JPS6235635A - Measurement of film thickness distribution and measuring device thereof - Google Patents

Measurement of film thickness distribution and measuring device thereof

Info

Publication number
JPS6235635A
JPS6235635A JP60174264A JP17426485A JPS6235635A JP S6235635 A JPS6235635 A JP S6235635A JP 60174264 A JP60174264 A JP 60174264A JP 17426485 A JP17426485 A JP 17426485A JP S6235635 A JPS6235635 A JP S6235635A
Authority
JP
Japan
Prior art keywords
growth
thin film
film thickness
plane
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60174264A
Other languages
Japanese (ja)
Inventor
Hideo Sugiura
杉浦 英雄
Yoshiharu Horikoshi
佳治 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60174264A priority Critical patent/JPS6235635A/en
Publication of JPS6235635A publication Critical patent/JPS6235635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To measure the in-plane distribution of a film thickness with high accuracy and in a short time by a method wherein a device for measuring the film thickness distribution in provided with a means which makes an electron beam incident in a crystal growth plane, a means which deflects the electron beam in the crystal growth plane, a means which receives a reflected and diffracted beam and displays a separated luminescent spot and a detecting means which converts light at the luminescent spot into an electrical signal. CONSTITUTION:A superhigh vacuum container 1 is provided with plural pieces of evaporation sources, a molecular beam is generated from each evaporation source, the molecular beams are simultaneously applied to a heated substrate 4 to form a single crystal thin film on the substrate through molecular beam epitaxial growth and an in-plane film thickness distribution is measured during the growth of the single crystal thin film. In that case, an electron beam is incided on the crystal growth plane of the single crystal thin film, and moreover, the incident electron beam is deflected to the prescribed direction in the crystal growth plane and a reflected electron beam diffraction image from the crystal growth plane is measured to measure the in-plane distribution of growth rate of the single crystal thin film during the growth of the film. By this way, a film thickness and the in-plane distribution of the film thickness can be found with high accuracy and in a short time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超高真空容器に複数個の蒸発源を配設し、そ
の蒸発源の各々から分子線を発生させ、これら分子線を
加熱された基板に同時に照射して当該基板上に単結晶薄
膜を分子線エピタキシャル成長させ、その単結晶薄膜の
成長中に面内の膜厚分布を測定する方法および装置に関
するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a method in which a plurality of evaporation sources are arranged in an ultra-high vacuum container, molecular beams are generated from each of the evaporation sources, and these molecular beams are heated. The present invention relates to a method and apparatus for simultaneously growing a single crystal thin film on the substrate by molecular beam epitaxial growth and measuring the in-plane film thickness distribution during the growth of the single crystal thin film.

[従来の技術1 GaAsをはじめとする化合物半導体は半導体レーザや
高速半導体素子の構成材料として広く使われている。こ
れらの素子を作成する際に不可欠な技術の1つに、単結
晶薄膜形成技術が挙げられる。
[Prior Art 1 Compound semiconductors such as GaAs are widely used as constituent materials for semiconductor lasers and high-speed semiconductor devices. One of the essential techniques for producing these elements is single-crystal thin film formation technique.

素子の高性能化に伴い、薄膜技術への要求条件がきびし
くなり、単原子層程度の範囲で急激な組成変化を示し、
かつ電気的にも光学的にも欠陥のない界面を形成できる
こと、などが求められている。
As the performance of devices increases, the requirements for thin film technology become stricter, and thin film technology exhibits rapid compositional changes within the range of a single atomic layer.
It is also required to be able to form an electrically and optically defect-free interface.

分子線エピタキシャル成長(NBK)法は、これらの要
求条件を満たすことが明らかにされたため、現在では、
■−■族ばかりでなく、IF−Vl族や][−N−V族
などの多元系、Siをはじめとする単元素半導体などの
薄膜形成に用いられている。
Molecular beam epitaxial growth (NBK) has been shown to meet these requirements and is now
It is used to form thin films of not only semiconductors of the ■-■ group, but also multi-component systems such as the IF-Vl group and ][-N-V group, and single-element semiconductors such as Si.

NBK法は、原理的には、真空蒸着法を発展させた形態
であり、超高真空容器内に分子線と呼ばれる蒸発源を複
数個配設し、これら蒸発源から発生する分子ビームを上
記真空容器内に置かれた基板に照射することにより、薄
膜を基板上に堆積する。
In principle, the NBK method is an advanced form of the vacuum evaporation method, in which multiple evaporation sources called molecular beams are placed in an ultra-high vacuum chamber, and the molecular beams generated from these evaporation sources are directed into the vacuum evaporation method. A thin film is deposited on the substrate by irradiating the substrate placed in the container.

