JPS6235253Y2 - - Google Patents

Info

Publication number
JPS6235253Y2
JPS6235253Y2 JP7536482U JP7536482U JPS6235253Y2 JP S6235253 Y2 JPS6235253 Y2 JP S6235253Y2 JP 7536482 U JP7536482 U JP 7536482U JP 7536482 U JP7536482 U JP 7536482U JP S6235253 Y2 JPS6235253 Y2 JP S6235253Y2
Authority
JP
Japan
Prior art keywords
charged particle
grid
energy
floating
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7536482U
Other languages
Japanese (ja)
Other versions
JPS58178267U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7536482U priority Critical patent/JPS58178267U/en
Publication of JPS58178267U publication Critical patent/JPS58178267U/en
Application granted granted Critical
Publication of JPS6235253Y2 publication Critical patent/JPS6235253Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【考案の詳細な説明】 本考案は質量分析計とか種々な電子エネルギー
分光装置等における最終荷電粒子検出装置に関す
る。
[Detailed Description of the Invention] The present invention relates to a final charged particle detection device in a mass spectrometer or various electron energy spectroscopy devices.

上述したような荷電粒子分析装置では、質量と
かエネルギーによつて選別された特定の荷電粒子
を検出する最終荷電粒子検出に、上記特定の荷電
粒子を選別する正規荷電粒子光学系以外の経路で
不特定の浮遊荷電粒子が入射して検出信号のバツ
クグランドノイズとなる。このような問題は特に
2次イオン質量分析計やガスクロマトグラフ質量
分析計で著るしい。正規の荷電粒子光学系を通過
して来た特定粒子即ち検出しようとしている目的
の荷電粒子と浮遊荷電粒子とでは検出器へ入射す
るときのエネルギーが異るから入射粒子のエネル
ギーに応じて変化するパルス信号を出力するよう
な検出器であれば出力信号をレベル選別して目的
荷電粒子の検出信号と浮遊荷電粒子の検出信号と
を識別することが出来るが、2次電子増倍管とか
チヤンネルトロンのような検出器はある一定値以
上のエネルギーを有する入射荷電粒子のエネルギ
ーに対しては応答性を有しないからバツクグラウ
ンドノイズのレベルを低下させることができず、
電子増倍管の高感度に相応した検出感度を得るこ
とが困難であつた。
In the above-mentioned charged particle analyzer, in the final charged particle detection, which detects specific charged particles sorted by mass or energy, there is no error in the path other than the regular charged particle optical system that sorts out the specific charged particles. Certain floating charged particles enter and become background noise in the detection signal. Such problems are particularly severe in secondary ion mass spectrometers and gas chromatograph mass spectrometers. The specific particles that have passed through the regular charged particle optical system, that is, the target charged particles to be detected, and the floating charged particles have different energies when they enter the detector, so the energy changes depending on the energy of the incident particles. If the detector outputs a pulse signal, it is possible to level-sort the output signal and distinguish between the detection signal of the target charged particle and the detection signal of the floating charged particle. Detectors such as the above do not have responsiveness to the energy of incident charged particles with energy above a certain value, so they cannot reduce the level of background noise.
It has been difficult to obtain detection sensitivity commensurate with the high sensitivity of electron multiplier tubes.

本考案は荷電粒子検出器に電子増倍管を用いた
荷電粒子分析装置において、浮遊荷電粒子の影響
を除きS/N比を高め高感度を得ることを目的と
するもので、電子増倍管の荷電粒子入射口の前面
にグリツドを設けて適当な電圧を印加し浮遊荷電
粒子を反撥して電子増倍管に入射させないように
した荷電粒子検出装置を提供するものである。以
下実施例によつて本考案を説明する。
The purpose of this invention is to remove the influence of floating charged particles, increase the S/N ratio, and obtain high sensitivity in a charged particle analyzer that uses an electron multiplier tube as a charged particle detector. A charged particle detection device is provided in which a grid is provided in front of a charged particle entrance and an appropriate voltage is applied to repel floating charged particles so that they do not enter an electron multiplier. The present invention will be explained below with reference to Examples.

