は、上記従来のp−B Nルツボに見られ
るような層状の表面剥離の発生を着しく軽減した“p−
BNを実現することであり、これによって、長寿命のル
ツボを提供することにある。
The object of the invention is to create a "p-B N crucible" that significantly reduces the occurrence of layered surface peeling as seen in the conventional p-B N crucible.
The objective is to realize BN and thereby provide a long-life crucible.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は熱分解法で製造されたBNであって、その結晶
構造が六方晶窒化硼素とこの六方晶窒化硼素より0面の
間隔が大きい乱層構造窒化硼素からなり、X線回折によ
る六方晶窒化硼素の回折強度が乱層構造窒化硼素の回折
強度以下であることを特徴とするものである。
The present invention is a BN produced by a pyrolysis method, which has a crystal structure consisting of hexagonal boron nitride and turbostratic boron nitride with a larger spacing between the 0 planes than the hexagonal boron nitride, and has a hexagonal crystal structure determined by X-ray diffraction. It is characterized in that the diffraction intensity of boron nitride is lower than the diffraction intensity of turbostratic boron nitride.

本願発明者らは、従来のp−B Nルツボにおいて層状
の表面剥離が発生する原因は、BNの結晶構造に起因す
るものと推定し、その結晶構造と強度との関係について
詳しく研究した。
The inventors of the present application presumed that the cause of layered surface peeling in conventional p-BN crucibles was due to the crystal structure of BN, and conducted detailed research on the relationship between the crystal structure and strength.

その結果、BNの結晶構造は六方晶であるため熱分解法
、例えばCVD法(化学気相蒸着法)で合成すると、最
稠密面である0面が基板に平行して成膜されやすい傾向
があること、BNの0面の格子定数6.66Aはa面の
格子定数2゜504Aに比べて大きいため、C面間相互
の結合力は弱いことを知見した。このため、CVD法等
で合成したBNは層状の表面剥離が発生しやすいものと
推考した。
As a result, since the crystal structure of BN is hexagonal, when it is synthesized by a thermal decomposition method, such as a CVD method (chemical vapor deposition method), the 0-plane, which is the most densely packed surface, tends to be formed parallel to the substrate. It was discovered that the lattice constant of 6.66A for the 0-plane of BN is larger than the lattice constant of 2°504A for the a-plane, and therefore the mutual bonding force between the C-planes is weak. For this reason, it was assumed that BN synthesized by the CVD method or the like is likely to cause layered surface peeling.

したがって、層状の表面剥離を防ぐためには、熱分解法
、例えばCVD法でBNを成膜する際に0面の積層状態
をフントロールすればよいと考え、本発明を完成するに
至ったものである。
Therefore, in order to prevent layered surface peeling, we thought that it would be sufficient to remove the layered state on the zero surface when forming BN into a film using a thermal decomposition method, such as a CVD method, and this led us to complete the present invention. be.

本発明において、0面の積層状態は、例えばCVD条件
によりコントロール可能であり、積層状態はXM回折に
よ’)11査することができる。
In the present invention, the stacking state on the zero surface can be controlled, for example, by CVD conditions, and the stacking state can be inspected by XM diffraction.

第1図はCVD法で作成したBN膜の(002)面のX
線回折パターンを示す。
Figure 1 shows the (002) plane of the BN film made by the CVD method.
The line diffraction pattern is shown.

なお、試料A−Dは外熱型減圧CVI:lfiを使用し
、第1表に示す条件で作製したものであり、X#i回折
パターンを測定する際のターデッドとしてはCoを使用
した。
Note that samples A to D were prepared using external heating type reduced pressure CVI:lfi under the conditions shown in Table 1, and Co was used as the tarded material when measuring the X#i diffraction pattern.

tJS1表 単−結晶構造のX#1回折パターンは通常単一ピークを
持りたガウス分布となる。しかし第1図の回折パターン
はいずれも2つのピークを有しており、単一の結晶構造
ではなく2#i類の結晶構造が混在していると考えられ
る。高角度側のピークの格子面間隔は約3.35Aであ
り、いわゆる六方晶BN (h−BN)の面間隔と良(
一致している。
tJS1 Table The X#1 diffraction pattern of the single-crystal structure usually has a Gaussian distribution with a single peak. However, the diffraction patterns in FIG. 1 all have two peaks, and it is considered that the 2#i type crystal structures are mixed, rather than a single crystal structure. The lattice spacing of the peak on the high-angle side is approximately 3.35A, which is similar to the lattice spacing of so-called hexagonal BN (h-BN).
Match.