MBE装置は、たとえば第1図に示すように、真空容器
1を排気するための真空ポンプ2を設け、その真空容器
lには複数個の分子線源3を取りつけ、さらに真空容器
1内には基板4を支持し、かつその基板4を加熱するヒ
ータを内蔵した基板ホルダ5を配置し、および形成され
た膜の結晶性を調べるためにその膜に電子線を照射する
ための電子銃6と偏向電極7およびその膜からの反射電
子線の回折パターンを映出する蛍光スクリーン8から成
る反射電子線回折装置を設ける。
For example, as shown in FIG. 1, the MBE apparatus is equipped with a vacuum pump 2 for evacuating a vacuum container 1, a plurality of molecular beam sources 3 are attached to the vacuum container 1, and A substrate holder 5 supporting the substrate 4 and having a built-in heater for heating the substrate 4 is arranged, and an electron gun 6 for irradiating the formed film with an electron beam in order to examine the crystallinity of the film. A reflected electron beam diffraction device is provided which includes a deflection electrode 7 and a fluorescent screen 8 that projects the diffraction pattern of the reflected electron beam from the deflection electrode 7.

MBE装置は上記のような特長を有するものの、膜厚の
面内分布を観測するための有効な手段がなかったので、
膜成長後、試料をへき関し、その断面をスティンエッチ
することにより、はじめて膜厚分布を得ていた。この方
法は破壊法であり、しかも精度は数%程度とあまり良い
とは言えない。
Although the MBE device has the above-mentioned features, there was no effective means for observing the in-plane distribution of film thickness.
After film growth, the film thickness distribution was obtained only by separating the sample and etching its cross section. This method is a destructive method, and the accuracy is only a few percent, which is not very good.

そこで、膜厚分布を非破壊法でかつ高精度に知る手段を
開発することは工業面からもまた学問的な観点からも重
要な課題である。前者については、1枚のウェーハから
多数のレーザやFETを作製する際に、予め膜厚分布が
わかっていれば、素子の歩留りを向上できるからである
。後者においては、超格子の物性を調べるにあたり、超
格子の物性は超格子の周期に強く依存するので、もし、
面内で膜厚に不均一がある場合には、ウェーハから取り
出した場所によって異なった実験結果が得られてしまい
、物性を正しく確認しにくいからである。
Therefore, developing a means for determining film thickness distribution using a non-destructive method and with high precision is an important issue from both an industrial and academic perspective. Regarding the former, when manufacturing a large number of lasers and FETs from one wafer, if the film thickness distribution is known in advance, the yield of devices can be improved. In the latter case, when investigating the physical properties of a superlattice, since the physical properties of a superlattice strongly depend on the period of the superlattice, if
This is because if the film thickness is non-uniform within the plane, different experimental results will be obtained depending on where the wafer is taken out, making it difficult to confirm the physical properties correctly.

[発明が解決しようとする問題点] そこで1本発明の目的は、IIIBF装置に設置した反
射電子線回折装置を適切に用いて、膜成長中に、試料を
破壊することなく膜厚の面内分布を膜の成長中に測定で
きる膜厚分布測定方法を提供することにある。
[Problems to be Solved by the Invention] Accordingly, one object of the present invention is to appropriately use a backscattered electron beam diffraction device installed in a IIIBF apparatus to obtain an in-plane measurement of the film thickness without destroying the sample during film growth. An object of the present invention is to provide a method for measuring film thickness distribution that can measure the distribution during film growth.

本発明の他の目的は、膜成長中に、試料を破壊すること
なく膜厚の面内分布を高精度にかつ短時間に測定できる
膜厚分布測定装置を提供することにある。
Another object of the present invention is to provide a film thickness distribution measuring device that can measure the in-plane film thickness distribution with high precision and in a short time without destroying the sample during film growth.