図は電子増倍管にチヤンネルトロンを用いた本
考案の一実施例を示すものである。1はチヤンネ
ルトロンでIは荷電粒子入射口、Cは電子コレク
タである。HVは高流高圧電源でコレクタCとチ
ヤンネルトロン1の電子出射口端との間及びチヤ
ンネルトロン1の両端間に適当な電圧を印加して
いる。チヤンネルトロン1の荷電粒子入射口Iの
前面即ち図で左側に3個のグリツドG1,G2,
G3が配置してある。2はグリツドG1,G2,
G3を支持する絶縁体である。この実施例は正イ
オン検出の場合を示しており、チヤンネルトロン
1の荷電粒子入射口I及び第3グリツドG3はア
ース電位であり、第1、第2グリツドG1,G2
は高圧直流電源HVの出力電圧を分圧したVrボル
トの正電圧が印加してある。分析装置の真空容器
壁がアース電位であるから図で第1グリツドG1
の左方からチヤンネルトロン1に入射する正イオ
ンに対して第1グリツドG1の前面には減速電界
が形成されておりVr電子ボルト以下のエネルギ
ーしか有さない正イオンはG1で発撥されてチヤ
ンネルトロンに入射することができない。一般に
浮遊イオンは正規の荷電粒子光学系を通つて来た
イオンよりもエネルギーを失つているので、Vr
を適当に選ぶことにより目的とするイオンはチヤ
ンネルトロンに入射させ、それより低いエネルギ
ーの浮遊イオンは反撥するようにすることがで
き、ノイズレベルを著るしく低下させることがで
きる。
The figure shows an embodiment of the present invention in which a channel tron is used as an electron multiplier. 1 is a channel tron, I is a charged particle entrance, and C is an electron collector. HV is a high-current, high-voltage power supply that applies an appropriate voltage between the collector C and the electron exit end of the channeltron 1 and between both ends of the channeltron 1. Three grids G1, G2,
G3 is placed. 2 is grid G1, G2,
It is an insulator that supports G3. This example shows the case of positive ion detection, where the charged particle entrance I and the third grid G3 of the channeltron 1 are at ground potential, and the first and second grids G1 and G2 are at ground potential.
A positive voltage of Vr volts, which is obtained by dividing the output voltage of the high-voltage DC power supply HV, is applied. Since the wall of the vacuum chamber of the analyzer is at ground potential, the first grid G1 in the figure
A decelerating electric field is formed in front of the first grid G1 for positive ions that enter the channel tron 1 from the left side of the grid, and positive ions with energy less than Vr electron volt are repelled by G1 and enter the channel. Unable to enter Tron. In general, floating ions have lost more energy than ions that have passed through a regular charged particle optical system, so Vr
By appropriately selecting the target ions, the target ions can be made to enter the channeltron, while floating ions of lower energy can be repelled, making it possible to significantly reduce the noise level.

上述実施例で不要イオンを反撥するグリツドは
G1,G2の二重になつているが、これは一重で
もよい。このグリツドを二重にすると個々のグリ
ツドの目を粗くして目の細い一重グリツドと同じ
効果を持たすことができ、前後のグリツドの格子
線を前後正しく重なるようにしておくと、検出し
ようとする目的イオンはグリツド面に垂直に入射
して来るので、格子線に衝突して損失となるイオ
ンを減少させることができる。
In the above embodiment, the grids for repelling unnecessary ions are double grids of G1 and G2, but they may be single grids. By doubling this grid, you can make the individual grids coarser and have the same effect as a narrower single grid, and if you make the grid lines of the front and back grids overlap correctly in the front and back, it will be easier to detect. Since the target ions are incident perpendicularly to the grid plane, it is possible to reduce the number of ions that collide with the grid lines and cause loss.