低角度側のピークの格子面間隔は約3.45Aと大きく
、いわゆる乱Nl1II造B N  D −B N )
に相当すると考えられる。
The lattice spacing of the peak on the low angle side is as large as approximately 3.45A, which is the so-called disordered Nl1II structure (BND-BN).
It is considered to be equivalent to

また、XM回折では結晶粒の大きさが同程度であれば、
0面の配向が良好なほど回折パターンはシャープになり
、配向が乱れると回折パターンはブロードになる6例え
ば、試料CやDに見られるようにh−BNの回折パター
ンはシャープであるが、t−BNの回折パターンはブロ
ードであり、h−BNの方が0面の配向性が良く、t−
B、I’Jの方が0面の配向が乱れていると考えられる
In addition, in XM diffraction, if the crystal grain sizes are similar,
The better the orientation of the 0 plane, the sharper the diffraction pattern, and the more disordered the orientation, the broader the diffraction pattern6. For example, the diffraction pattern of h-BN is sharp, as seen in samples C and D, but the t The diffraction pattern of -BN is broad, h-BN has better orientation in the 0 plane, and t-
It is thought that the orientation of the 0-plane is more disordered in B and I'J.

眉間の剥離強度を評価した結果t−B Nの回折強度1
(t−BN)がh−BNの回折強度■(h−B N )
より強い試料Aが最も優れていることがわかった。
As a result of evaluating the peeling strength between the eyebrows, t-BN diffraction intensity 1
(t-BN) is the diffraction intensity of h-BN (h-BN)
The stronger sample A was found to be the best.

また、これらの試料の硬さを測定した。In addition, the hardness of these samples was measured.

硬さはI  (t−BN) >I  (h−BN)であ
る試料Aが高く、I  (t−BN)< I  (h−
BN)である試料りは低いことがわかった。
The hardness of sample A is high with I (t-BN) > I (h-BN), and the hardness is high with I (t-BN) < I (h-
BN) was found to be low.

すなわち硬さは、t−BNとh−BNの2種類の結晶構
造の含有率に依存しており、剥離強度と密接に相関のあ
ることがわかった。
That is, it was found that hardness depends on the content of two types of crystal structures, t-BN and h-BN, and is closely correlated with peel strength.

〔実施例〕〔Example〕

以下、実施例に基づいて詳細に説明する。 Hereinafter, a detailed explanation will be given based on examples.

実施例1゜ 外熱型減圧CVD装置で、反応がスとしてBCl3、N
H,およびH2を使用してBNを合成した。
Example 1 In an external heating type reduced pressure CVD apparatus, BCl3 and N were used as reactants.
BN was synthesized using H, and H2.

BCIsは単体で使用し、キャリアガスとしてH2を使
用した0反応温度は1,800℃に固定し反応が入流量
、反応圧力を変化させて第2表に示す各種条件でBNを
合成した。
BCIs was used alone, H2 was used as a carrier gas, the reaction temperature was fixed at 1,800° C., and the reaction flow rate and reaction pressure were varied to synthesize BN under various conditions shown in Table 2.

第   2   表 結晶構造の評価は、X#1回折を行ない回折強度比1 
 (t−BN) / I  (h−BN)を測定してお
こなった。また層間のハクリ強度の評価はBN膜を研摩
した断面にビッカース圧子を押し込んだ際に発生するク
ラックの長さを測定して行なった。クラック氏が短い方
が層間のハクリ強度に優れている。
Table 2 The crystal structure was evaluated by performing X#1 diffraction and using a diffraction intensity ratio of 1
(t-BN)/I (h-BN) was measured. The interlayer peeling strength was evaluated by measuring the length of cracks generated when a Vickers indenter was pressed into the polished cross section of the BN film. The shorter the crack length, the better the peeling strength between the layers.

さらに、ルツボとしての寿命を評価するため4インチル
ツボを作成し、LEC炉でGaAs単結晶引き上げを繰
り返し行ない寿命を評価した。
Furthermore, in order to evaluate the lifespan of the crucible, a 4-inch crucible was prepared, and GaAs single crystals were repeatedly pulled in an LEC furnace to evaluate the lifespan.

それぞれの評価結果を第3表に示す。The results of each evaluation are shown in Table 3.

第     3     表 京GaAs単結晶が引き上げ可能な回数第3表に示した
ように、回折強度比1  (を−BN)/I  (h−
BN)が1以上であるとクラック艮が短く、また単結晶
引き上げ寿命試験では、GaAs単結晶引き上げ可能な
回数が従来材の2倍以上となり、剥離強度、寿命ともに
優れていることがわかる。
Table 3: Number of times a GaAs single crystal can be pulled As shown in Table 3, the diffraction intensity ratio 1 (-BN)/I (h-
When BN) is 1 or more, the cracking time is short, and in the single crystal pulling life test, the number of times the GaAs single crystal can be pulled is more than twice that of conventional materials, indicating that both peel strength and life are excellent.