[問題点を解決するための手段] このような目的を達成するために、本発明測定方法は、
超高真空容器に複数個の蒸発源を配設し、その蒸発源の
各々から分子線を発生させ、これら分子線を加熱された
基板に同時に照射して基板上に単結晶薄膜を分子線エピ
タキシャル成長させ、その単結晶薄膜の成長中に面内の
膜厚分布を測定するにあたり、単結晶薄膜の結晶成長面
上に電子ビームを入射させ、かつその入射電子ビームを
結晶成長面において所定方向にふらせ、結晶成長面から
の反射電子ビーム回折像を測定して単結晶薄膜の成長速
度の面内分布を膜成長中に測定することを特徴とする。
[Means for solving the problems] In order to achieve such an objective, the measurement method of the present invention has the following features:
Multiple evaporation sources are placed in an ultra-high vacuum container, each of which generates molecular beams, and these molecular beams are simultaneously irradiated onto a heated substrate to grow a single crystal thin film on the substrate using molecular beam epitaxial growth. To measure the in-plane film thickness distribution during the growth of a single crystal thin film, an electron beam is incident on the crystal growth surface of the single crystal thin film, and the incident electron beam is swayed in a predetermined direction on the crystal growth surface. , is characterized in that the in-plane distribution of the growth rate of a single crystal thin film is measured during film growth by measuring a reflected electron beam diffraction image from the crystal growth surface.

本発明測定装置は、超高真空容器に複数個の蒸発源を配
設し、その蒸発源の各々から分子線を発生させ、これら
分子線を加熱された基板に同時に照射して基板上)Zに
単結晶薄膜を分子線エピタキシャル成長させ、その単結
晶薄膜の成長中に面内の膜厚分布をJl11定する装置
において、コリメートされた゛1v、子ビームを発生し
、単結晶薄膜の結晶成長面に入射させる手段と、その電
子ビームを、結晶成長面において連続的または段階的に
ふらせる手段と、結晶成長面からの反射回折ビームを受
光して連続的または複数個に分離した輝点を映出する蛍
光面を有する手段と、輝点の光を受光して電気信号に変
換する複数個の検出手段とを具えたことを特徴とする。
The measurement device of the present invention has a plurality of evaporation sources arranged in an ultra-high vacuum container, generates molecular beams from each of the evaporation sources, and simultaneously irradiates these molecular beams onto a heated substrate to detect Z on the substrate. In an apparatus that grows a single crystal thin film by molecular beam epitaxial growth and then determines the in-plane film thickness distribution during the growth of the single crystal thin film, a collimated beam is generated and a laser beam is applied to the crystal growth surface of the single crystal thin film. A means for making the electron beam incident, a means for swinging the electron beam continuously or stepwise on the crystal growth surface, and a means for receiving the reflected diffraction beam from the crystal growth surface to project continuous or plural bright spots. The present invention is characterized by comprising means having a phosphor screen for detecting bright spots, and a plurality of detecting means for receiving light from a bright spot and converting it into an electrical signal.

[作用] 本発明によれば、第1に、成長速度の差を高分解俺で測
定でき、100回程度の振動を観察すれば0.1%の成
長速度の差まで識別できる。第2に、測定時間が極めて
短かく1周期が1秒の場合、10秒程度で十分である。
[Function] According to the present invention, firstly, differences in growth rates can be measured using a high-resolution method, and by observing about 100 vibrations, it is possible to identify differences in growth rates down to 0.1%. Second, if the measurement time is extremely short and one cycle is 1 second, about 10 seconds is sufficient.

第3に、検出器を複数個設置し、および変調波を階段波
や三角波とパルスとの合成波とすることによって1回の
測定で面内分布を求めることができる。
Thirdly, by installing a plurality of detectors and using a composite wave of a staircase wave or a triangular wave and a pulse as the modulated wave, the in-plane distribution can be determined in one measurement.

[実施例] 以下に、図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

最近のMBEの研究によれば、膜成長時に反射電子線回
折像を観測すると、回折像の光強度が周期的に変動する
現象が見い出され、この現象は膜が1層毎に成長する過
程に因るものであり、振動周期は膜の成長速度に対応し
ていることが明らかにされた(Appl、 Phys、
A、 19B3,31.1)。
According to recent MBE research, when a backscattered electron diffraction image is observed during film growth, a phenomenon in which the light intensity of the diffraction image periodically fluctuates was found, and this phenomenon occurs during the process of film growth layer by layer. It was revealed that the vibration period corresponds to the growth rate of the film (Appl, Phys,
A, 19B3, 31.1).

したがって、膜の成長中に膜の振動周期を観察すること
ができれば、膜の成長中に成長速度を知ることができる
。膜厚は、成長速度と成長時間の積で表わされるので、
膜成長中に成長速度を知ることができれば膜厚を知るの
に十分である。
Therefore, if the vibration period of a film can be observed during film growth, the growth rate can be determined during film growth. Film thickness is expressed as the product of growth rate and growth time, so
Knowing the growth rate during film growth is sufficient to know the film thickness.