本考案装置は上述したような構成で検出しよう
とする目的荷電粒子より低エネルギーの浮遊粒子
が検出器に入射するのが防がれるから電子増倍管
のようなエネルギー選択性を殆んど有しない検出
器を用いた場合、電気回路的には除去できなかつ
た浮遊荷電粒子によるノイズが著るしく低減さ
れ、電子増倍管の高感度を充分に活用できること
になつて、高感度の荷電粒子分析装置が得られ
る。
The device of the present invention has almost the same energy selectivity as an electron multiplier because the above-mentioned configuration prevents floating particles with lower energy than the target charged particles to be detected from entering the detector. When using a detector that does not eliminate the noise caused by floating charged particles, which cannot be removed using electrical circuits, the noise caused by floating charged particles is significantly reduced, and the high sensitivity of electron multiplier tubes can be fully utilized. An analytical device is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の一実施例装置の回路図である。 1……チヤンネルトロン、I……荷電粒子入射
口、HV……高圧直流電源、G1,G2,G3…
…グリツド。
The drawing is a circuit diagram of an apparatus according to an embodiment of the present invention. 1... Channel tron, I... Charged particle entrance, HV... High voltage DC power supply, G1, G2, G3...
...Grid.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電子増倍管の荷電粒子入射口の前面にグリツド
を配置し、低エネルギー荷電粒子の電子増倍管へ
の入射を阻止する電圧を上記グリツドに印加する
ようにした荷電粒子検出装置。
A charged particle detection device in which a grid is disposed in front of a charged particle entrance of an electron multiplier, and a voltage is applied to the grid to prevent low-energy charged particles from entering the electron multiplier.
JP7536482U 1982-05-21 1982-05-21 Charged particle detection device Granted JPS58178267U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7536482U JPS58178267U (en) 1982-05-21 1982-05-21 Charged particle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7536482U JPS58178267U (en) 1982-05-21 1982-05-21 Charged particle detection device

Publications (2)

Publication Number Publication Date
JPS58178267U JPS58178267U (en) 1983-11-29
JPS6235253Y2 true JPS6235253Y2 (en) 1987-09-08

Family

ID=30084726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7536482U Granted JPS58178267U (en) 1982-05-21 1982-05-21 Charged particle detection device

Country Status (1)

Country Link
JP (1) JPS58178267U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7432459B2 (en) * 2020-07-15 2024-02-16 浜松ホトニクス株式会社 Channel type electron multiplier and ion detector

Also Published As

Publication number Publication date
JPS58178267U (en) 1983-11-29

Similar Documents

Publication Publication Date Title
US5202561A (en) Device and method for analyzing ions of high mass
Geno et al. Secondary electron emission induced by impact of low-velocity molecular ions on a microchannel plate
Cottrell et al. Characteristics of a multichannel electrooptical detection system and its application to the analysis of large molecules by fast atom bombardment mass spectrometry
JPS62264546A (en) Mass spectrograph
EP0559202B1 (en) Secondary ion mass spectrometer for analyzing positive and negative ions
US3240931A (en) Spatial discriminator for particle beams
US10276359B2 (en) Ion mobility spectrometer
US20240128070A1 (en) Multimode ion detector with wide dynamic range and automatic mode switching
Gspann Negatively charged helium-4 clusters
JPS6235253Y2 (en)
US6717131B2 (en) Clean daughter-ion spectra using time-of-flight mass spectrometers
US3475604A (en) Mass spectrometer having means for simultaneously detecting single focussing and double focussing mass spectra
US5118936A (en) Accuracy of AMS isotopic ratio measurements
DE2950330C2 (en) Device for chemical analysis of samples
Poschenrieder et al. New Directional and Energy Focusing Time of Flight Mass Spectrometers for Special Tasks in Vacuum and Surface Physics
Eland Improved resolution in fixed‐wavelength photoelectron–photoion coincidence spectroscopy
Braams et al. Composition of Noble Gas Ion Beams Produced with a Duoplasmatron
JPS6371680A (en) Ion detector
US2691107A (en) Mass spectrometry
US6815689B1 (en) Mass spectrometry with enhanced particle flux range
US2845539A (en) Mass spectrometry
JPS6245423Y2 (en)
Nakao Photon‐blind, high collection efficiency ion detector for a quadrupole mass spectrometer
Olsen Position-sensitive detector for heavy atomic particles in the keV energy range
Wiebert et al. The charge state distributions of carbon beams measured at the Lund Pelletron accelerator