実施例2゜ AI真空蒸着用ルツボとして使用するため第1表と同一
条件で20φ×401のルツボを作成した。誘導加熱型
真空蒸着装置のルツボとしてAIを繰り返し真空蒸着し
寿命を評価した。
Example 2 A 20φ×401 crucible was prepared under the same conditions as in Table 1 to be used as a crucible for AI vacuum deposition. AI was repeatedly vacuum-deposited as a crucible in an induction-heating vacuum evaporation device, and its lifespan was evaluated.

評価結果を第4表に示す。The evaluation results are shown in Table 4.

tlSA表 第4表に示したように、回折強度比 [(1−BN)/
I  (h−BN) が1以上テアルと Af真空蒸着
寿命試験では寿命が従来村のほぼ2倍以上となる。
As shown in Table 4 of the tlSA table, the diffraction intensity ratio [(1-BN)/
In the Af vacuum evaporation life test when I (h-BN) is 1 or more, the life is almost twice as long as that of conventional products.

実施例3゜ 実施例1と同じCVD*置を使用し、反応温度は1,4
00℃から1.900℃、反応圧力は5Torrから1
5 Torr*で変化させ、第5表に示す条件で各種B
N膜を作成して回折強度比および硬さの評価を行なった
Example 3゜The same CVD* equipment as in Example 1 was used, and the reaction temperature was 1.4
00℃ to 1.900℃, reaction pressure from 5Torr to 1
5 Torr* and various B under the conditions shown in Table 5.
A N film was prepared and the diffraction intensity ratio and hardness were evaluated.

第5表に示したように、回折強度比 1(t−BN)/
I  (h−BN)が1以上である場合には、硬さはH
v80以上である。
As shown in Table 5, the diffraction intensity ratio 1(t-BN)/
When I (h-BN) is 1 or more, the hardness is H
v80 or higher.

実施例1および2の結果から I  D −B N )
/I  (h−BN)が1以上である場合には剥離強度
に優れていることが判っており、したがって、硬度Hv
が80以上のものは層間の剥離強度に優れていると判断
できる。
From the results of Examples 1 and 2, ID-BN)
It is known that when /I (h-BN) is 1 or more, the peel strength is excellent, and therefore the hardness Hv
If the value is 80 or more, it can be judged that the interlayer peel strength is excellent.

本実施例により、必ずしも回折強度比を測定しなくとも
、BN膜の強度を測定するだけで剥離強度を簡単に知る
ことができる。
According to this embodiment, the peel strength can be easily determined by simply measuring the strength of the BN film without necessarily measuring the diffraction intensity ratio.

〔発明の効果〕〔Effect of the invention〕

上述のように、本発明によるp −B Nは剥離強度に
優れているので、このp−BNを用いたルツボは表面剥
離が者しく減少し、従来の2倍以上の長寿命となってG
aAs単結晶の量産化に寄与すること大である。
As mentioned above, the p-BN according to the present invention has excellent peel strength, so the crucible using this p-BN has significantly reduced surface peeling, has a lifespan more than twice as long as conventional crucibles, and has
This will greatly contribute to the mass production of aAs single crystals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はBNllの(OO2)面のX#1回折パターン
を示す図である。
FIG. 1 is a diagram showing the X#1 diffraction pattern of the (OO2) plane of BNll.

Claims (4)

【特許請求の範囲】[Claims] (1)結晶構造が、六方晶窒化硼素とこの六方晶窒化硼
素よりC面の面間隔が大きい乱層構造窒化硼素からなり
、X線回折において六方晶窒化硼素の回折強度が乱層構
造窒化硼素の回折強度以下であることを特徴とする熱分
解型窒化硼素。
(1) The crystal structure consists of hexagonal boron nitride and turbostratic boron nitride, which has a larger C-plane spacing than hexagonal boron nitride, and in X-ray diffraction, the diffraction intensity of hexagonal boron nitride is higher than that of turbostratic boron nitride. Pyrolytic boron nitride characterized by a diffraction intensity of less than or equal to .
(2)GaAs単結晶引き上げ用ルツボとして使用する
ことを特徴とする特許請求の範囲第1項記載の熱分解型
窒化硼素。
(2) The pyrolytic boron nitride according to claim 1, which is used as a crucible for pulling a GaAs single crystal.
(3)Al真空蒸着用ルツボとして使用することを特徴
とする特許請求の範囲第1項記載の熱分解型窒化硼素。
(3) The pyrolytic boron nitride according to claim 1, which is used as a crucible for Al vacuum deposition.
(4)硬さがHv80以上であることを特徴とする特許
請求の範囲第1項記載の熱分解型窒化硼素。
(4) The pyrolytic boron nitride according to claim 1, which has a hardness of Hv80 or more.
JP17119985A 1985-08-05 1985-08-05 Thermal decomposition type boron nitride Granted JPS6236009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17119985A JPS6236009A (en) 1985-08-05 1985-08-05 Thermal decomposition type boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17119985A JPS6236009A (en) 1985-08-05 1985-08-05 Thermal decomposition type boron nitride