しかしながら、これによって、膜厚の面内分布を求める
ことはできない、なぜならば、電子回折を起こさせるべ
く電子ビームは細く絞り込まれているので、上記の方法
で求めた成長速度は試料面1−のごく小さな領域(直径
1*+n程度)での成長速度を表わしているにすぎない
からである。
However, it is not possible to determine the in-plane distribution of film thickness by this method, because the electron beam is focused narrowly to cause electron diffraction, so the growth rate determined by the above method is This is because it only represents the growth rate in a very small area (about 1*+n in diameter).

ところで、第1図に示したように、電子線回折装置には
、よくコリメートされた電子ビームを偏向するための偏
向電極7が設けられており、これに印加するバイアスに
よって基板4の試料面に照射する電子ビームの位置を調
整する。
By the way, as shown in FIG. 1, the electron beam diffraction apparatus is provided with a deflection electrode 7 for deflecting a well-collimated electron beam, and a bias applied to the deflection electrode 7 causes a deflection to occur on the sample surface of the substrate 4. Adjust the position of the irradiated electron beam.

そこで、本発明では、偏向電極7に印加するバイアスを
時間と共に適切に変化させることにより、電子ビームの
試料面上の照射位置を変化させる。すなわち、本発明で
は、偏向電極7に対して、直流バイアス源9からの直流
バイアスと重畳電波源10からの三角波、矩形波、また
はステップ状の階段波電流とを重畳したバイアスを印加
する。
Therefore, in the present invention, the irradiation position of the electron beam on the sample surface is changed by appropriately changing the bias applied to the deflection electrode 7 over time. That is, in the present invention, a bias in which a DC bias from a DC bias source 9 and a triangular wave, rectangular wave, or step-like staircase current from a superimposed radio wave source 10 are superimposed is applied to the deflection electrode 7.

ここで、まず、直流バイアス源9からの適当な直流バイ
アスを印加して、膜上の所望の位iAに電子ビームを照
射し1次に、重畳電流源10から変調する信号の振幅を
適当に選んで電子ビームをもう一つの所望の点Bに当て
れば、電子ビームはAとBの間を往復運動する。かかる
重畳信号が矩形波の場合、電子ビームはA点とB点の2
点のみを往復運動する。
Here, first, an appropriate DC bias is applied from the DC bias source 9 to irradiate an electron beam to a desired position iA on the film. If the electron beam is selected and directed to another desired point B, the electron beam will reciprocate between A and B. If the superimposed signal is a rectangular wave, the electron beam has two points, A and B.
Move only the point back and forth.

このとき、重畳信号の周波数を回折像の光強度の振動の
周波数に比べて十分大きくして、入射電子ビームの結晶
成長面上で高速度でふらせる必要がある0例えば、膜の
成長速度が0.3涛■/hのとき、回折像の光強度振動
の周波数は約IHzなので、重畳信号の周波数を、その
lO〜100倍程度、すなわち10Hz以上に設定する
必要がある。膜の成長速度が大きくなるにつれて、回折
像の光強度振動の周波数も大きくなるので、それに応じ
て重畳信号の周波数も高くしなければならない、 MB
Hにおける実用的な膜の成長速度は、一般に、0.1〜
10IL■/hの範囲にあるので、10IL■/hの場
合でも、重畳信号の周波数は少くとも1oOHz程度で
あればよい、ただし、この重畳信号の周波数はこれより
高ければ回折像の光強度振動に十分に応動して測定を行
うことができる。
At this time, it is necessary to make the frequency of the superimposed signal sufficiently larger than the frequency of the vibration of the light intensity of the diffraction image, and to make it oscillate at high speed on the crystal growth surface of the incident electron beam. Since the frequency of the light intensity oscillation of the diffraction image is about IHz when the frequency is 0.3 Hz/h, it is necessary to set the frequency of the superimposed signal to about 10 to 100 times that value, that is, 10 Hz or more. As the growth rate of the film increases, the frequency of the light intensity oscillation in the diffraction image also increases, so the frequency of the superimposed signal must also increase accordingly.
The practical film growth rate in H is generally 0.1 to
Since it is in the range of 10 IL■/h, even in the case of 10 IL■/h, the frequency of the superimposed signal should be at least about 1oOHz. However, if the frequency of this superimposed signal is higher than this, the light intensity oscillation of the diffraction image will occur. Measurements can be taken in sufficient response.

さて、このように設定した状態で、蛍光スクリーン8上
において、AおよびB点からの反射像または回折像が現
われる位置に2つの光検出器を配設しておけば、両点に
おける振動を同時に測定できる0両点での振動周期の差
から、両点での成長速度の差が求まる0次に、起点Aを
固定し、変調する矩形信号の振幅を逐次に変えて同様な
測定を繰り返すことによって、振幅と起点Aからの距離
との校正曲線を作成すれば、成長速度、言い換えれば膜
厚の面内分布が得られる。
Now, with these settings, if two photodetectors are placed on the fluorescent screen 8 at positions where reflected images or diffraction images from points A and B appear, vibrations at both points can be detected simultaneously. The difference in the growth rate between the two points can be determined from the difference in the vibration period between the two measurable points.For the 0th order, fix the starting point A and repeat the same measurement by sequentially changing the amplitude of the rectangular signal to be modulated. By creating a calibration curve between the amplitude and the distance from the starting point A, the growth rate, in other words, the in-plane distribution of the film thickness can be obtained.

以上に述べた本発明測定方法を実施する本発明測定装置
の一実施例を第1図に示す。
FIG. 1 shows an embodiment of the measuring device of the present invention for implementing the measuring method of the present invention described above.

ここで、、真空容器lをポンプ2を用いて10τart
以下の超高真空に排気した後、分子線源3からGaおよ
びAsビームを約830 ”Oに加熱されたGaAs基
板礁に照射することにより、基板4上にGaAsWJr
を形成した。その膜成長中に分子ビームに対してほぼ垂
直の方向から約10keVに加速された電子ビームを膜
面に対し2〜3°の角度で照射すると、電子線回折され
たパターンがスクリーン8に映出される。このパターン
をテレビカメラ11で撮影して、陰極線管12上に映出
する。その映出されたパターンの光強度を2個の光検出
器、たとえば太陽電池13を用いて検出した。
Here, the vacuum container l is heated to 10τ art using pump 2.
After evacuation to an ultra-high vacuum as described below, Ga and As beams are irradiated from the molecular beam source 3 onto the GaAs substrate heated to about 830"O, thereby depositing GaAsWJr on the substrate 4.
was formed. During film growth, when an electron beam accelerated to about 10 keV is applied to the film surface from a direction almost perpendicular to the molecular beam at an angle of 2 to 3 degrees, an electron beam diffraction pattern is projected onto the screen 8. It will be done. This pattern is photographed by a television camera 11 and displayed on a cathode ray tube 12. The light intensity of the projected pattern was detected using two photodetectors, such as solar cells 13.

本例では、偏向電極7として、対向する2対のコイルを
用い、これらコイルにバイアスを印加することにより発
生する磁場によって電子ビームを偏向した。ここで、コ
イル7には直流バイアス源8からの直流電流に重畳電流
源10からの変調信号電流を重畳したバイアスを供給し
た。
In this example, two pairs of opposing coils were used as the deflection electrode 7, and the electron beam was deflected by a magnetic field generated by applying a bias to these coils. Here, a bias obtained by superimposing a modulation signal current from a superimposed current source 10 on a DC current from a DC bias source 8 was supplied to the coil 7.

第2図(A)、(B)〜第5図(A)、(B)はこの重
畳電流の波形と蛍光面8上のスポットの形状との相関を
示している。
2(A), (B) to FIG. 5(A), (B) show the correlation between the waveform of this superimposed current and the shape of the spot on the phosphor screen 8.

すなわち、第2図(A)のように重畳電流が三角波の場
合には、蛍光面8上のスポットは棒状の輝線の軌跡を描
く。
That is, when the superimposed current is a triangular wave as shown in FIG. 2(A), the spot on the phosphor screen 8 traces the locus of a bar-shaped bright line.

第3図(轟)のように重畳電流が矩形波の場合には、蛍
光面8上のスポットは矩形波の2つのレベルに対応する
2つの輝点となる。
When the superimposed current is a rectangular wave as shown in FIG. 3 (Todoroki), the spots on the phosphor screen 8 become two bright spots corresponding to two levels of the rectangular wave.

第4図(A)のように重畳電流が階段波の場合には、蛍
光面8上のスポットはその階段波の各ステー、プに対応
する複数の輝点となる。
When the superimposed current is a staircase wave as shown in FIG. 4(A), the spots on the phosphor screen 8 become a plurality of bright spots corresponding to each step of the staircase wave.