Publications (2)

Publication Number Publication Date
JPS6236009A true JPS6236009A (en) 1987-02-17
JPH044967B2 JPH044967B2 (en) 1992-01-30

Family

ID=15918852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17119985A Granted JPS6236009A (en) 1985-08-05 1985-08-05 Thermal decomposition type boron nitride

Country Status (1)

Country Link
JP (1) JPS6236009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153701A (en) * 1987-12-10 1989-06-15 Kenichi Osa Production of biologically active hemicellulose
US6831067B2 (en) 2001-02-08 2004-12-14 Amino Up Chemical Co., Ltd. Substance having physiological property, method for producing the same and uses thereof
CN115323475A (en) * 2021-11-19 2022-11-11 北京大学 Preparation method of high-index crystal face hexagonal boron nitride film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109912A (en) * 1975-02-27 1976-09-29 Union Carbide Corp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109912A (en) * 1975-02-27 1976-09-29 Union Carbide Corp

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153701A (en) * 1987-12-10 1989-06-15 Kenichi Osa Production of biologically active hemicellulose
US6831067B2 (en) 2001-02-08 2004-12-14 Amino Up Chemical Co., Ltd. Substance having physiological property, method for producing the same and uses thereof
US7169762B2 (en) 2001-02-08 2007-01-30 Amino Up Chemical Co., Ltd. Substance having physiological property, method for producing the same and uses thereof
CN115323475A (en) * 2021-11-19 2022-11-11 北京大学 Preparation method of high-index crystal face hexagonal boron nitride film

Also Published As

Publication number Publication date
JPH044967B2 (en) 1992-01-30

Similar Documents

Publication Publication Date Title
US6518637B1 (en) Cubic (zinc-blende) aluminum nitride
Ohira et al. Fabrication of hexagonal GaN on the surface of β-Ga2O3 single crystal by nitridation with NH3
US11551929B2 (en) Method of growing crystalline layers on amorphous substrates using two-dimensional and atomic layer seeds
Zhang et al. Recent progress of boron nitrides
Liaw et al. GaN epilayers grown on 100 mm diameter Si (111) substrates
Rouf et al. In 0.5 Ga 0.5 N layers by atomic layer deposition
Xie et al. Structure and Optical Properties of AlN Crystals Grown by Metal Nitride Vapor Phase Epitaxy with Different V/III Ratios
Liu et al. Crystallography and cathodoluminescence of pyramid-like GaN nanorods epitaxially grown on a sapphire substrate
Haque et al. Conversion of h-BN into c-BN for tuning optoelectronic properties
Seredin et al. S2-semipolar GaN grown by HVPE on a non-polar m-plane sapphire: Features of growth and structural, morphological, and optical properties
Yang et al. Controlled growth of aluminium nitride nanorod arrays via chemical vapour deposition
Leuchtner et al. Anion‐assisted pulsed laser deposition of lead zirconate titanate films
RU2033964C1 (en) Pyrolytic boron nitride and method for its production
Wang et al. Growth and Stress Analysis of Spontaneous Nucleation c‐Plane Bulk AlN Crystals by a PVT Method
Shao et al. EBSD crystallographic orientation research on strain distribution in hydride vapor phase epitaxy GaN grown on patterned substrate
Chen et al. Microstructural and optical properties of high-quality ZnO epitaxially grown on a LiGaO 2 substrate
JPS6236009A (en) Thermal decomposition type boron nitride
US20220230882A1 (en) Iii-n heteroepitaxial devices on rock salt substrates
Coudurier et al. Effects of the V/III ratio on the quality of aluminum nitride grown on (0001) sapphire by high temperature hydride vapor phase epitaxy
Hens et al. Dependence of the seed layer quality on different temperature ramp-up conditions for 3C-SiC hetero-epitaxy on Si (100)
Kim et al. Relationship between crystallographic orientation and 3.42 eV emission bands in GaN grown by HVPE on Si substrate
Markworth et al. Epitaxial stabilization of orthorhombic cuprous oxide films on MgO (110)
JP7120598B2 (en) Aluminum nitride single crystal film and method for manufacturing semiconductor device
Gusev et al. Structural analysis of PLD grown 3C-SiC thin films on Si
Kakanakova-Georgieva et al. Sublimation epitaxy of AlN on SiC: growth morphology and structural features