第5図(A)のように重畳電流が三角波とパルスとの合
成波である場合には、蛍光面8上のスポットはその合成
波の各パルスのレベルに対応する複数の輝点となる。
When the superimposed current is a composite wave of a triangular wave and a pulse as shown in FIG. 5(A), the spots on the phosphor screen 8 become a plurality of bright spots corresponding to the level of each pulse of the composite wave.

これら一点を検出するにあたっては、蛍光面8上の輝点
を光検出器で直接に検出する以外に、テレビカメラ11
を用いることにより同様のスポット形状を陰極線管12
上に形成することもできる。このような陰極線管12の
スクリーン面において、スポットの生じた部分における
複数個の点に太陽電池13を配置して、それぞれからス
ポットに対応する信号を同時に取り出す、その出力をレ
コーダ14に記録することができる。
In order to detect one of these points, in addition to directly detecting the bright spot on the phosphor screen 8 with a photodetector,
A similar spot shape can be obtained by using a cathode ray tube 12.
It can also be formed on top. On the screen surface of such a cathode ray tube 12, solar cells 13 are arranged at a plurality of points in the part where the spots are generated, signals corresponding to the spots are simultaneously extracted from each spot, and the outputs are recorded on the recorder 14. I can do it.

次に、変調信号電流として矩形波を用いた場合の実験結
果について述べる。矩形波の周波数を100Hzとした
ときの異なる2点での振動■および■の様子を第3図に
示す0周期は約1.1秒であった0両点での振動工およ
びIの周期はわずかに異なり、lO同周期要する時間に
0.2秒の差が見られた。この値を成長速度の相対比に
換算すると約2%に相当する。
Next, we will discuss experimental results when a rectangular wave is used as the modulation signal current. Figure 3 shows the state of vibration ■ and ■ at two different points when the frequency of the rectangular wave is 100 Hz. The 0 period is approximately 1.1 seconds. The periods of vibration and I at both points are as follows. There was a slight difference, with a difference of 0.2 seconds in the time required for the same cycle of lO. When this value is converted into a relative ratio of growth rate, it corresponds to about 2%.

ここで、一方の点を固定しておき、矩形波の振幅を変え
ることにより成長速度の変化率を求めた結果を第4図に
示す、成長速度の変化率は、ウェーハ中心からlO諺鵬
以内は1%以下であったが、ウェーハ中心から離れるに
つれて、変化率は単調に増加することがわかる。S作製
後にこの試料をへき関してスティンエッチ法で求めた膜
厚の面内分布は、第4図によって求めた面内分布とほぼ
一致した。
Figure 4 shows the results of determining the rate of change in growth rate by fixing one point and changing the amplitude of the rectangular wave. was less than 1%, but it can be seen that the rate of change monotonically increases as the distance from the wafer center increases. The in-plane distribution of the film thickness obtained by cutting this sample after S was prepared and using the stain-etch method almost coincided with the in-plane distribution obtained from FIG. 4.

[発明の効果] 以上説明したように1本発明によれば、MBE装置にお
いて膜成長中に膜厚および膜厚の面内分布を、高精度か
つ短時間に求めることができる。
[Effects of the Invention] As explained above, according to the present invention, the film thickness and the in-plane distribution of the film thickness can be determined with high accuracy and in a short time during film growth in an MBE apparatus.

すなわち1本発明によれば、第1に、成長速度の差を高
分解能で測定でき、100回程度の振動を観察すれば0
.1%の成長速度の差まで識別できる。第2に、測定時
間が極めて短かく、周期が1秒の場合、10秒程度で十
分である。第3に、検出器を複数個設置し、および変調
波を階段波や三角波とパルスとの合成波とすることによ
って1回の測定で面内分布を求めることができる。
That is, according to the present invention, firstly, the difference in growth rate can be measured with high resolution, and if approximately 100 vibrations are observed, the difference in growth rate can be measured with high resolution.
.. Differences in growth rate of up to 1% can be identified. Secondly, the measurement time is extremely short; if the period is 1 second, about 10 seconds is sufficient. Thirdly, by installing a plurality of detectors and using a composite wave of a staircase wave or a triangular wave and a pulse as the modulated wave, the in-plane distribution can be determined in one measurement.

なお、本発明は、超高真空を必要とするMBE装置ばか
りでなく、通常の真空蒸着装置においても、膜厚分布を
測定するのに用いて極めて有効である。
Note that the present invention is extremely effective for use in measuring film thickness distribution not only in MBE apparatuses that require ultra-high vacuum, but also in ordinary vacuum evaporation apparatuses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMB!装置に組み込んだ本発明測定装置の一実
施例を示す概略的な断面図、 第2図(A)と(B)、第3図(A)と(B)、第4図
(A)と(B)および第5図(A)とCB)は電子ビー
ムを変調する重畳電流と蛍光スクリーンに現われる回折
像の形状との相関を概略的に示す説明図。 第6図は膜面上の異なる2点に対応する回折像を同時に
観測した場合に得られた回折像における光強度の振動の
様子を示す実験結果の特性図、第7図は本発明を用いて
得られた成長速度の変化率の面内分布を示す特性図であ
る。 1・・・真空容器、 2・・・真空ポンプ、 3・・・分子線源、 4・・・基板、 5・・・ヒータを内蔵した基板ホルダ、6・・・電子銃
、 7・・・偏向電極、 8・・・蛍光スクリーン、 9・・・直流バイアス源、 lO・・・重畳電流源、 11・・・テレビカメラ、 12・・・陰極線管、 13・・・太陽電池、 14・・・レコーダ。 特許出願人   日本電信電話株式会社代 理 人  
 弁理士 谷  義 −第5図 第6図 o          10 ウェーハ中Jむo゛5のS巨Xi(nm)第7図
Figure 1 is MB! Schematic cross-sectional views showing one embodiment of the measuring device of the present invention incorporated into a device, FIGS. 2(A) and (B), FIGS. 3(A) and (B), and FIG. 4(A) and ( B) and FIGS. 5A and 5C are explanatory diagrams schematically showing the correlation between the superimposed current that modulates the electron beam and the shape of the diffraction image appearing on the fluorescent screen. Figure 6 is a characteristic diagram of experimental results showing how the light intensity oscillates in the diffraction image obtained when diffraction images corresponding to two different points on the film surface are observed simultaneously, and Figure 7 is a characteristic diagram of the experimental results using the present invention. FIG. 3 is a characteristic diagram showing the in-plane distribution of the rate of change in growth rate obtained by the method of FIG. DESCRIPTION OF SYMBOLS 1... Vacuum container, 2... Vacuum pump, 3... Molecular beam source, 4... Substrate, 5... Substrate holder with built-in heater, 6... Electron gun, 7... Deflection electrode, 8... Fluorescent screen, 9... DC bias source, lO... Superimposed current source, 11... Television camera, 12... Cathode ray tube, 13... Solar cell, 14...・Recorder. Patent applicant: Agent of Nippon Telegraph and Telephone Corporation
Patent Attorney Yoshi Tani - Figure 5 Figure 6 o 10 S giant Xi (nm) of Jm o゛5 in wafer Figure 7

Claims (1)

【特許請求の範囲】 1)超高真空容器に複数個の蒸発源を配設し、その蒸発
源の各々から分子線を発生させ、これら分子線を加熱さ
れた基板に同時に照射して当該基板上に単結晶薄膜を分
子線エピタキシャル成長させ、その単結晶薄膜の成長中
に面内の膜厚分布を測定するにあたり、前記単結晶薄膜
の結晶成長面上に電子ビームを入射させ、かつその入射
電子ビームを前記結晶成長面において所定方向にふらせ
、前記結晶成長面からの反射電子ビーム回折像を測定し
て前記単結晶薄膜の成長速度の面内分布を膜成長中に測
定することを特徴とする膜厚分布測定方法。 2)超高真空容器に複数個の蒸発源を配設し、その蒸発
源の各々から分子線を発生させ、これら分子線を加熱さ
れた基板に同時に照射して当該基板上に単結晶薄膜を分
子線エピタキシャル成長させ、その単結晶薄膜の成長中
に面内の膜厚分布を測定する装置において、 コリメートされた電子ビームを発生し、前記単結晶薄膜
の結晶成長面に入射させる手段と、その電子ビームを、
前記結晶成長面において連続的または段階的にふらせる
手段と、 前記結晶成長面からの反射回折ビームを受光して連続的
または複数個に分離した■点を映出する蛍光面を有する
手段と、 前記■点の光を受光して電気信号に変換する複数個の検
出手段と を具えたことを特徴とする膜厚分布測定装置。
[Claims] 1) A plurality of evaporation sources are arranged in an ultra-high vacuum container, each of the evaporation sources generates a molecular beam, and a heated substrate is irradiated with these molecular beams simultaneously to produce the substrate. To grow a single-crystal thin film by molecular beam epitaxial growth on the single-crystal thin film and measure the in-plane film thickness distribution during the growth of the single-crystal thin film, an electron beam is incident on the crystal growth surface of the single-crystal thin film, and the incident electrons are The method is characterized in that the in-plane distribution of the growth rate of the single crystal thin film is measured during film growth by swinging a beam in a predetermined direction on the crystal growth surface and measuring a reflected electron beam diffraction image from the crystal growth surface. Film thickness distribution measurement method. 2) Multiple evaporation sources are placed in an ultra-high vacuum container, each of which generates molecular beams, and a heated substrate is irradiated with these molecular beams simultaneously to form a single crystal thin film on the substrate. In an apparatus for performing molecular beam epitaxial growth and measuring in-plane film thickness distribution during the growth of the single crystal thin film, there is provided a means for generating a collimated electron beam and making it incident on the crystal growth surface of the single crystal thin film; beam,
means for causing the crystal growth surface to fluctuate continuously or stepwise; means having a fluorescent screen that receives the reflected diffraction beam from the crystal growth surface and projects continuously or divided into a plurality of dots; A film thickness distribution measuring device characterized by comprising a plurality of detection means for receiving the light at the point (1) and converting it into an electrical signal.
JP60174264A 1985-08-09 1985-08-09 Measurement of film thickness distribution and measuring device thereof Pending JPS6235635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60174264A JPS6235635A (en) 1985-08-09 1985-08-09 Measurement of film thickness distribution and measuring device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60174264A JPS6235635A (en) 1985-08-09 1985-08-09 Measurement of film thickness distribution and measuring device thereof

Publications (1)

Publication Number Publication Date
JPS6235635A true JPS6235635A (en) 1987-02-16

Family

ID=15975598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60174264A Pending JPS6235635A (en) 1985-08-09 1985-08-09 Measurement of film thickness distribution and measuring device thereof

Country Status (1)

Country Link
JP (1) JPS6235635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632494A2 (en) * 1993-06-07 1995-01-04 Mitsubishi Denki Kabushiki Kaisha Method for evaluating epitaxial layers and test pattern for process evaluation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632494A2 (en) * 1993-06-07 1995-01-04 Mitsubishi Denki Kabushiki Kaisha Method for evaluating epitaxial layers and test pattern for process evaluation
EP0632494A3 (en) * 1993-06-07 1995-12-06 Mitsubishi Electric Corp Method for evaluating epitaxial layers and test pattern for process evaluation.

Similar Documents

Publication Publication Date Title
US4855013A (en) Method for controlling the thickness of a thin crystal film
JPH01136327A (en) Manufacture of element having super lattice structure
EP0518633B1 (en) Pattern inspection apparatus and electron beam apparatus
US7487667B2 (en) Probe apparatus for measuring an electron state on a sample surface
US20060219908A1 (en) Charged particle beam equipment
JPS6333262B2 (en)
JPS624335A (en) Semiconductor device inspection method and apparatus
JP2000048758A (en) Reflected electron detecting device
US5900937A (en) Optical interferometer using beam energy modulation to measure surface topology
US20100117001A1 (en) Simultaneous measurement of beams in lithography system
US12031929B2 (en) Physical state measurement device
JPS6235635A (en) Measurement of film thickness distribution and measuring device thereof
Namba et al. Thickness periodicity in the Auger line shape from epitaxial (111) Cu films
Golczewski et al. A quartz-crystal-microbalance technique to investigate ion-induced erosion of fusion relevant surfaces
EP0050475B1 (en) Scanning-image forming apparatus using photo electric signal
JPH0633231B2 (en) Molecular beam epitaxial growth method
JP2009542903A (en) Devices and methods for determining surface properties
US6489612B1 (en) Method of measuring film thickness
JPS587053B2 (en) Method and apparatus for precisely aligning an electron beam with a selected area of a major surface of a substrate
JPS59127840A (en) Deposition of organic film and device therefor
JP3064693B2 (en) In-situ observation method of crystal growth of multilayer film
JP2894660B2 (en) Ion implantation amount measuring method and apparatus
JPS6147507A (en) Method for measuring thickness of crystal film
JP2003303565A (en) Electron beam examining device
JPH077656B2 (en) Device for observing sample surface irregularities by backscattered electron diffraction